Titulo:

El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
.

Sumario:

En este trabajo de investigación se presenta la técnica de Principal Component Analysis (PCA), y su aplicación práctica al aprendizaje automático (machine learning). La intención es abordar la problemática de la reducción dimensional o compresión de datos. A partir de un análisis intuitivo, se espera acercar a los economistas y otros profesionales de las ciencias sociales estas ideas que, generalmente, resultan ajenas a sus discusiones.

Guardado en:

2256-1498

14

2024-01-01

1

21

Revista Mutis - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_utadeo_revistamutis_66_article_2057
record_format ojs
spelling El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
The Problem of Dimensional Reduction. Principal Component Analysis (PCA)
En este trabajo de investigación se presenta la técnica de Principal Component Analysis (PCA), y su aplicación práctica al aprendizaje automático (machine learning). La intención es abordar la problemática de la reducción dimensional o compresión de datos. A partir de un análisis intuitivo, se espera acercar a los economistas y otros profesionales de las ciencias sociales estas ideas que, generalmente, resultan ajenas a sus discusiones.
This research paper presents the Principal Component Analysis (PCA) technique, and its practical application to machine learning. The objective is to address the problem of dimensional reduction or data compression. Based on an intuitive analysis, this document will help bring economists and other professionals in the social sciences closer to these ideas, which are generally alien to their discussions.
Pernice , Sergio A.
análisis de componentes principales
aprendizaje no supervisado
reducción dimensional
ingeniería
Principal component analysis
Unsupervised learning
Dimensional reduction
Engineering
14
1
Artículo de revista
Journal article
2024-01-01T00:00:00Z
2024-01-01T00:00:00Z
2024-01-01
application/pdf
Universidad de Bogotá Jorge Tadeo Lozano
Revista Mutis
2256-1498
https://revistas.utadeo.edu.co/index.php/mutis/article/view/problema-reduccion-dimensional-analisis-componentes-principales-PCA
10.21789/22561498.2057
https://doi.org/10.21789/22561498.2057
spa
https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Mutis - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1
21
Athey-Imbens. (2019).Susan Athey and GuidoW. Imbens, “Machine Learning Methods That Economists Should Know About”, Annual Review of Economics 2019 11:1, 685-725. https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-080217-053433.
Bai-Ng, Bai, J. and Ng, S. (2004). “A PANIC Attack on Unit Roots and Cointegration”. Econometrica, 72: 1127-1177. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00528.x.
Bai-Ng. (2007). Bai, Jushan, and Serena Ng. “Determining the Number of Primitive Shocks in Factor Models.” Journal of Business & Economic Statistics 25, no. 1 (2007): 52–60. http://www.jstor.org/stable/27638906.
Bai-Ng. (2017). Bai, J. and Ng, S.. “Principal components and regularized estimation of factor models”, https://arxiv.org/abs/1708.08137.
Bates, B. J., M. PLAGBORG-MoLLER-Stock-Watson, J. H. Stock, AND M.W.Watson. (2013). “Consistent Factor Estimation in Dynamic Factor Models with Structural Instability,” Journal of Econometrics, V. 177 (2), p. 289-304, 2013. https://www. sciencedirect.com/science/article/abs/pii/S0304407613000912?via%3Dihub.
Ben S. Bernanke, Jean Boivin, Piotr Eliasz. (2005). “Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach”, The Quarterly Journal of Economics, Volume 120, Issue 1, February 2005, Pages 387–422. https://doi.org/10.1162/0033553053327452
Cheng, X, Z. Liao, F. Schorfheide. (2016). “Shrinkage Estimation of High- Dimensional Factor Models with Structural Instabilities”, The Review of Economic Studies, Volume 83, Issue 4, October 2016, Pages 1511–1543, https://doi.org/10.1093/restud/rdw005.
Chen, L., Dolado, J.J. and Gonzalo, J. (2021). “Quantile Factor Models”. Econometrica, 89: 875-910. https://doi.org/10.3982/ECTA15746.
Lettau, M., Markus Pelger. (2020). “Estimating latent asset-pricing factors”, Journal of Econometrics, ISSN: 0304-4076, Vol: 218, Issue: 1, Page: 1-31, 2020. https://doi.org/10.1016/j.jeconom.2019.08.012.
Mol, C., Giannone, D., Reichlin, L. (2007). “Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?”. Journal of Econometrics, Volume 146, Issue 2, Pages 318-328. https://www.sciencedirect.com/science/article/abs/pii/S0304407608001103?via%3Dihub.
Stock, J. H., and M. W. Watson. (2002). “Forecasting Using Principal Components from a Large Number of Predictors.” Journal of the American Statistical Association 97, no. 460 (2002): 1167–79. http://www.jstor.org/stable/3085839.
Stock, J. H., and M. W. Watson. (2012). “Disentangling the Channels of the 2007-09 Recession,” Brookings Papers on Economic Activity, pp. 81-156. https://www.brookings.edu/bpea-articles/disentangling-the-channels-of-the-2007-2009-recession/20
Vyas, S., L. Kumaranayake. (2006). “Constructing socio-economic status indices: how to use principal components analysis”, Health Policy and Planning, Volume 21, Issue 6, November 2006, Pages 459–468. https://doi.org/10.1093/heapol/czl029.
https://revistas.utadeo.edu.co/index.php/mutis/article/download/problema-reduccion-dimensional-analisis-componentes-principales-PCA/2078
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD JORGE TADEO LOZANO
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADJORGETADEOLOZANO/logo.png
country_str Colombia
collection Revista Mutis
title El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
spellingShingle El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
Pernice , Sergio A.
análisis de componentes principales
aprendizaje no supervisado
reducción dimensional
ingeniería
Principal component analysis
Unsupervised learning
Dimensional reduction
Engineering
title_short El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
title_full El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
title_fullStr El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
title_full_unstemmed El problema de la reducción dimensional. Análisis de Componentes Principales (PCA)
title_sort el problema de la reducción dimensional. análisis de componentes principales (pca)
title_eng The Problem of Dimensional Reduction. Principal Component Analysis (PCA)
description En este trabajo de investigación se presenta la técnica de Principal Component Analysis (PCA), y su aplicación práctica al aprendizaje automático (machine learning). La intención es abordar la problemática de la reducción dimensional o compresión de datos. A partir de un análisis intuitivo, se espera acercar a los economistas y otros profesionales de las ciencias sociales estas ideas que, generalmente, resultan ajenas a sus discusiones.
description_eng This research paper presents the Principal Component Analysis (PCA) technique, and its practical application to machine learning. The objective is to address the problem of dimensional reduction or data compression. Based on an intuitive analysis, this document will help bring economists and other professionals in the social sciences closer to these ideas, which are generally alien to their discussions.
author Pernice , Sergio A.
author_facet Pernice , Sergio A.
topicspa_str_mv análisis de componentes principales
aprendizaje no supervisado
reducción dimensional
ingeniería
topic análisis de componentes principales
aprendizaje no supervisado
reducción dimensional
ingeniería
Principal component analysis
Unsupervised learning
Dimensional reduction
Engineering
topic_facet análisis de componentes principales
aprendizaje no supervisado
reducción dimensional
ingeniería
Principal component analysis
Unsupervised learning
Dimensional reduction
Engineering
citationvolume 14
citationissue 1
publisher Universidad de Bogotá Jorge Tadeo Lozano
ispartofjournal Revista Mutis
source https://revistas.utadeo.edu.co/index.php/mutis/article/view/problema-reduccion-dimensional-analisis-componentes-principales-PCA
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Mutis - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Athey-Imbens. (2019).Susan Athey and GuidoW. Imbens, “Machine Learning Methods That Economists Should Know About”, Annual Review of Economics 2019 11:1, 685-725. https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-080217-053433.
Bai-Ng, Bai, J. and Ng, S. (2004). “A PANIC Attack on Unit Roots and Cointegration”. Econometrica, 72: 1127-1177. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00528.x.
Bai-Ng. (2007). Bai, Jushan, and Serena Ng. “Determining the Number of Primitive Shocks in Factor Models.” Journal of Business & Economic Statistics 25, no. 1 (2007): 52–60. http://www.jstor.org/stable/27638906.
Bai-Ng. (2017). Bai, J. and Ng, S.. “Principal components and regularized estimation of factor models”, https://arxiv.org/abs/1708.08137.
Bates, B. J., M. PLAGBORG-MoLLER-Stock-Watson, J. H. Stock, AND M.W.Watson. (2013). “Consistent Factor Estimation in Dynamic Factor Models with Structural Instability,” Journal of Econometrics, V. 177 (2), p. 289-304, 2013. https://www. sciencedirect.com/science/article/abs/pii/S0304407613000912?via%3Dihub.
Ben S. Bernanke, Jean Boivin, Piotr Eliasz. (2005). “Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach”, The Quarterly Journal of Economics, Volume 120, Issue 1, February 2005, Pages 387–422. https://doi.org/10.1162/0033553053327452
Cheng, X, Z. Liao, F. Schorfheide. (2016). “Shrinkage Estimation of High- Dimensional Factor Models with Structural Instabilities”, The Review of Economic Studies, Volume 83, Issue 4, October 2016, Pages 1511–1543, https://doi.org/10.1093/restud/rdw005.
Chen, L., Dolado, J.J. and Gonzalo, J. (2021). “Quantile Factor Models”. Econometrica, 89: 875-910. https://doi.org/10.3982/ECTA15746.
Lettau, M., Markus Pelger. (2020). “Estimating latent asset-pricing factors”, Journal of Econometrics, ISSN: 0304-4076, Vol: 218, Issue: 1, Page: 1-31, 2020. https://doi.org/10.1016/j.jeconom.2019.08.012.
Mol, C., Giannone, D., Reichlin, L. (2007). “Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?”. Journal of Econometrics, Volume 146, Issue 2, Pages 318-328. https://www.sciencedirect.com/science/article/abs/pii/S0304407608001103?via%3Dihub.
Stock, J. H., and M. W. Watson. (2002). “Forecasting Using Principal Components from a Large Number of Predictors.” Journal of the American Statistical Association 97, no. 460 (2002): 1167–79. http://www.jstor.org/stable/3085839.
Stock, J. H., and M. W. Watson. (2012). “Disentangling the Channels of the 2007-09 Recession,” Brookings Papers on Economic Activity, pp. 81-156. https://www.brookings.edu/bpea-articles/disentangling-the-channels-of-the-2007-2009-recession/20
Vyas, S., L. Kumaranayake. (2006). “Constructing socio-economic status indices: how to use principal components analysis”, Health Policy and Planning, Volume 21, Issue 6, November 2006, Pages 459–468. https://doi.org/10.1093/heapol/czl029.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01T00:00:00Z
date_available 2024-01-01T00:00:00Z
url https://revistas.utadeo.edu.co/index.php/mutis/article/view/problema-reduccion-dimensional-analisis-componentes-principales-PCA
url_doi https://doi.org/10.21789/22561498.2057
eissn 2256-1498
doi 10.21789/22561498.2057
citationstartpage 1
citationendpage 21
url2_str_mv https://revistas.utadeo.edu.co/index.php/mutis/article/download/problema-reduccion-dimensional-analisis-componentes-principales-PCA/2078
_version_ 1811200044753223680