Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación
.
La uchuva es una fruta que contiene una variedad de compuestos activos como vitaminas A, B y C, proteínas, minerales, tocoferoles, carotenoides, entre otros que otorgan beneficios a la salud. El objetivo de esta investigación fue optimizar experimentalmente la formulación de un sistema coloidal a base de uchuva, goma arábiga (GA) y maltodextrina (MD) (SCU+GA+MD), con fines de ser utilizado posteriormente en un proceso de microencapsulación por secado por aspersión, y así, proteger y conservar sus componentes activos. Se utilizó un homogenizador por cizalla tipo molino coloidal para la preparación del sistema coloidal y el diseño de la formulación se realizó utilizando un diseño experimental central compuesto cara centrada (a = 1), considera... Ver más
0123-4226
2619-2551
27
2025-12-31
Soany Eraso-Grisales, Misael Cortés-Rodríguez, Andrés Hurtado-Benavides - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_2060 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
spellingShingle |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación Eraso-Grisales, Soany Cortés-Rodríguez, Misael Hurtado-Benavides, Andrés Estabilidad coloidal Fuerzas electrostáticas Fuerzas de Van der Waals Homogeneización Physalis peruviana L. Colloidal stability Electrostatic forces Homogenization Physalis peruviana L. Van der Waals forces |
title_short |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
title_full |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
title_fullStr |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
title_full_unstemmed |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
title_sort |
optimización de un sistema coloidal de uchuva para el proceso de microencapsulación |
title_eng |
Optimization of a cape gooseberry colloidal system for the micro-encapsulation process |
description |
La uchuva es una fruta que contiene una variedad de compuestos activos como vitaminas A, B y C, proteínas, minerales, tocoferoles, carotenoides, entre otros que otorgan beneficios a la salud. El objetivo de esta investigación fue optimizar experimentalmente la formulación de un sistema coloidal a base de uchuva, goma arábiga (GA) y maltodextrina (MD) (SCU+GA+MD), con fines de ser utilizado posteriormente en un proceso de microencapsulación por secado por aspersión, y así, proteger y conservar sus componentes activos. Se utilizó un homogenizador por cizalla tipo molino coloidal para la preparación del sistema coloidal y el diseño de la formulación se realizó utilizando un diseño experimental central compuesto cara centrada (a = 1), considerando las variables independientes: GA (1,0-3,0 %) y MD (9,5-13,5 %) y las variables dependientes: sólidos totales (TS), viscosidad (µ), potencial zeta (ζ), tamaño de partícula (D [4,3]), fenoles totales (TF), capacidad antioxidante (métodos DPPH y ABTS). La formulación óptima se obtuvo con una formulación que contenía MD: 12,3 % y GA: 3,0 %, donde las variables dependientes fueron: TS: 32.2±0.1%, μ: 581,0±7,8 cP, ζ: -22.6±0.6 mV, D[4,3]: 77.9±2.0 µm, TF: 97,2±1,1 mg GAE 100 g-1, DPPH: 12,6±1,4 mg TE 100 g-1, ABTS: 13,5±0,6 mg TE 100 g-1. La validación experimental del proceso de homogenización por cizalla de un sistema coloidal integral de uchuva permitió garantizar su estabilidad fisicoquímica con un importante contenido de sólidos, y adecuado para ser utilizado en procesos de microencapsulación por secado por aspersión.
|
description_eng |
Cape gooseberry is a fruit that contains various active compounds such as vitamins A, B, and C, proteins, minerals, tocopherols, and carotenoids, among others, which provide health benefits. The objective of this research was to experimentally optimize a colloidal system formulation based on cape gooseberry, gum arabic (GA), and maltodextrin (MD) (SCU+GA+MD) with the purpose of being subsequently used in a spray-drying micro-encapsulation process to protect and preserve its active components. A shear homogenizer colloid mill type was employed for the colloidal system preparation. The formulation design was conducted using a face-centered central composite design (α = 1), considering the independent variables: GA (1.0-3.0%) and MD (9.5-13.5%), and the dependent variables: total solids (TS), viscosity (μ), zeta potential (ζ), particle size (D[4,3]), total phenols (TF), and antioxidant capacity (DPPH and ABTS assays). The optimal formulation was achieved with MD: 12.3% and GA: 3.0%, where the dependent variables were: TS: 32.2±0.1%, μ: 581.0±7.8 cP, ζ: -22.6±0.6 mV, D[4,3]: 77.9±2.0 µm, TF: 97.2±1.1 mg GAE 100 g-1, DPPH: 12.6±1.4 mg TE 100 g-1, ABTS: 13.5±0.6 mg TE 100 g-1. Experimental validation of the shear homogenization process for an integral colloidal system of cape gooseberry confirmed its physicochemical stability with significant solid content, rendering it suitable for spray-drying micro-encapsulation processes.
|
author |
Eraso-Grisales, Soany Cortés-Rodríguez, Misael Hurtado-Benavides, Andrés |
author_facet |
Eraso-Grisales, Soany Cortés-Rodríguez, Misael Hurtado-Benavides, Andrés |
topicspa_str_mv |
Estabilidad coloidal Fuerzas electrostáticas Fuerzas de Van der Waals Homogeneización Physalis peruviana L. |
topic |
Estabilidad coloidal Fuerzas electrostáticas Fuerzas de Van der Waals Homogeneización Physalis peruviana L. Colloidal stability Electrostatic forces Homogenization Physalis peruviana L. Van der Waals forces |
topic_facet |
Estabilidad coloidal Fuerzas electrostáticas Fuerzas de Van der Waals Homogeneización Physalis peruviana L. Colloidal stability Electrostatic forces Homogenization Physalis peruviana L. Van der Waals forces |
citationvolume |
27 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2060 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Soany Eraso-Grisales, Misael Cortés-Rodríguez, Andrés Hurtado-Benavides - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS- AOAC. 2012. Official methods of analysis. En: Helrich, K. (ed.). 19 edición. AOAC. Arlington. BABBAR, N.; AGGARWAL, P.; OBEROI, H.S. 2015. Effect of addition of hydrocolloids on the colloidal stability of litchi (Litchi chinensis Sonn) juice. Journal of Food Processing and Preservation. 39(2):183-189. https://doi.org/10.1111/jfpp.12220 CANO-SARMIENTO, C.; TÉLLEZ-MEDINA, D.I.; VIVEROS-CONTRERAS, R.; CORNEJO-MAZÓN, M.; FIGUEROA-HERNÁNDEZ, C.Y.; GARCÍA-ARMENTA, E.; ALAMILLA-BELTRÁN, L.; GARCÍA, H.S.; GUTIÉRREZ, G.F. 2018. Zeta potential of food matrices. Food Engineering Reviews. 10(3):113–138. https://doi.org/10.1007/s12393-018-9176-z DAHDOUH, L.; DELALONDE, M.; RICCI, J.; RUIZ, E.; WISNEWSKI, C. 2018. Influence of high shear rate on particle size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies. 48:304–312. https://doi.org/10.1016/j.ifset.2018.07.006 DAHDOUH, L.; WISNIEWSKI, C.; RICCI, J.; VACHOUD, L.; DORNIER, M.; DELALONDE, M. 2016. Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentrations. Journal of Food Engineering. 174:15-20. https://doi.org/10.1016/j.jfoodeng.2015.11.008 DE LOS RIOS, C.; CORTÉS RODRÍGUEZ, M.; ARANGO TOBÓN, J.C. 2021. Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. 15498:1-11. https://doi.org/10.1111/jfpp.15498 ETZBACH, L.; PFEIFFER, A.; SCHIEBER, A.; WEBER, F. 2019. Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology. 100:69-74. https://doi.org/10.1016/j.lwt.2018.10.032 ETZBACH, L.; PFEIFFER, A.; WEBER, F.; SCHIEBER, A. 2018. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry. 245:508–517. https://doi.org/10.1016/j.foodchem.2017.10.120 GALLÓN BEDOYA, M.; CORTÉS RODRÍGUEZ, M.; GIL, J.H. 2020. Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation. 44(9):1-10. https://doi.org/10.1111/jfpp.14705 GUEVARA COLLAZOS, A.; VILLAGRAN MUNAR, E.; VELASQUEZ AYALA, F.; GONZÁLEZ VELANDIA, K. 2019. Evaluación del comportamiento poscosechade uchuva provenientes de sistemas de producción convencionales y agroecológicos. Revista Mexicana de Ciencias Agrícolas. 10(6):1273-1285. https://doi.org/10.29312/remexca.v10i6.1492 HANDIQUE, J.; BORA, S.J.; SIT, N. 2019. Optimization of banana juice extraction using a combination of enzymes. Journal of Food Science and Technology. 56(8):3732-3743. https://doi.org/10.1007/s13197-019-03845-z INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN - ICONTEC. 1999. Norma técnica Colombiana – NTC 4580. Frutas fresas. Uchuva. Especificaciones. Icontec. Bogotá, D.C., Colombia. 17p. Disponible desde Internet en: https://tienda.icontec.org/gp-frutas-frescas-uchuva-especificaciones-del-empaque-ntc5166-2003.html ISLAM SHISHIR, M.R.; CHEN, W. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology. 65:49-67. https://doi.org/10.1016/j.tifs.2017.05.006 LEE, J.K.M.; TAIP, F.S.; ABDULLAH. Z. 2018. Effectiveness of additives in spray drying performance: a review. Food Research. 2(6): 486 – 499. https://doi.org/10.26656/fr.2017.2(6).134 MARÍN-ARANGO, Z.T.; CORTES-RODRÍGUEZ, M.; MONTOYA-CAMPUZANO, O.I.; ARANGO-TOBÓN, J.C. 2019. Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. Revista DYNA. 86(210):179–186. https://doi.org/10.15446/dyna.v86n210.72929 MATUSIAK, J.; GRZĄDKA, E. 2017. Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemistry. 72(1):33-45. https://doi.org/10.17951/aa.2017.72.1.33 MOELANTS, K.R.N.; CARDINAELS, R.; VAN BUGGENHOUT, S.; VAN LOEY, A. M.; MOLDENAERS, P.; HENDRICKX, M.E. 2014. A Review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Comprehensive Reviews in Food Science and Food Safety. 13(3):241–260. https://doi.org/10.1111/1541-4337.12059 MOKHTAR, S.M.; SWAILAM, H.M.; EMBABY, H.E.S. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry. 248:1-7. https://doi.org/10.1016/j.foodchem.2017.11.117 OLIVARES-TENORIO, M.L.; DEKKER, M.; VERKERK, R.; VAN BOEKEL, M.A.J.S. 2016. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology. 57(Part A):83-92. https://doi.org/10.1016/j.tifs.2016.09.009 OZTURK, A.; ÖZDEMİR, Y.; ALBAYRAK, B.; SİMŞEK, M.; YILDIRIM, K.C. 2017. Some nutrient characteristics of goldenberry (Physalis Peruviana L.) cultivar candidate from Turkey. Scientific Papers Series B Horticulture. 61:293-297. PETKOVA, N.T.; POPOVA, V.T.; IVANOVA, T.A.; MAZOVA, N.N.; PANAYOTOV, N.D.; STOYANOVA, A. 2021. Nutritional composition of different cape gooseberry genotypes (Physalis peruviana L.) – a comparative study. Food Research. 5(4):191-202. PIORKOWSKI, D.T.; MCCLEMENTS, D.J. 2014. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids. 42:5-41. https://doi.org/10.1016/j.foodhyd.2013.07.009 SAAVEDRA-LEOS, M.; LEYVA-PORRAS, C.; ALVAREZ-SALAS, C.; LONGORIA-RODRÍGUEZ, F.; LÓPEZ-PABLOS, A.L.; GONZÁLEZ-GARCÍA, R.; PÉREZ-URIZAR, J. 2018. Obtaining orange juice–maltodextrin powders without structure collapse based on the glass transition temperature and degree of polymerization. CyTA - Journal of Food. 16(1):61-69. https://doi.org/10.1080/19476337.2017.1337048 SANG-NGERN, M.; YOUN, U.J.; PARK, E.J.; KONDRATYUK, T.P.; SIMMONS, C.J.; WALL, M.M.; RUF, M.; LORCH, S.E.; LEONG, E.; PEZZUTO, J.M.; CHANG, L.C. 2016. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters. 26(12):2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077 SANTOS ARAUJO, H.C.; JESUS, M.S.; LEITE NETA, M.T.S.; GUALBERTO, N.C.; MATOS, C.M.S.; RAJAN, M.; RAJKUMAR, G.; NOGUEIRA, J.P.; NARAIN, N. 2020. Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology. 39(3):392-404. https://doi.org/10.1080/07373937.2020.1839487 SANTOS, D.; MAURÍCIO, A.C.; SENCADAS, V.; SANTOS, J.D.; FERNANDES, M.H.; GOMES, P.S. 2017. Spray drying: An Overview. En: Pignatello, R.; Musumeci, T. (eds). Biomaterials - Physics and chemistry. New Edition. InTechOpen. p.9-35. https://doi.org/10.5772/intechopen.72247 TAHERI, A.; JAFARI, S.M. 2019. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in colloid and interface Science. 269:277-295. https://doi.org/10.1016/j.cis.2019.04.009 TAMNAK, S.; MIRHOSSEINI, H.; TAN, C.P.; GHAZALI, H.M.; MUHAMMAD, K. 2016. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids. 56:405-416. https://doi.org/10.1016/j.foodhyd.2015.12.033 TUAN AZLAN, T.N.N.; HAMZAH, Y.; MOHD ABD MAJID, H.A. 2020. Effect of gum arabic (Acacia senegal) addition on physicochemical properties and sensory acceptability of roselle juice. Food Research. 4(2):449-458. https://doi.org/10.26656/fr.2017.4(2).293 VEGA-GÁLVEZ, A.; LÓPEZ, J.; TORRES-OSSANDÓN, M.J.; GALOTTO, M.J.; PUENTE-DÍAZ, L.; QUISPE-FUENTES, I.; DI SCALA, K. 2014. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology. 58(2):519-526. https://doi.org/10.1016/j.lwt.2014.04.010 WAN, Y.J.; XU, M.M.; GILBERT, R.G.; YIN, J.Y.; HUANG, X.J.; XIONG, T.; XIE, M.Y. 2018. Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids. 89:623-630. https://doi.org/10.1016/j.foodhyd.2018.11.017 WARDY, W.; PUJOLS MARTÍNEZ, K.D.; XU, Z.; NO, H.K.; PRINYAWIWATKUL, W. 2014. Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology. 55(1):67-73. https://doi.org/10.1016/j.lwt.2013.07.013 ZHU, D.; SHEN, Y.; WEI, L.; XU, L.; CAO, X.; LIU, H.; LI, J. 2020. Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry. 328:126967. https://doi.org/10.1016/j.foodchem.2020.126967 ZHU, F. 2018. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition. 58(11):1808-1831. https://doi.org/10.1080/10408398.2017.1287659 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2025-12-31 |
date_accessioned |
2024-12-31T00:00:00Z |
date_available |
2024-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2060 |
url_doi |
https://doi.org/10.31910/rudca.v27.n2.2024.2060 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v27.n2.2024.2060 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2060/3167 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2060/3172 |
_version_ |
1811201185579794432 |
spelling |
Optimización de un sistema coloidal de uchuva para el proceso de microencapsulación Optimization of a cape gooseberry colloidal system for the micro-encapsulation process La uchuva es una fruta que contiene una variedad de compuestos activos como vitaminas A, B y C, proteínas, minerales, tocoferoles, carotenoides, entre otros que otorgan beneficios a la salud. El objetivo de esta investigación fue optimizar experimentalmente la formulación de un sistema coloidal a base de uchuva, goma arábiga (GA) y maltodextrina (MD) (SCU+GA+MD), con fines de ser utilizado posteriormente en un proceso de microencapsulación por secado por aspersión, y así, proteger y conservar sus componentes activos. Se utilizó un homogenizador por cizalla tipo molino coloidal para la preparación del sistema coloidal y el diseño de la formulación se realizó utilizando un diseño experimental central compuesto cara centrada (a = 1), considerando las variables independientes: GA (1,0-3,0 %) y MD (9,5-13,5 %) y las variables dependientes: sólidos totales (TS), viscosidad (µ), potencial zeta (ζ), tamaño de partícula (D [4,3]), fenoles totales (TF), capacidad antioxidante (métodos DPPH y ABTS). La formulación óptima se obtuvo con una formulación que contenía MD: 12,3 % y GA: 3,0 %, donde las variables dependientes fueron: TS: 32.2±0.1%, μ: 581,0±7,8 cP, ζ: -22.6±0.6 mV, D[4,3]: 77.9±2.0 µm, TF: 97,2±1,1 mg GAE 100 g-1, DPPH: 12,6±1,4 mg TE 100 g-1, ABTS: 13,5±0,6 mg TE 100 g-1. La validación experimental del proceso de homogenización por cizalla de un sistema coloidal integral de uchuva permitió garantizar su estabilidad fisicoquímica con un importante contenido de sólidos, y adecuado para ser utilizado en procesos de microencapsulación por secado por aspersión. Cape gooseberry is a fruit that contains various active compounds such as vitamins A, B, and C, proteins, minerals, tocopherols, and carotenoids, among others, which provide health benefits. The objective of this research was to experimentally optimize a colloidal system formulation based on cape gooseberry, gum arabic (GA), and maltodextrin (MD) (SCU+GA+MD) with the purpose of being subsequently used in a spray-drying micro-encapsulation process to protect and preserve its active components. A shear homogenizer colloid mill type was employed for the colloidal system preparation. The formulation design was conducted using a face-centered central composite design (α = 1), considering the independent variables: GA (1.0-3.0%) and MD (9.5-13.5%), and the dependent variables: total solids (TS), viscosity (μ), zeta potential (ζ), particle size (D[4,3]), total phenols (TF), and antioxidant capacity (DPPH and ABTS assays). The optimal formulation was achieved with MD: 12.3% and GA: 3.0%, where the dependent variables were: TS: 32.2±0.1%, μ: 581.0±7.8 cP, ζ: -22.6±0.6 mV, D[4,3]: 77.9±2.0 µm, TF: 97.2±1.1 mg GAE 100 g-1, DPPH: 12.6±1.4 mg TE 100 g-1, ABTS: 13.5±0.6 mg TE 100 g-1. Experimental validation of the shear homogenization process for an integral colloidal system of cape gooseberry confirmed its physicochemical stability with significant solid content, rendering it suitable for spray-drying micro-encapsulation processes. Eraso-Grisales, Soany Cortés-Rodríguez, Misael Hurtado-Benavides, Andrés Estabilidad coloidal Fuerzas electrostáticas Fuerzas de Van der Waals Homogeneización Physalis peruviana L. Colloidal stability Electrostatic forces Homogenization Physalis peruviana L. Van der Waals forces 27 2 Núm. 2 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2024-12-31T00:00:00Z 2024-12-31T00:00:00Z 2025-12-31 text/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/2060 10.31910/rudca.v27.n2.2024.2060 https://doi.org/10.31910/rudca.v27.n2.2024.2060 spa http://creativecommons.org/licenses/by-nc/4.0 Soany Eraso-Grisales, Misael Cortés-Rodríguez, Andrés Hurtado-Benavides - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS- AOAC. 2012. Official methods of analysis. En: Helrich, K. (ed.). 19 edición. AOAC. Arlington. BABBAR, N.; AGGARWAL, P.; OBEROI, H.S. 2015. Effect of addition of hydrocolloids on the colloidal stability of litchi (Litchi chinensis Sonn) juice. Journal of Food Processing and Preservation. 39(2):183-189. https://doi.org/10.1111/jfpp.12220 CANO-SARMIENTO, C.; TÉLLEZ-MEDINA, D.I.; VIVEROS-CONTRERAS, R.; CORNEJO-MAZÓN, M.; FIGUEROA-HERNÁNDEZ, C.Y.; GARCÍA-ARMENTA, E.; ALAMILLA-BELTRÁN, L.; GARCÍA, H.S.; GUTIÉRREZ, G.F. 2018. Zeta potential of food matrices. Food Engineering Reviews. 10(3):113–138. https://doi.org/10.1007/s12393-018-9176-z DAHDOUH, L.; DELALONDE, M.; RICCI, J.; RUIZ, E.; WISNEWSKI, C. 2018. Influence of high shear rate on particle size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science and Emerging Technologies. 48:304–312. https://doi.org/10.1016/j.ifset.2018.07.006 DAHDOUH, L.; WISNIEWSKI, C.; RICCI, J.; VACHOUD, L.; DORNIER, M.; DELALONDE, M. 2016. Rheological study of orange juices for a better knowledge of their suspended solids interactions at low and high concentrations. Journal of Food Engineering. 174:15-20. https://doi.org/10.1016/j.jfoodeng.2015.11.008 DE LOS RIOS, C.; CORTÉS RODRÍGUEZ, M.; ARANGO TOBÓN, J.C. 2021. Physicochemical quality and antioxidant activity of blackberry suspensions: Compositional and process effects. Journal of Food Processing and Preservation. 15498:1-11. https://doi.org/10.1111/jfpp.15498 ETZBACH, L.; PFEIFFER, A.; SCHIEBER, A.; WEBER, F. 2019. Effects of thermal pasteurization and ultrasound treatment on the peroxidase activity, carotenoid composition, and physicochemical properties of goldenberry (Physalis peruviana L.) puree. LWT - Food Science and Technology. 100:69-74. https://doi.org/10.1016/j.lwt.2018.10.032 ETZBACH, L.; PFEIFFER, A.; WEBER, F.; SCHIEBER, A. 2018. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry. 245:508–517. https://doi.org/10.1016/j.foodchem.2017.10.120 GALLÓN BEDOYA, M.; CORTÉS RODRÍGUEZ, M.; GIL, J.H. 2020. Physicochemical stability of colloidal systems using the cape gooseberry, strawberry, and blackberry for spray drying. Journal of Food Processing and Preservation. 44(9):1-10. https://doi.org/10.1111/jfpp.14705 GUEVARA COLLAZOS, A.; VILLAGRAN MUNAR, E.; VELASQUEZ AYALA, F.; GONZÁLEZ VELANDIA, K. 2019. Evaluación del comportamiento poscosechade uchuva provenientes de sistemas de producción convencionales y agroecológicos. Revista Mexicana de Ciencias Agrícolas. 10(6):1273-1285. https://doi.org/10.29312/remexca.v10i6.1492 HANDIQUE, J.; BORA, S.J.; SIT, N. 2019. Optimization of banana juice extraction using a combination of enzymes. Journal of Food Science and Technology. 56(8):3732-3743. https://doi.org/10.1007/s13197-019-03845-z INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN - ICONTEC. 1999. Norma técnica Colombiana – NTC 4580. Frutas fresas. Uchuva. Especificaciones. Icontec. Bogotá, D.C., Colombia. 17p. Disponible desde Internet en: https://tienda.icontec.org/gp-frutas-frescas-uchuva-especificaciones-del-empaque-ntc5166-2003.html ISLAM SHISHIR, M.R.; CHEN, W. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology. 65:49-67. https://doi.org/10.1016/j.tifs.2017.05.006 LEE, J.K.M.; TAIP, F.S.; ABDULLAH. Z. 2018. Effectiveness of additives in spray drying performance: a review. Food Research. 2(6): 486 – 499. https://doi.org/10.26656/fr.2017.2(6).134 MARÍN-ARANGO, Z.T.; CORTES-RODRÍGUEZ, M.; MONTOYA-CAMPUZANO, O.I.; ARANGO-TOBÓN, J.C. 2019. Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. Revista DYNA. 86(210):179–186. https://doi.org/10.15446/dyna.v86n210.72929 MATUSIAK, J.; GRZĄDKA, E. 2017. Stability of colloidal systems - a review of the stability measurements methods. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemistry. 72(1):33-45. https://doi.org/10.17951/aa.2017.72.1.33 MOELANTS, K.R.N.; CARDINAELS, R.; VAN BUGGENHOUT, S.; VAN LOEY, A. M.; MOLDENAERS, P.; HENDRICKX, M.E. 2014. A Review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Comprehensive Reviews in Food Science and Food Safety. 13(3):241–260. https://doi.org/10.1111/1541-4337.12059 MOKHTAR, S.M.; SWAILAM, H.M.; EMBABY, H.E.S. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: Composition of goldenberry juice waste. Food Chemistry. 248:1-7. https://doi.org/10.1016/j.foodchem.2017.11.117 OLIVARES-TENORIO, M.L.; DEKKER, M.; VERKERK, R.; VAN BOEKEL, M.A.J.S. 2016. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology. 57(Part A):83-92. https://doi.org/10.1016/j.tifs.2016.09.009 OZTURK, A.; ÖZDEMİR, Y.; ALBAYRAK, B.; SİMŞEK, M.; YILDIRIM, K.C. 2017. Some nutrient characteristics of goldenberry (Physalis Peruviana L.) cultivar candidate from Turkey. Scientific Papers Series B Horticulture. 61:293-297. PETKOVA, N.T.; POPOVA, V.T.; IVANOVA, T.A.; MAZOVA, N.N.; PANAYOTOV, N.D.; STOYANOVA, A. 2021. Nutritional composition of different cape gooseberry genotypes (Physalis peruviana L.) – a comparative study. Food Research. 5(4):191-202. PIORKOWSKI, D.T.; MCCLEMENTS, D.J. 2014. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids. 42:5-41. https://doi.org/10.1016/j.foodhyd.2013.07.009 SAAVEDRA-LEOS, M.; LEYVA-PORRAS, C.; ALVAREZ-SALAS, C.; LONGORIA-RODRÍGUEZ, F.; LÓPEZ-PABLOS, A.L.; GONZÁLEZ-GARCÍA, R.; PÉREZ-URIZAR, J. 2018. Obtaining orange juice–maltodextrin powders without structure collapse based on the glass transition temperature and degree of polymerization. CyTA - Journal of Food. 16(1):61-69. https://doi.org/10.1080/19476337.2017.1337048 SANG-NGERN, M.; YOUN, U.J.; PARK, E.J.; KONDRATYUK, T.P.; SIMMONS, C.J.; WALL, M.M.; RUF, M.; LORCH, S.E.; LEONG, E.; PEZZUTO, J.M.; CHANG, L.C. 2016. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters. 26(12):2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077 SANTOS ARAUJO, H.C.; JESUS, M.S.; LEITE NETA, M.T.S.; GUALBERTO, N.C.; MATOS, C.M.S.; RAJAN, M.; RAJKUMAR, G.; NOGUEIRA, J.P.; NARAIN, N. 2020. Effect of maltodextrin and gum arabic on antioxidant activity and phytochemical profiles of spray-dried powders of sapota (Manilkara zapota) fruit juice. Drying Technology. 39(3):392-404. https://doi.org/10.1080/07373937.2020.1839487 SANTOS, D.; MAURÍCIO, A.C.; SENCADAS, V.; SANTOS, J.D.; FERNANDES, M.H.; GOMES, P.S. 2017. Spray drying: An Overview. En: Pignatello, R.; Musumeci, T. (eds). Biomaterials - Physics and chemistry. New Edition. InTechOpen. p.9-35. https://doi.org/10.5772/intechopen.72247 TAHERI, A.; JAFARI, S.M. 2019. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in colloid and interface Science. 269:277-295. https://doi.org/10.1016/j.cis.2019.04.009 TAMNAK, S.; MIRHOSSEINI, H.; TAN, C.P.; GHAZALI, H.M.; MUHAMMAD, K. 2016. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids. 56:405-416. https://doi.org/10.1016/j.foodhyd.2015.12.033 TUAN AZLAN, T.N.N.; HAMZAH, Y.; MOHD ABD MAJID, H.A. 2020. Effect of gum arabic (Acacia senegal) addition on physicochemical properties and sensory acceptability of roselle juice. Food Research. 4(2):449-458. https://doi.org/10.26656/fr.2017.4(2).293 VEGA-GÁLVEZ, A.; LÓPEZ, J.; TORRES-OSSANDÓN, M.J.; GALOTTO, M.J.; PUENTE-DÍAZ, L.; QUISPE-FUENTES, I.; DI SCALA, K. 2014. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Science and Technology. 58(2):519-526. https://doi.org/10.1016/j.lwt.2014.04.010 WAN, Y.J.; XU, M.M.; GILBERT, R.G.; YIN, J.Y.; HUANG, X.J.; XIONG, T.; XIE, M.Y. 2018. Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocolloids. 89:623-630. https://doi.org/10.1016/j.foodhyd.2018.11.017 WARDY, W.; PUJOLS MARTÍNEZ, K.D.; XU, Z.; NO, H.K.; PRINYAWIWATKUL, W. 2014. Viscosity changes of chitosan solution affect physico-functional properties and consumer perception of coated eggs during storage. LWT - Food Science and Technology. 55(1):67-73. https://doi.org/10.1016/j.lwt.2013.07.013 ZHU, D.; SHEN, Y.; WEI, L.; XU, L.; CAO, X.; LIU, H.; LI, J. 2020. Effect of particle size on the stability and flavor of cloudy apple juice. Food Chemistry. 328:126967. https://doi.org/10.1016/j.foodchem.2020.126967 ZHU, F. 2018. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition. 58(11):1808-1831. https://doi.org/10.1080/10408398.2017.1287659 https://revistas.udca.edu.co/index.php/ruadc/article/download/2060/3167 https://revistas.udca.edu.co/index.php/ruadc/article/download/2060/3172 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |