Titulo:

Colibacilosis en gallinas reproductoras
.

Sumario:

La colibacilosis en gallinas reproductoras se da por la bacteria Gram negativa, enterobacteria Escherichia coli patogénica aviar (APEC), la cual presenta un porcentaje alto de polimorfismos y plasticidad en su genes, las investigaciones reportan hallazgos macroscópicos comunes: salpingitis, peritonitis y poliserositis, que conlleva a la muerte del ave, se definen tres rutas de contaminación, de forma ascendente por la cloaca del ave, ingreso por vía respiratoria o por translocación bacteriana desde el intestino; el diagnóstico de la colibacilosis se realiza a partir del historial del galpón, realizando necropsias y tomando muestras a partir de hisopos o tejido de órganos como oviducto, pulmón, corazón u otros órganos afectados, que se lleva... Ver más

Guardado en:

2248-4817

9

2018-12-15

52

76

Revista Sistemas de Producción Agroecológicos - 2018

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unillanos_revistasistemasdeproduccionagroecologicos_45_article_717
record_format ojs
spelling Colibacilosis en gallinas reproductoras
Colibacillosis in breeding hens
La colibacilosis en gallinas reproductoras se da por la bacteria Gram negativa, enterobacteria Escherichia coli patogénica aviar (APEC), la cual presenta un porcentaje alto de polimorfismos y plasticidad en su genes, las investigaciones reportan hallazgos macroscópicos comunes: salpingitis, peritonitis y poliserositis, que conlleva a la muerte del ave, se definen tres rutas de contaminación, de forma ascendente por la cloaca del ave, ingreso por vía respiratoria o por translocación bacteriana desde el intestino; el diagnóstico de la colibacilosis se realiza a partir del historial del galpón, realizando necropsias y tomando muestras a partir de hisopos o tejido de órganos como oviducto, pulmón, corazón u otros órganos afectados, que se llevan a medios como McConkey, eosina-metileno azul o agar drigalki para su aislamiento, como pruebas específicas para Esceherichia coli se conocen métodos basados en fenotipos como serotipo de O/H inmunológico, tipificación de bacteriófago, electroforesis con enzimas multilocus, desorción/ionización láser asistida por matriz (MALDI-TOF) y métodos basados en genotipos como polimorfismo de longitud de restricción (RFLP), ensayo de suspensión basado en liminex, polimorfismo de longitud de fragmentos amplificados (AFLP) y mapeo óptico. Las vacunas para esta bacteria no se han desarrollado a la perfección ya que presenta respuesta inmune ante sus homólogos, pero nada de resistencia a desafíos con heterólogos, sigue en investigación el desarrollo de vacunas que puedan presentar respuesta ante varios serotipos de la bacteria, por ahora la forma eficaz de controlar la bacteria es a partir de protocolos de bioseguridad y prevención para la mantener la sanidad de la granja.
The colibacillosis in breeding hens is given by Gram negative bacteria, avian pathogenic enterobacteria Escherichia coli (APEC), which presents a high percentage of polymorphisms and plasticity in its genes, research reports common macroscopic findings: salpingitis, peritonitis and polyserositis, which entails at the death of the bird, three routes of contamination are defined, ascending through the cloaca of the bird, entry by respiratory way or bacterial translocation from the intestine; the diagnosis of colibacillosis is made from the history of the chicken coop, making necropsies and taking samples from swabs or tissue from organs such as oviduct, lung, heart or others affected organs are carried to means such as McConkey, eosin-methylene blue or drigalki agar for their isolation, as specific tests to Esceherichia coli are known methods based in phenotypes such as serotyping of immunological O/H, bacteriophage typing, electrophoresis with multilocus enzymes, Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF) and methods based on genotypes such as restriction length polymorphism (RFLP), liminex-based suspension assay, amplified fragment length polymorphism (AFLP) and optical mapping. The vaccines for this bacterium have not been developed to perfection because it presents an immune response to its homologous, but no resistance to challenges with heterologous, is still researching the development of vaccines that may present a response to several serotypes of the bacteria, for now the effective way to control the bacteria is from of biosafety and prevention protocols to maintain the health of the animal.
Díaz , María del Pilar
González Paya, Gustavo Gratiniano
Escherichia coli
salpingitis
peritonitis
diarrhea
prevention
Escherichia coli
salpingitis
peritonitis
diarrea
prevención
Escherichia coli
salpingite
peritonite
diarréia
prevenção
9
2
Artículo de revista
Journal article
2018-12-15T00:00:00Z
2018-12-15T00:00:00Z
2018-12-15
application/pdf
Universidad de los Llanos
Revista Sistemas de Producción Agroecológicos
2248-4817
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/717
10.22579/22484817.717
https://doi.org/10.22579/22484817.717
spa
https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Sistemas de Producción Agroecológicos - 2018
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
52
76
Barnes H., Nolan L., Vaillancourt J. Colibacillosis. En: Saif Y., Fadly A., McDougald L., Nolan L. y Swayne D. (Ed). Disease of Poultry. Blackwell Publishing, Iowa, USA, p 691-737. 2008.
Barnes J., Gross W. Colibacilosis. En: Calnek B. (Ed). Diseases of poultry. State University Press, Ames: Iowa, p 131-141. 1997.
Breland E.J., Eberly A.R., Hadjifrangiskou M. An overview of two-component signal transduction systems implicated in extra-intestinal pathogenic E. coli infections. Frontiers in Cellular and Infection Microbiology. 7 (Art. 162): 1-14. 2017.
Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environmental Microbiology Reports. 5 (1): 58-65. 2013.
Collingwood C., Kemmett K., Williams N., Wigley P. Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Frontiers in Veterinary Science. 1 (Art. 5): 1-4. 2014.
Collingwood C.R. Pathogenomic characterization of a novel, layer-associated Avian Pathogenic Escherichia coli, PhD. Universidad de Liverpool, Liverpool, Inglaterra. 176 p. 2016.
Croxen M.A., Law R.J., Scholz R., Keeney K.M., Wlodarska M., Finlay B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews. 26 (4): 822-880. 2013.
Chaudhari A.A., Kariyawasam S. An experimental infection model for Escherichia coli egg peritonitis in layer chickens. Avian Diseases. 58 (1): 25-33. 2014.
De Reu K., Grijspeerdt K., Messens W., Heyndrickx M., Uyttendaele M., Debevere J., Herman L. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. International Journal of Food Microbiology. 112 (3): 253-260. 2006.
Dho-Moulin M., Fairbrother J.M. Avian pathogenic Escherichia coli (APEC). Veterinary Research, BioMed Central. 30 (2-3): 299-316. 1999.
Ewers C., Janßen T., Kießling S., Philipp H.-C., Wieler L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Veterinary Microbiology. 104 (1-2): 91-101. 2004.
Fratamico P.M., DebRoy C., Liu Y., Needleman D.S., Baranzoni G.M., Feng P. Advances in molecular serotyping and subtyping of Escherichia coli. Frontiers in Microbiology. 7 (Art. 644): 1-8. 2016.
Ghunaim H., Abu-Madi M.A., Kariyawasam S. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Veterinary Microbiology. 172 (1-2): 13-22. 2014.
Gross W. Diseases due to Escherichia coli in poultry. En: Carlton L.G. (Ed). Escherichia coli in Domestic Animals and Man. CAB International, Wallingford, Connecticut, USA, p 237-259. 1994.
Guabiraba R., Schouler C. Avian colibacillosis: still many black holes. FEMS Microbiology Letters. 362 (15): fnv118. 2015.
Hacker J., Kaper J.B. Pathogenicity islands and the evolution of microbes. Annual Reviews in Microbiology. 54 (1): 641-679. 2000.
Huja S., Oren Y., Trost E., Brzuszkiewicz E., Biran D., Blom J., Goesmann A., Gottschalk G., Hacker J., Ron E.Z., Dobrindt U. Genomic avenue to avian colisepticemia. MBio. 6 (1): e01681-14. 2015.
Jordan F., Williams N., Wattret A., Jones T. Observations on salpingitis, peritonitis and salpingoperitonitis in a layer breeder flock. Veterinary Record. 157 (19): 573-577. 2005.
Kaas R.S., Friis C., Ussery D.W., Aarestrup F.M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC genomics. 13 (1): 577. 2012.
Kariyawasam S., Johnson T.J., Nolan L.K. The pap operon of avian pathogenic Escherichia coli strain O1: K1 is located on a novel pathogenicity island. Infection and immunity. 74 (1): 744-749. 2006.
Kindt T.J., Goldsby R., Osborne B. Inmunología de Kuby. McGraw Hill, México. 695 p. 2007.
La Ragione R., Woodward M.J. Virulence factors of Escherichia coli serotypes associated with avian colisepticemia. Research in Veterinary Science. 73 (1): 27-35. 2002.
Landman W., Cornelissen R. Escherichia coli salpingitis and peritonitis in layer chickens: an overview. Tijdschrift Voor Diergeneeskunde. 131 (22): 814-822. 2006.
Landman W., Feberwee A., Mekkes D., Veldman K., Mevius D. A study on the vertical transmission of arthropathic and amyloidogenic Enterococcus faecalis. Avian Pathology. 28 (6): 559-566. 1999.
Lutful S., Hasan M., Alam J., Basu S., Yamasaki S. Colibacillosis and its impact on egg production. En: Hester P. (Ed). Egg Innovations and Strategies for Improvements. Academic PressElsevier, Londres, Inglaterra, p 523-535. 2017.
Mellata M., Dho-Moulin M., Dozois C.M., Curtiss III R., Lehoux B., Fairbrother J.M. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infection and Immunity. 71 (1): 494-503. 2003.
Monroy M.A., Knöbl T., Bottino J.A., Ferreira C.S.A., Ferreira A.J.P. Virulence characteristics of Escherichia coli isolates obtained from broiler breeders with salpingitis. Comparative Immunology, Microbiology and Infectious Diseases. 28 (1): 1-15. 2005.
Moulin M., Répérant M., Laurent S., Brée A., Mignon S., Germon P., Rasschaert D., Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology. 45 (10): 3366-3376. 2007.
Nakazato G., Campos T.A.d., Stehling E.G., Brocchi M., Silveira W.D.d. Virulence factors of avian pathogenic Escherichia coli (APEC). Pesquisa Veterinária Brasileira. 29 (7): 479-486. 2009.
Olsen R., Frantzen C., Christensen H., Bisgaard M. An investigation on first-week mortality in layers. Avian Diseases. 56 (1): 51-57. 2012.
Ozaki H., Murase T. Multiple routes of entry for Escherichia coli causing colibacillosis in commercial layer chickens. Journal of Veterinary Medical Science. 71 (12): 1685-1689. 2009.
Petersen A., Christensen J.P., Kuhnert P., Bisgaard M., Olsen J.E. Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Veterinary Microbiology, 116 (1-3): 120-128. 2006.
Piercy D., West B. Experimental Escherichia coli infection in broiler chickens: course of the disease induced by inoculation via the air sac route. Journal of Comparative Pathology, 86 (2): 203-210. 1976.
Poulsen L.L., Thøfner I., Bisgaard M., Christensen J.P., Olsen R.H., Christensen H. Longitudinal study of transmission of Escherichia coli from broiler breeders to broilers. Veterinary Microbiology. 207: 13-18. 2017.
Pourbakhsh S.A., Boulianne M., Martineau B., Dozois C.M., Desautels C., Fairbrother J.M. Dynamics of Escherichia coli infection in experimentally inoculated chickens. Avian Diseases. 41 (1): 221-233. 1997.
Roberts J., Souillard R., Bertin J. Avian diseases which affect egg production and quality. En: (Ed). Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption. Woodhead Publishing Limited, p 376-393. 2011.
Russo T.A., Johnson J.R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. The Journal of infectious diseases. 181 (5): 1753-1754. 2000.
Shariat N., Dudley E.G. CRISPRs: molecular signatures used for pathogen subtyping. Applied and Environmental Microbiology. 80 (2): 430-439. 2014.
Sun H., Liu P., Nolan L.K., Lamont S.J. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poultry science. 95 (12): 2803-2814. 2016.
Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C., Bouvet O., Calteau A., Chiapello H., Clermont O., Cruveiller S., Danchin A., Diard M., Dossat C., El Karoui M., Frapy E., Garry L., Ghigo J.M., Gilles A.M., Johnson J., Le Bouguénec C., Lescat M., Mangenot S., Martinez V., Matic I., Nassif X., Oztas S., Petit M.A., Pichon C., Rouy Z., Saint Ruf C., Schneider D., Tourret J., Vacherie B., Vallenet D., Médigue C., Rocha E., Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS genetics. 5 (1): e1000344. 2009.
Waldron K.J., Rutherford J.C., Ford D., Robinson N.J. Metalloproteins and metal sensing. Nature. 460: 823-830. 2009.
Wang C., Pors S.E., Olsen R.H., Bojesen A.M. Transmission and pathogenicity of Gallibacterium anatis and Escherichia coli in embryonated eggs. Veterinary Microbiology. 217: 76-81. 2018.
Wright K.J., Hultgren S.J. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Medicine. 1 (1): 75-87. 2006.
Yassin H., Velthuis A.G., Boerjan M., van Riel J. Field study on broilers’ first-week mortality. Poultry Science. 88 (4): 798-804. 2009.
Yoder J.A., Litman G.W. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics. 63 (3): 123-141. 2011.
Zhuang Q.-Y., Wang S.-C., Li J.-P., Liu D., Liu S., Jiang W.-M., Chen J.-M. A clinical survey of common avian infectious diseases in China. Avian Diseases. 58 (2): 297-302. 2014.
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/717/772
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Revista Sistemas de Producción Agroecológicos
title Colibacilosis en gallinas reproductoras
spellingShingle Colibacilosis en gallinas reproductoras
Díaz , María del Pilar
González Paya, Gustavo Gratiniano
Escherichia coli
salpingitis
peritonitis
diarrhea
prevention
Escherichia coli
salpingitis
peritonitis
diarrea
prevención
Escherichia coli
salpingite
peritonite
diarréia
prevenção
title_short Colibacilosis en gallinas reproductoras
title_full Colibacilosis en gallinas reproductoras
title_fullStr Colibacilosis en gallinas reproductoras
title_full_unstemmed Colibacilosis en gallinas reproductoras
title_sort colibacilosis en gallinas reproductoras
title_eng Colibacillosis in breeding hens
description La colibacilosis en gallinas reproductoras se da por la bacteria Gram negativa, enterobacteria Escherichia coli patogénica aviar (APEC), la cual presenta un porcentaje alto de polimorfismos y plasticidad en su genes, las investigaciones reportan hallazgos macroscópicos comunes: salpingitis, peritonitis y poliserositis, que conlleva a la muerte del ave, se definen tres rutas de contaminación, de forma ascendente por la cloaca del ave, ingreso por vía respiratoria o por translocación bacteriana desde el intestino; el diagnóstico de la colibacilosis se realiza a partir del historial del galpón, realizando necropsias y tomando muestras a partir de hisopos o tejido de órganos como oviducto, pulmón, corazón u otros órganos afectados, que se llevan a medios como McConkey, eosina-metileno azul o agar drigalki para su aislamiento, como pruebas específicas para Esceherichia coli se conocen métodos basados en fenotipos como serotipo de O/H inmunológico, tipificación de bacteriófago, electroforesis con enzimas multilocus, desorción/ionización láser asistida por matriz (MALDI-TOF) y métodos basados en genotipos como polimorfismo de longitud de restricción (RFLP), ensayo de suspensión basado en liminex, polimorfismo de longitud de fragmentos amplificados (AFLP) y mapeo óptico. Las vacunas para esta bacteria no se han desarrollado a la perfección ya que presenta respuesta inmune ante sus homólogos, pero nada de resistencia a desafíos con heterólogos, sigue en investigación el desarrollo de vacunas que puedan presentar respuesta ante varios serotipos de la bacteria, por ahora la forma eficaz de controlar la bacteria es a partir de protocolos de bioseguridad y prevención para la mantener la sanidad de la granja.
description_eng The colibacillosis in breeding hens is given by Gram negative bacteria, avian pathogenic enterobacteria Escherichia coli (APEC), which presents a high percentage of polymorphisms and plasticity in its genes, research reports common macroscopic findings: salpingitis, peritonitis and polyserositis, which entails at the death of the bird, three routes of contamination are defined, ascending through the cloaca of the bird, entry by respiratory way or bacterial translocation from the intestine; the diagnosis of colibacillosis is made from the history of the chicken coop, making necropsies and taking samples from swabs or tissue from organs such as oviduct, lung, heart or others affected organs are carried to means such as McConkey, eosin-methylene blue or drigalki agar for their isolation, as specific tests to Esceherichia coli are known methods based in phenotypes such as serotyping of immunological O/H, bacteriophage typing, electrophoresis with multilocus enzymes, Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF) and methods based on genotypes such as restriction length polymorphism (RFLP), liminex-based suspension assay, amplified fragment length polymorphism (AFLP) and optical mapping. The vaccines for this bacterium have not been developed to perfection because it presents an immune response to its homologous, but no resistance to challenges with heterologous, is still researching the development of vaccines that may present a response to several serotypes of the bacteria, for now the effective way to control the bacteria is from of biosafety and prevention protocols to maintain the health of the animal.
author Díaz , María del Pilar
González Paya, Gustavo Gratiniano
author_facet Díaz , María del Pilar
González Paya, Gustavo Gratiniano
topic Escherichia coli
salpingitis
peritonitis
diarrhea
prevention
Escherichia coli
salpingitis
peritonitis
diarrea
prevención
Escherichia coli
salpingite
peritonite
diarréia
prevenção
topic_facet Escherichia coli
salpingitis
peritonitis
diarrhea
prevention
Escherichia coli
salpingitis
peritonitis
diarrea
prevención
Escherichia coli
salpingite
peritonite
diarréia
prevenção
topicspa_str_mv Escherichia coli
salpingitis
peritonitis
diarrea
prevención
Escherichia coli
salpingite
peritonite
diarréia
prevenção
citationvolume 9
citationissue 2
publisher Universidad de los Llanos
ispartofjournal Revista Sistemas de Producción Agroecológicos
source https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/717
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Sistemas de Producción Agroecológicos - 2018
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Barnes H., Nolan L., Vaillancourt J. Colibacillosis. En: Saif Y., Fadly A., McDougald L., Nolan L. y Swayne D. (Ed). Disease of Poultry. Blackwell Publishing, Iowa, USA, p 691-737. 2008.
Barnes J., Gross W. Colibacilosis. En: Calnek B. (Ed). Diseases of poultry. State University Press, Ames: Iowa, p 131-141. 1997.
Breland E.J., Eberly A.R., Hadjifrangiskou M. An overview of two-component signal transduction systems implicated in extra-intestinal pathogenic E. coli infections. Frontiers in Cellular and Infection Microbiology. 7 (Art. 162): 1-14. 2017.
Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environmental Microbiology Reports. 5 (1): 58-65. 2013.
Collingwood C., Kemmett K., Williams N., Wigley P. Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Frontiers in Veterinary Science. 1 (Art. 5): 1-4. 2014.
Collingwood C.R. Pathogenomic characterization of a novel, layer-associated Avian Pathogenic Escherichia coli, PhD. Universidad de Liverpool, Liverpool, Inglaterra. 176 p. 2016.
Croxen M.A., Law R.J., Scholz R., Keeney K.M., Wlodarska M., Finlay B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews. 26 (4): 822-880. 2013.
Chaudhari A.A., Kariyawasam S. An experimental infection model for Escherichia coli egg peritonitis in layer chickens. Avian Diseases. 58 (1): 25-33. 2014.
De Reu K., Grijspeerdt K., Messens W., Heyndrickx M., Uyttendaele M., Debevere J., Herman L. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. International Journal of Food Microbiology. 112 (3): 253-260. 2006.
Dho-Moulin M., Fairbrother J.M. Avian pathogenic Escherichia coli (APEC). Veterinary Research, BioMed Central. 30 (2-3): 299-316. 1999.
Ewers C., Janßen T., Kießling S., Philipp H.-C., Wieler L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Veterinary Microbiology. 104 (1-2): 91-101. 2004.
Fratamico P.M., DebRoy C., Liu Y., Needleman D.S., Baranzoni G.M., Feng P. Advances in molecular serotyping and subtyping of Escherichia coli. Frontiers in Microbiology. 7 (Art. 644): 1-8. 2016.
Ghunaim H., Abu-Madi M.A., Kariyawasam S. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Veterinary Microbiology. 172 (1-2): 13-22. 2014.
Gross W. Diseases due to Escherichia coli in poultry. En: Carlton L.G. (Ed). Escherichia coli in Domestic Animals and Man. CAB International, Wallingford, Connecticut, USA, p 237-259. 1994.
Guabiraba R., Schouler C. Avian colibacillosis: still many black holes. FEMS Microbiology Letters. 362 (15): fnv118. 2015.
Hacker J., Kaper J.B. Pathogenicity islands and the evolution of microbes. Annual Reviews in Microbiology. 54 (1): 641-679. 2000.
Huja S., Oren Y., Trost E., Brzuszkiewicz E., Biran D., Blom J., Goesmann A., Gottschalk G., Hacker J., Ron E.Z., Dobrindt U. Genomic avenue to avian colisepticemia. MBio. 6 (1): e01681-14. 2015.
Jordan F., Williams N., Wattret A., Jones T. Observations on salpingitis, peritonitis and salpingoperitonitis in a layer breeder flock. Veterinary Record. 157 (19): 573-577. 2005.
Kaas R.S., Friis C., Ussery D.W., Aarestrup F.M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC genomics. 13 (1): 577. 2012.
Kariyawasam S., Johnson T.J., Nolan L.K. The pap operon of avian pathogenic Escherichia coli strain O1: K1 is located on a novel pathogenicity island. Infection and immunity. 74 (1): 744-749. 2006.
Kindt T.J., Goldsby R., Osborne B. Inmunología de Kuby. McGraw Hill, México. 695 p. 2007.
La Ragione R., Woodward M.J. Virulence factors of Escherichia coli serotypes associated with avian colisepticemia. Research in Veterinary Science. 73 (1): 27-35. 2002.
Landman W., Cornelissen R. Escherichia coli salpingitis and peritonitis in layer chickens: an overview. Tijdschrift Voor Diergeneeskunde. 131 (22): 814-822. 2006.
Landman W., Feberwee A., Mekkes D., Veldman K., Mevius D. A study on the vertical transmission of arthropathic and amyloidogenic Enterococcus faecalis. Avian Pathology. 28 (6): 559-566. 1999.
Lutful S., Hasan M., Alam J., Basu S., Yamasaki S. Colibacillosis and its impact on egg production. En: Hester P. (Ed). Egg Innovations and Strategies for Improvements. Academic PressElsevier, Londres, Inglaterra, p 523-535. 2017.
Mellata M., Dho-Moulin M., Dozois C.M., Curtiss III R., Lehoux B., Fairbrother J.M. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infection and Immunity. 71 (1): 494-503. 2003.
Monroy M.A., Knöbl T., Bottino J.A., Ferreira C.S.A., Ferreira A.J.P. Virulence characteristics of Escherichia coli isolates obtained from broiler breeders with salpingitis. Comparative Immunology, Microbiology and Infectious Diseases. 28 (1): 1-15. 2005.
Moulin M., Répérant M., Laurent S., Brée A., Mignon S., Germon P., Rasschaert D., Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology. 45 (10): 3366-3376. 2007.
Nakazato G., Campos T.A.d., Stehling E.G., Brocchi M., Silveira W.D.d. Virulence factors of avian pathogenic Escherichia coli (APEC). Pesquisa Veterinária Brasileira. 29 (7): 479-486. 2009.
Olsen R., Frantzen C., Christensen H., Bisgaard M. An investigation on first-week mortality in layers. Avian Diseases. 56 (1): 51-57. 2012.
Ozaki H., Murase T. Multiple routes of entry for Escherichia coli causing colibacillosis in commercial layer chickens. Journal of Veterinary Medical Science. 71 (12): 1685-1689. 2009.
Petersen A., Christensen J.P., Kuhnert P., Bisgaard M., Olsen J.E. Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Veterinary Microbiology, 116 (1-3): 120-128. 2006.
Piercy D., West B. Experimental Escherichia coli infection in broiler chickens: course of the disease induced by inoculation via the air sac route. Journal of Comparative Pathology, 86 (2): 203-210. 1976.
Poulsen L.L., Thøfner I., Bisgaard M., Christensen J.P., Olsen R.H., Christensen H. Longitudinal study of transmission of Escherichia coli from broiler breeders to broilers. Veterinary Microbiology. 207: 13-18. 2017.
Pourbakhsh S.A., Boulianne M., Martineau B., Dozois C.M., Desautels C., Fairbrother J.M. Dynamics of Escherichia coli infection in experimentally inoculated chickens. Avian Diseases. 41 (1): 221-233. 1997.
Roberts J., Souillard R., Bertin J. Avian diseases which affect egg production and quality. En: (Ed). Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption. Woodhead Publishing Limited, p 376-393. 2011.
Russo T.A., Johnson J.R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. The Journal of infectious diseases. 181 (5): 1753-1754. 2000.
Shariat N., Dudley E.G. CRISPRs: molecular signatures used for pathogen subtyping. Applied and Environmental Microbiology. 80 (2): 430-439. 2014.
Sun H., Liu P., Nolan L.K., Lamont S.J. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poultry science. 95 (12): 2803-2814. 2016.
Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C., Bouvet O., Calteau A., Chiapello H., Clermont O., Cruveiller S., Danchin A., Diard M., Dossat C., El Karoui M., Frapy E., Garry L., Ghigo J.M., Gilles A.M., Johnson J., Le Bouguénec C., Lescat M., Mangenot S., Martinez V., Matic I., Nassif X., Oztas S., Petit M.A., Pichon C., Rouy Z., Saint Ruf C., Schneider D., Tourret J., Vacherie B., Vallenet D., Médigue C., Rocha E., Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS genetics. 5 (1): e1000344. 2009.
Waldron K.J., Rutherford J.C., Ford D., Robinson N.J. Metalloproteins and metal sensing. Nature. 460: 823-830. 2009.
Wang C., Pors S.E., Olsen R.H., Bojesen A.M. Transmission and pathogenicity of Gallibacterium anatis and Escherichia coli in embryonated eggs. Veterinary Microbiology. 217: 76-81. 2018.
Wright K.J., Hultgren S.J. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Medicine. 1 (1): 75-87. 2006.
Yassin H., Velthuis A.G., Boerjan M., van Riel J. Field study on broilers’ first-week mortality. Poultry Science. 88 (4): 798-804. 2009.
Yoder J.A., Litman G.W. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics. 63 (3): 123-141. 2011.
Zhuang Q.-Y., Wang S.-C., Li J.-P., Liu D., Liu S., Jiang W.-M., Chen J.-M. A clinical survey of common avian infectious diseases in China. Avian Diseases. 58 (2): 297-302. 2014.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-12-15
date_accessioned 2018-12-15T00:00:00Z
date_available 2018-12-15T00:00:00Z
url https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/717
url_doi https://doi.org/10.22579/22484817.717
eissn 2248-4817
doi 10.22579/22484817.717
citationstartpage 52
citationendpage 76
url2_str_mv https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/717/772
_version_ 1811200235330863104