Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado
.
Antecedentes. El ejercicio físico concurrente y el entrenamiento aeróbico son estrategias para tratar el sobrepeso y la obesidad. La mayoría de las intervenciones han usado máquinas cardiovasculares o de ejecución guiada, que frecuentemente implican materiales de alto costo no fácilmente accesibles para la población general. Objetivo. Identificar el efecto de 12 semanas de ejercicio (entrenamiento concurrente vs. aeróbico), basado en el modelo de distribución de intensidad de entrenamiento polarizado, sobre el consumo máximo de oxígeno, la fuerza muscular y la composición corporal. Materiales y métodos. Ensayo controlado aleatorizado con dos grupos, entrenamiento concurrente vs. aeróbico (n = 28), en personas con sobrepeso y obesidad. Ambos... Ver más
2665-2056
2023-08-09
press
press
Revista de Investigación e Innovación en Ciencias de la Salud - 2024
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_fumc_revistadeinvestigacioneinnovacionencienciasdelasalud_67_article_306 |
---|---|
record_format |
ojs |
institution |
FUNDACION UNIVERSITARIA MARIA CANO |
thumbnail |
https://nuevo.metarevistas.org/FUNDACIONUNIVERSITARIAMARIACANO/logo.png |
country_str |
Colombia |
collection |
Revista de Investigación e Innovación en Ciencias de la Salud |
title |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado |
spellingShingle |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado Madrid Zapata, Felipe Orozco Osorio, Jonathan Cruz-González, Jerman Jesyd Arboleda-Serna, Víctor Hugo Cardiorespiratory fitness circuit-based exercise obesity body composition resistance training concurrent training endurance training strength Aptitud cardiorrespiratoria ejercicio en circuito obesidad composición corporal entrenamiento de resistencia entrenamiento concurrente entrenamiento aérobico fuerza |
title_short |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado |
title_full |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado |
title_fullStr |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado |
title_full_unstemmed |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado |
title_sort |
ejercicio concurrente y aeróbico sobre el consumo máximo de oxígeno en adultos con obesidad: protocolo de estudio para un ensayo controlado aleatorizado |
description |
Antecedentes. El ejercicio físico concurrente y el entrenamiento aeróbico son estrategias para tratar el sobrepeso y la obesidad. La mayoría de las intervenciones han usado máquinas cardiovasculares o de ejecución guiada, que frecuentemente implican materiales de alto costo no fácilmente accesibles para la población general.
Objetivo. Identificar el efecto de 12 semanas de ejercicio (entrenamiento concurrente vs. aeróbico), basado en el modelo de distribución de intensidad de entrenamiento polarizado, sobre el consumo máximo de oxígeno, la fuerza muscular y la composición corporal.
Materiales y métodos. Ensayo controlado aleatorizado con dos grupos, entrenamiento concurrente vs. aeróbico (n = 28), en personas con sobrepeso y obesidad. Ambos grupos realizarán 36 sesiones, 3 veces por semana, en días alternos.
Resultados. La evidencia actual no ha demostrado la superioridad del ejercicio concurrente frente al aeróbico sobre el VO2max, la fuerza muscular y la composición corporal. Además, los pocos estudios encontrados con ejercicio concurrente y las limitaciones metodológicas justifican en sus diseños la importancia de comparar ambos tipos de ejercicio y así identificar las mejores estrategias para las personas con sobrepeso y obesidad en relación con los desenlaces mencionados.
|
description_eng |
Background. Concurrent and aerobic physical exercise are strategies for treating overweight and obesity. Most interventions have utilized cardiovascular or guided execution machines, which often involve high-cost materials not easily accessible to the general population.
Objective. Identify the effect of 12 weeks of exercise (concurrent vs. aerobic training) based on the polarized training intensity distribution model on maximal oxygen consumption, muscle strength, and body composition.
Materials and methods. A randomized controlled trial with two groups, concurrent vs. aerobic training (n = 28), in overweight and obese individuals. Both groups will perform 36 sessions, 3 times a week, on alternate days.
Results. Current evidence has not demonstrated the superiority of concurrent over aerobic exercise on VO2max, muscle strength, and body composition. Additionally, the few randomized studies with concurrent exercise and the methodological limitations in their designs justify the importance of comparing both types of exercise to determine the best strategies for overweight and obese individuals regarding the mentioned outcomes.
|
author |
Madrid Zapata, Felipe Orozco Osorio, Jonathan Cruz-González, Jerman Jesyd Arboleda-Serna, Víctor Hugo |
author_facet |
Madrid Zapata, Felipe Orozco Osorio, Jonathan Cruz-González, Jerman Jesyd Arboleda-Serna, Víctor Hugo |
topic |
Cardiorespiratory fitness circuit-based exercise obesity body composition resistance training concurrent training endurance training strength Aptitud cardiorrespiratoria ejercicio en circuito obesidad composición corporal entrenamiento de resistencia entrenamiento concurrente entrenamiento aérobico fuerza |
topic_facet |
Cardiorespiratory fitness circuit-based exercise obesity body composition resistance training concurrent training endurance training strength Aptitud cardiorrespiratoria ejercicio en circuito obesidad composición corporal entrenamiento de resistencia entrenamiento concurrente entrenamiento aérobico fuerza |
topicspa_str_mv |
Aptitud cardiorrespiratoria ejercicio en circuito obesidad composición corporal entrenamiento de resistencia entrenamiento concurrente entrenamiento aérobico fuerza |
citationedition |
: Press articles |
publisher |
Fundación Universitaria María Cano |
ispartofjournal |
Revista de Investigación e Innovación en Ciencias de la Salud |
source |
https://riics.info/index.php/RCMC/article/view/306 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es Revista de Investigación e Innovación en Ciencias de la Salud - 2024 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Organizacion Mundial de la salud (OMS). Obesidad y sobrepeso [Internet]. 2021 [updated 2024 Mar 1; cited 2022 Oct 9]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight 2. Lobstein T, Brinsden H, Neveux M, compilers. World Obesity Atlas 2022 [Internet]. London: World Obesity Federation; 2022 March. 289 p. Available from: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022 3. FAO, WFP, PAHO, WHO, UNICEF, IFAD. Regional Overview of Food Security and Nutrition in Latin America and the Caribbean 2020. In Brief [Internet]. Santiago: FAO; 2021 [cited 2022 Oct 12]. 33 p. Available from: https://www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1377737/ 4. Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, et al. Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes [Internet]. 2022 Jun;15(6):E008243. doi: https://doi.org/10.1161/circoutcomes.121.008243 5. Lamoureux NR, Fitzgerald JS, Norton KI, Sabato T, Tremblay MS, Tomkinson GR. Temporal Trends in the Cardiorespiratory Fitness of 2,525,827 Adults Between 1967 and 2016: A Systematic Review. Sports Med [Internet]. 2019;49(1):41-55. doi: https://doi.org/10.1007/s40279-018-1017-y 6. Slentz CA, Bateman LA, Willis LH, Tamlyn Shields A, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metabolic [Internet]. 2011;301(5):E1033-E1039. doi: https://doi.org/10.1152/ajpendo.00291.2011 7. Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab [Internet]. 2013 Jul;38(7):779-88. doi: https://doi.org/10.1139/apnm-2012-0443 8. Schroeder EC, Franke WD, Sharp RL, Lee D chul. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One [Internet]. 2019 Jan;14(1): e0210292. doi: https://doi.org/10.1371/journal.pone.0210292 9. Gram AS, Petersen MB, Quist JS, Rosenkilde M, Stallknecht B, Bladbjerg EM. Effects of 6 Months of Active Commuting and Leisure-Time Exercise on Fibrin Turnover in Sedentary Individuals with Overweight and Obesity: A Randomised Controlled Trial. J Obes [Internet]. 2018;2018:7140754. doi: https://doi.org/10.1155/2018/7140754 10. Emerenziani GP, Gallotta MC, Meucci M, Luigi Di L, Migliaccio S, Donini LM, et al. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes. Int J Endocrinol [Internet]. 2015;2015:695297. doi: https://doi.org/10.1155/2015/695297 11. Jin CH, Rhyu HS, Kim JY. The effects of combined aerobic and resistance training on inflammatory markers in obese men. J Exerc Rehabil [Internet]. 2018;14(4):660-5. doi: https://doi.org/10.12965/jer.1836294.147 12. Atashak S, Stannard SR, Azizbeigi K. Cardiovascular risk factors adaptation to concurrent training in overweight sedentary middle-aged men. J Sports Med Phys Fitness [Internet]. 2016;56(5):624-30. Available from: https://www.researchgate.net/publication/272187511 13. Cruz-González JJ, Arboleda-Serna VH. Training intensity distribution on running time in amateur endurance runners: a scoping review. Rev Investig Innov Cienc Salud [Internet]. 2022;4(2):137-49. doi: https://doi.org/10.46634/riics.136 14. Kenneally M, Casado A, Santos-Concejero J. The effect of periodization and training intensity distribution on middle-and long-distance running performance: A systematic review. Int J Sports Physiol Perform [Internet]. 2018;13(9):1114-21. doi: https://doi.org/10.1123/ijspp.2017-0327 15. Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: A simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol [Internet]. 2019;10. doi: https://doi.org/10.3389/fphys.2019.00707 16. Hydren JR, Cohen BS. Current Scientific Evidence for a Polarized Cardiovascular Endurance Training Model. J Strength Cond Res [Internet]. 2015;29(12):3523-30. doi: https://doi.org/10.1519/JSC.0000000000001197 17. Zapata-Lamana R, Henríquez-Olguín C, Burgos C, Meneses-Valdés R, Cigarroa I, Soto C, et al. Effects of polarized training on cardiometabolic risk factors in young overweight and obese women: A randomized-controlled trial. Front Physiol [Internet]. 2018;9. doi: https://doi.org/10.3389/fphys.2018.01287 18. Van Baak MA, Pramono A, Battista F, Beaulieu K, Blundell JE, Busetto L, et al. Effect of different types of regular exercise on physical fitness in adults with overweight or obesity: Systematic review and meta-analyses. Obes Rev [Internet]. 2021;22(Suppl 4). doi: https://doi.org/10.1111/obr.13239 19. Scapini KB, Bohlke M, Moraes OA, Rodrigues CG, Inácio JF, Sbruzzi G, et al. Combined training is the most effective training modality to improve aerobic capacity and blood pressure control in people requiring haemodialysis for end-stage renal disease: systematic review and network meta-analysis. J Physiother [Internet]. 2019;65(1):4-15. doi: https://doi.org/10.1016/J.JPHYS.2018.11.008 20. Ratajczak M, Skrypnik D, Bogdański P, Madry E, Walkowiak J, Szulińska M, et al. Effects of Endurance and Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int J Environ Res Public Health [Internet]. 2019;16(21):1-13. doi: https://doi.org/10.3390/IJERPH16214291 21. O’Donoghue G, Blake C, Cunningham C, Lennon O, Perrotta C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes Rev [Internet]. 2021;22(2):e13137. doi: https://doi.org/10.1111/OBR.13137 22. Morze J, Rücker G, Danielewicz A, Przybyłowicz K, Neuenschwander M, Schlesinger S, et al. Impact of different training modalities on anthropometric outcomes in patients with obesity: A systematic review and network meta-analysis. Obes Rev [Internet]. 2021;22(7):e13218. doi: https://doi.org/10.1111/obr.13218 23. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc [Internet]. 2017;65(4):827-32. doi: https://doi.org/10.1111/jgs.14722 24. Hsu KJ, Liao C De, Tsai MW, Chen CN. Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients [Internet]. 2019;11(9):1-15. doi https://doi.org/10.3390/NU11092163 25. Wang S, Zhou H, Zhao C, He H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front Immunol [Internet]. 2022;13:921085. doi: https://doi.org/10.3389/fimmu.2022.921085 26. Soori R, Rezaeian N, Khosravi N, Ahmadizad S, Taleghani HM, Jourkesh M, et al. Effects of water-based endurance training, resistance training, and combined water and resistance training programs on visfatin and ICAM-1 levels in sedentary obese women. Sci Sports [Internet]. 2017;32(3):144-51. doi: https://doi.org/10.1016/J.SCISPO.2016.12.004 27. Park SH, Kim CG. What Types of Exercise Are More Effective in Reducing Obesity and Blood Pressure for Middle-Aged Women? A Systematic Review with Meta-Analysis. Biol Res Nurs [Internet]. 2021;23(4):658-75. doi: https://doi.org/10.1177/10998004211015424 28. Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT. The Effect of Combined Aerobic and Resistance Exercise Training on Abdominal Fat in Obese Middle-aged Women. J Physiol Anthropol Appl Human Sci [Internet]. 2003;22(3):129-35. doi: https://doi.org/10.2114/JPA.22.129 29. Deligiannis A, Kouidi E, Tourkantonis A. Effects of physical training on heart rate variability in patients on hemodialysis. Am J Cardiol [Internet]. 1999;84(2):197-202. doi: https://doi.org/10.1016/S0002-9149(99)00234-9 30. Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective Exercise Modality to Reduce Insulin Resistance in Women with Type 2 Diabetes. Diabetes Care [Internet]. 2003;26(11):2977-82. doi: https://doi.org/10.2337/DIACARE.26.11.2977 31. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA [Internet]. 2009;301(19):2024-35. doi: https://doi.org/10.1001/JAMA.2009.681 32. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting Template (CERT): Explanation and Elaboration Statement. Br J Sports Med [Internet]. 2016;50(23):1428-37. doi: https://doi.org/10.1136/bjsports-2016-096651 33. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ [Internet]. 2010;340:c869. doi: https://doi.org/10.1136/bmj.c869 34. Sealed Envelope Ltd. Create a blocked randomisation list [Internet]. 2022 [cited 2023 Feb 5]. Available from: https://www.sealedenvelope.com/simple-randomiser/v1/lists 35. Ellegård L, Bertz F, Winkvist A, Bosaeus I, Brekke HK. Body composition in overweight and obese women postpartum: bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur J Clin Nutr [Internet]. 2016;70(10):1181-8. doi: https://doi.org/10.1038/EJCN.2016.50 36. ERGOTECH Consulting SL. Sistema Dinámico de Medida para la Evaluación y el Entrenamiento de la Fuerza. Manual del usuario. Versión 2.35. Ergotech; 2011. 85 p. 37. Hoppe MW, Sperlich B, Baumgart C, Janssen M, Freiwald J. Reliabilität ausgewählter Parameter der Fahrradergospirometrie anhand des PowerCube-Ergo-Atemgasanalysators. Sportverletz Sportschaden [Internet]. 2015;29(3):173-9. doi: https://doi.org/10.1055/S-0034-1399096/ID/BR764-53 38. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ [Internet]. 2001;323(7321):1123-4. doi: https://doi.org/10.1136/bmj.323.7321.1123 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2023-08-09 |
date_accessioned |
2023-08-09T15:37:24Z |
date_available |
2023-08-09T15:37:24Z |
url |
https://riics.info/index.php/RCMC/article/view/306 |
url_doi |
https://doi.org/10.46634/riics.306 |
eissn |
2665-2056 |
doi |
10.46634/riics.306 |
citationstartpage |
press |
citationendpage |
press |
url3_str_mv |
https://riics.info/index.php/RCMC/article/download/306/1001 |
url4_str_mv |
https://riics.info/index.php/RCMC/article/download/306/1000 |
_version_ |
1811200654744485888 |
spelling |
Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado Ejercicio Concurrente y Aeróbico sobre el Consumo Máximo de Oxígeno en Adultos con Obesidad: Protocolo de estudio para un ensayo controlado aleatorizado Antecedentes. El ejercicio físico concurrente y el entrenamiento aeróbico son estrategias para tratar el sobrepeso y la obesidad. La mayoría de las intervenciones han usado máquinas cardiovasculares o de ejecución guiada, que frecuentemente implican materiales de alto costo no fácilmente accesibles para la población general. Objetivo. Identificar el efecto de 12 semanas de ejercicio (entrenamiento concurrente vs. aeróbico), basado en el modelo de distribución de intensidad de entrenamiento polarizado, sobre el consumo máximo de oxígeno, la fuerza muscular y la composición corporal. Materiales y métodos. Ensayo controlado aleatorizado con dos grupos, entrenamiento concurrente vs. aeróbico (n = 28), en personas con sobrepeso y obesidad. Ambos grupos realizarán 36 sesiones, 3 veces por semana, en días alternos. Resultados. La evidencia actual no ha demostrado la superioridad del ejercicio concurrente frente al aeróbico sobre el VO2max, la fuerza muscular y la composición corporal. Además, los pocos estudios encontrados con ejercicio concurrente y las limitaciones metodológicas justifican en sus diseños la importancia de comparar ambos tipos de ejercicio y así identificar las mejores estrategias para las personas con sobrepeso y obesidad en relación con los desenlaces mencionados. Background. Concurrent and aerobic physical exercise are strategies for treating overweight and obesity. Most interventions have utilized cardiovascular or guided execution machines, which often involve high-cost materials not easily accessible to the general population. Objective. Identify the effect of 12 weeks of exercise (concurrent vs. aerobic training) based on the polarized training intensity distribution model on maximal oxygen consumption, muscle strength, and body composition. Materials and methods. A randomized controlled trial with two groups, concurrent vs. aerobic training (n = 28), in overweight and obese individuals. Both groups will perform 36 sessions, 3 times a week, on alternate days. Results. Current evidence has not demonstrated the superiority of concurrent over aerobic exercise on VO2max, muscle strength, and body composition. Additionally, the few randomized studies with concurrent exercise and the methodological limitations in their designs justify the importance of comparing both types of exercise to determine the best strategies for overweight and obese individuals regarding the mentioned outcomes. Madrid Zapata, Felipe Orozco Osorio, Jonathan Cruz-González, Jerman Jesyd Arboleda-Serna, Víctor Hugo Cardiorespiratory fitness circuit-based exercise obesity body composition resistance training concurrent training endurance training strength Aptitud cardiorrespiratoria ejercicio en circuito obesidad composición corporal entrenamiento de resistencia entrenamiento concurrente entrenamiento aérobico fuerza : Press articles Artículo de revista Journal article 2023-08-09T15:37:24Z 2023-08-09T15:37:24Z 2023-08-09 text/html text/xml Fundación Universitaria María Cano Revista de Investigación e Innovación en Ciencias de la Salud 2665-2056 https://riics.info/index.php/RCMC/article/view/306 10.46634/riics.306 https://doi.org/10.46634/riics.306 eng https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es Revista de Investigación e Innovación en Ciencias de la Salud - 2024 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. press press Organizacion Mundial de la salud (OMS). Obesidad y sobrepeso [Internet]. 2021 [updated 2024 Mar 1; cited 2022 Oct 9]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight 2. Lobstein T, Brinsden H, Neveux M, compilers. World Obesity Atlas 2022 [Internet]. London: World Obesity Federation; 2022 March. 289 p. Available from: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022 3. FAO, WFP, PAHO, WHO, UNICEF, IFAD. Regional Overview of Food Security and Nutrition in Latin America and the Caribbean 2020. In Brief [Internet]. Santiago: FAO; 2021 [cited 2022 Oct 12]. 33 p. Available from: https://www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1377737/ 4. Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, et al. Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes [Internet]. 2022 Jun;15(6):E008243. doi: https://doi.org/10.1161/circoutcomes.121.008243 5. Lamoureux NR, Fitzgerald JS, Norton KI, Sabato T, Tremblay MS, Tomkinson GR. Temporal Trends in the Cardiorespiratory Fitness of 2,525,827 Adults Between 1967 and 2016: A Systematic Review. Sports Med [Internet]. 2019;49(1):41-55. doi: https://doi.org/10.1007/s40279-018-1017-y 6. Slentz CA, Bateman LA, Willis LH, Tamlyn Shields A, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metabolic [Internet]. 2011;301(5):E1033-E1039. doi: https://doi.org/10.1152/ajpendo.00291.2011 7. Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab [Internet]. 2013 Jul;38(7):779-88. doi: https://doi.org/10.1139/apnm-2012-0443 8. Schroeder EC, Franke WD, Sharp RL, Lee D chul. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One [Internet]. 2019 Jan;14(1): e0210292. doi: https://doi.org/10.1371/journal.pone.0210292 9. Gram AS, Petersen MB, Quist JS, Rosenkilde M, Stallknecht B, Bladbjerg EM. Effects of 6 Months of Active Commuting and Leisure-Time Exercise on Fibrin Turnover in Sedentary Individuals with Overweight and Obesity: A Randomised Controlled Trial. J Obes [Internet]. 2018;2018:7140754. doi: https://doi.org/10.1155/2018/7140754 10. Emerenziani GP, Gallotta MC, Meucci M, Luigi Di L, Migliaccio S, Donini LM, et al. Effects of Aerobic Exercise Based upon Heart Rate at Aerobic Threshold in Obese Elderly Subjects with Type 2 Diabetes. Int J Endocrinol [Internet]. 2015;2015:695297. doi: https://doi.org/10.1155/2015/695297 11. Jin CH, Rhyu HS, Kim JY. The effects of combined aerobic and resistance training on inflammatory markers in obese men. J Exerc Rehabil [Internet]. 2018;14(4):660-5. doi: https://doi.org/10.12965/jer.1836294.147 12. Atashak S, Stannard SR, Azizbeigi K. Cardiovascular risk factors adaptation to concurrent training in overweight sedentary middle-aged men. J Sports Med Phys Fitness [Internet]. 2016;56(5):624-30. Available from: https://www.researchgate.net/publication/272187511 13. Cruz-González JJ, Arboleda-Serna VH. Training intensity distribution on running time in amateur endurance runners: a scoping review. Rev Investig Innov Cienc Salud [Internet]. 2022;4(2):137-49. doi: https://doi.org/10.46634/riics.136 14. Kenneally M, Casado A, Santos-Concejero J. The effect of periodization and training intensity distribution on middle-and long-distance running performance: A systematic review. Int J Sports Physiol Perform [Internet]. 2018;13(9):1114-21. doi: https://doi.org/10.1123/ijspp.2017-0327 15. Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: A simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol [Internet]. 2019;10. doi: https://doi.org/10.3389/fphys.2019.00707 16. Hydren JR, Cohen BS. Current Scientific Evidence for a Polarized Cardiovascular Endurance Training Model. J Strength Cond Res [Internet]. 2015;29(12):3523-30. doi: https://doi.org/10.1519/JSC.0000000000001197 17. Zapata-Lamana R, Henríquez-Olguín C, Burgos C, Meneses-Valdés R, Cigarroa I, Soto C, et al. Effects of polarized training on cardiometabolic risk factors in young overweight and obese women: A randomized-controlled trial. Front Physiol [Internet]. 2018;9. doi: https://doi.org/10.3389/fphys.2018.01287 18. Van Baak MA, Pramono A, Battista F, Beaulieu K, Blundell JE, Busetto L, et al. Effect of different types of regular exercise on physical fitness in adults with overweight or obesity: Systematic review and meta-analyses. Obes Rev [Internet]. 2021;22(Suppl 4). doi: https://doi.org/10.1111/obr.13239 19. Scapini KB, Bohlke M, Moraes OA, Rodrigues CG, Inácio JF, Sbruzzi G, et al. Combined training is the most effective training modality to improve aerobic capacity and blood pressure control in people requiring haemodialysis for end-stage renal disease: systematic review and network meta-analysis. J Physiother [Internet]. 2019;65(1):4-15. doi: https://doi.org/10.1016/J.JPHYS.2018.11.008 20. Ratajczak M, Skrypnik D, Bogdański P, Madry E, Walkowiak J, Szulińska M, et al. Effects of Endurance and Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int J Environ Res Public Health [Internet]. 2019;16(21):1-13. doi: https://doi.org/10.3390/IJERPH16214291 21. O’Donoghue G, Blake C, Cunningham C, Lennon O, Perrotta C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes Rev [Internet]. 2021;22(2):e13137. doi: https://doi.org/10.1111/OBR.13137 22. Morze J, Rücker G, Danielewicz A, Przybyłowicz K, Neuenschwander M, Schlesinger S, et al. Impact of different training modalities on anthropometric outcomes in patients with obesity: A systematic review and network meta-analysis. Obes Rev [Internet]. 2021;22(7):e13218. doi: https://doi.org/10.1111/obr.13218 23. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc [Internet]. 2017;65(4):827-32. doi: https://doi.org/10.1111/jgs.14722 24. Hsu KJ, Liao C De, Tsai MW, Chen CN. Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients [Internet]. 2019;11(9):1-15. doi https://doi.org/10.3390/NU11092163 25. Wang S, Zhou H, Zhao C, He H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front Immunol [Internet]. 2022;13:921085. doi: https://doi.org/10.3389/fimmu.2022.921085 26. Soori R, Rezaeian N, Khosravi N, Ahmadizad S, Taleghani HM, Jourkesh M, et al. Effects of water-based endurance training, resistance training, and combined water and resistance training programs on visfatin and ICAM-1 levels in sedentary obese women. Sci Sports [Internet]. 2017;32(3):144-51. doi: https://doi.org/10.1016/J.SCISPO.2016.12.004 27. Park SH, Kim CG. What Types of Exercise Are More Effective in Reducing Obesity and Blood Pressure for Middle-Aged Women? A Systematic Review with Meta-Analysis. Biol Res Nurs [Internet]. 2021;23(4):658-75. doi: https://doi.org/10.1177/10998004211015424 28. Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT. The Effect of Combined Aerobic and Resistance Exercise Training on Abdominal Fat in Obese Middle-aged Women. J Physiol Anthropol Appl Human Sci [Internet]. 2003;22(3):129-35. doi: https://doi.org/10.2114/JPA.22.129 29. Deligiannis A, Kouidi E, Tourkantonis A. Effects of physical training on heart rate variability in patients on hemodialysis. Am J Cardiol [Internet]. 1999;84(2):197-202. doi: https://doi.org/10.1016/S0002-9149(99)00234-9 30. Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective Exercise Modality to Reduce Insulin Resistance in Women with Type 2 Diabetes. Diabetes Care [Internet]. 2003;26(11):2977-82. doi: https://doi.org/10.2337/DIACARE.26.11.2977 31. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA [Internet]. 2009;301(19):2024-35. doi: https://doi.org/10.1001/JAMA.2009.681 32. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting Template (CERT): Explanation and Elaboration Statement. Br J Sports Med [Internet]. 2016;50(23):1428-37. doi: https://doi.org/10.1136/bjsports-2016-096651 33. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ [Internet]. 2010;340:c869. doi: https://doi.org/10.1136/bmj.c869 34. Sealed Envelope Ltd. Create a blocked randomisation list [Internet]. 2022 [cited 2023 Feb 5]. Available from: https://www.sealedenvelope.com/simple-randomiser/v1/lists 35. Ellegård L, Bertz F, Winkvist A, Bosaeus I, Brekke HK. Body composition in overweight and obese women postpartum: bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur J Clin Nutr [Internet]. 2016;70(10):1181-8. doi: https://doi.org/10.1038/EJCN.2016.50 36. ERGOTECH Consulting SL. Sistema Dinámico de Medida para la Evaluación y el Entrenamiento de la Fuerza. Manual del usuario. Versión 2.35. Ergotech; 2011. 85 p. 37. Hoppe MW, Sperlich B, Baumgart C, Janssen M, Freiwald J. Reliabilität ausgewählter Parameter der Fahrradergospirometrie anhand des PowerCube-Ergo-Atemgasanalysators. Sportverletz Sportschaden [Internet]. 2015;29(3):173-9. doi: https://doi.org/10.1055/S-0034-1399096/ID/BR764-53 38. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ [Internet]. 2001;323(7321):1123-4. doi: https://doi.org/10.1136/bmj.323.7321.1123 https://riics.info/index.php/RCMC/article/download/306/1001 https://riics.info/index.php/RCMC/article/download/306/1000 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |