Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas
.
La contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las es... Ver más
1794-1237
2463-0950
17
2020-06-21
1
15
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1347 |
---|---|
record_format |
ojs |
spelling |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas Time-Frequency characteristics analysis for forecasting time series of particulate matter using Support Vector Regression and Particle Swarm Optimization La contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las estimaciones. Los resultados obtenidos mostraron que, empleando características temporales, más las características tiempo-frecuencia propuestas, se obtiene el mejor desempeño de la SVR-PSO, además se encontró que el uso de la imputación de datos no afecta el desempeño de la SVR-PSO. El sistema propuesto en este trabajo permite disminuir el error de las estimaciones de concentración de PM10 y PM2.5 haciendo uso de características tiempo-frecuencia y es capaz de operar de forma robusta contra datos perdidos, aumentando su viabilidad de ser implementado en escenarios reales. Atmospheric pollution by particulate matter is a problem recognized worldwide as a major risk factor for human health, over last years different models based on artificial intelligence has been proposed to forecast particulate matter concentration with the purpose of generate early warning systems that avoid people exposition. This paper analyzed a characterization scheme in time-frequency domain using the Wavelet to predict time series of PM10 and PM2.5 using the Support Vector Regression optimized with Particle Swarm Optimization (SVR-PSO). This paper also evaluated the effect of data imputation over estimations. Results showed that using time characteristics along with time-frequency characteristics SVR-PSO reach its best performance, also, it was found that use of data imputation does not affect SVR-PSO performance. The system proposed in this paper allow to estimate PM10 and PM2.5 concentrations with less error through time-frequency characteristics, in addition, it is capable to operate robustly against missing data, which improve its viability to be implemented in real scenarios. Sepulveda Suescun, Juan Pablo Alzate Zuluaga, Norbey Yovany Murillo Escobar, Juan Pablo Orrego Metaute, Diana Alexandra Correa Ochoa, Mauricio Andres SVR PSO Transformada Wavelet Imputación de datos Predicción Regresión SVR PSO Wavelet Transform Data imputation Prediction Regression 17 34 Artículo de revista Journal article 2020-06-21 00:00:00 2020-06-21 00:00:00 2020-06-21 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1347 10.24050/reia.v17i34.1347 https://doi.org/10.24050/reia.v17i34.1347 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 1 15 Ahmat Zainuri, N., Aziz Jemain, A. and Muda, N. (2015) ‘A Comparison of Various Imputation Methods for Missing Values in Air Quality Data (Perbandingan Pelbagai Kaedah Imputasi bagi Data Lenyap untuk Data Kualiti Udara)’, Sains Malaysiana, 44(3), pp. 449–456. Available at: http://www.ukm.edu.my/jsm/pdf_files/SM-PDF-44-3-2015/17 NuryAzmin.pdf. Araghi, A. et al. (2015) ‘Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data’, Atmospheric Research. Elsevier B.V., 155, pp. 52–72. doi: 10.1016/j.atmosres.2014.11.016. Bai, L. et al. (2018) ‘Air pollution forecasts: An overview’, International Journal of Environmental Research and Public Health, 15(4), pp. 1–44. doi: 10.3390/ijerph15040780. Baklanov, A. et al. (2007) ‘Integrated systems for forecasting urban meteorology, air pollution and population exposure’, Atmospheric Chemistry and Physics, 7(3), pp. 855–874. doi: 10.5194/acp-7-855-2007. Betancur Alarcon, L. (2017) ‘Atencion de males por calidad del aire cuesta 1,6 billones al año’, El Tiempo, May. Brugha, R., Edmondson, C. and Davies, J. C. (2018) ‘Outdoor air pollution and cystic fibrosis’, Paediatric Respiratory Reviews, 28, pp. 80–86. doi: https://doi.org/10.1016/j.prrv.2018.03.005. Chen, M. et al. (2015) ‘A clustering algorithm for sample data based on environmental pollution characteristics’, Atmospheric Environment. Elsevier Ltd, 107, pp. 194–203. doi: 10.1016/j.atmosenv.2015.02.042. Chen, Y. et al. (2013) ‘Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis’, Atmospheric Environment. Elsevier Ltd, 74, pp. 346–359. doi: 10.1016/j.atmosenv.2013.04.002. Delpont, B. et al. (2018) ‘Environmental Air Pollution: An Emerging Risk Factor for Stroke’, in Vasan, R. S. and Sawyer, D. B. (eds) Encyclopedia of Cardiovascular Research and Medicine. Oxford: Elsevier, pp. 231–237. doi: https://doi.org/10.1016/B978-0-12-809657-4.99588-7. Donnelly, A., Misstear, B. and Broderick, B. (2015) ‘Real time air quality forecasting using integrated parametric and non-parametric regression techniques’, Atmospheric Environment. Elsevier Ltd, 103(2), pp. 53–65. doi: 10.1016/j.atmosenv.2014.12.011. Ertu\ugrul, Ö. F. and Ta\ugluk, M. E. (2017) ‘A novel version of k nearest neighbor: Dependent nearest neighbor’, Applied Soft Computing Journal, 55, pp. 480–490. doi: 10.1016/j.asoc.2017.02.020. Feng, X. et al. (2015) ‘Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation’, Atmospheric Environment, 107, pp. 118–128. doi: 10.1016/j.atmosenv.2015.02.030. Gallego, A. J. et al. (2018) ‘Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation’, Pattern Recognition. Elsevier Ltd, 74, pp. 531–543. doi: 10.1016/j.patcog.2017.09.038. García Nieto, P. J. et al. (2017) ‘Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain)’, Environmental Modeling & Assessment. doi: 10.1007/s10666-017-9578-y. De Gennaro, G. et al. (2013) ‘Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean’, Science of the Total Environment. Elsevier B.V., 463–464, pp. 875–883. doi: 10.1016/j.scitotenv.2013.06.093. Hu, C. et al. (2014) ‘Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery’, Applied Energy. Elsevier Ltd, 129, pp. 49–55. doi: 10.1016/j.apenergy.2014.04.077. Hu, X. P., Dong, X. D. and Yu, B. H. (2016) ‘Method of Optimal Design with SVR-PSO for Ultrasonic Cutter Assembly’, Procedia CIRP, 50, pp. 779–783. doi: 10.1016/j.procir.2016.04.180. Kalteh, A. M. (2015) ‘Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting’, Water Resources Management, 29(4), pp. 1283–1293. doi: 10.1007/s11269-014-0873-y. Kazem, A. et al. (2013) ‘Support vector regression with chaos-based firefly algorithm for stock market price forecasting’, in Applied Soft Computing. Elsevier B.V., pp. 947–958. doi: 10.1016/j.asoc.2012.09.024. Khaniabadi, Y. O. et al. (2018) ‘Mortality and morbidity due to ambient air pollution in Iran’, Clinical Epidemiology and Global Health. doi: https://doi.org/10.1016/j.cegh.2018.06.006. LINDSAY, P. H. and NORMAN, D. A. (1977) ‘Neural information processing’, Human Information Processing, 8226(November), pp. 190–254. doi: 10.1016/B978-0-12-450960-3.50010-5. Marini, F. and Walczak, B. (2015) ‘Particle swarm optimization (PSO). A tutorial’, Chemometrics and Intelligent Laboratory Systems. Elsevier B.V., 149, pp. 153–165. doi: 10.1016/j.chemolab.2015.08.020. Martínez, J. and Castro, R. (2002) ‘Análisis de la teoría ondículas orientada a las aplicaciones en ingeniería eléctrica:Fundamentos’, E.T.D.I. Industriales Dpt. de ingeniería eléctrica, p. 161. Muñoz, A., Quiroz, C. and Paz, J. (2006) Efectos de la contaminación atmosférica sobre la salud en adultos. Universidad de Antioquia. Murillo-Escobar, J. et al. (2019) ‘Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia’, Urban Climate. Elsevier, 29(March), p. 100473. doi: 10.1016/j.uclim.2019.100473. Partal, T. and Küçük, M. (2006) ‘Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)’, Physics and Chemistry of the Earth, 31(18), pp. 1189–1200. doi: 10.1016/j.pce.2006.04.043. Prasad, K., Gorai, A. K. and Goyal, P. (2016) ‘Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time’, Atmospheric Environment. Elsevier Ltd, 128, pp. 246–262. doi: 10.1016/j.atmosenv.2016.01.007. Qin, S. et al. (2014) ‘Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models’, Atmospheric Environment. Elsevier Ltd, 98, pp. 665–675. doi: 10.1016/j.atmosenv.2014.09.046. Schraufnagel, D. E. et al. (2018) ‘Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems’, Chest. doi: https://doi.org/10.1016/j.chest.2018.10.041. Shahraiyni, H. T. and Sodoudi, S. (2016) ‘Statistical modeling approaches for pm10 prediction in urban areas; A review of 21st-century studies’, Atmosphere, 7(2), pp. 10–13. doi: 10.3390/atmos7020015. Shen, C. H., Huang, Y. and Yan, Y. N. (2016) ‘An analysis of multifractal characteristics of API time series in Nanjing, China’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 451(June 2000), pp. 171–179. doi: 10.1016/j.physa.2016.01.061. Siata (2017) Estabilidad atmosférica en el Valle de Áburra. Colombia. Smola, a J. and Scholkopf, B. (2004) ‘A tutorial on support vector regression’, Statistics and Computing, 14(3), pp. 199–222. doi: Doi 10.1023/B:Stco.0000035301.49549.88. Sun, W. et al. (2013) ‘Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California’, Science of the Total Environment. Elsevier B.V., 443, pp. 93–103. doi: 10.1016/j.scitotenv.2012.10.070. Zhang, Y. et al. (2012) ‘Real-time air quality forecasting, Part II: State of the science, current research needs, and future prospects’, Atmospheric Environment. Elsevier Ltd, 60, pp. 656–676. doi: 10.1016/j.atmosenv.2012.02.041. Zhang, Z. et al. (2017) ‘Application of a novel hybrid method for spatiotemporal data imputation: A case study of the Minqin County groundwater level’, Journal of Hydrology. Elsevier B.V., 553, pp. 384–397. doi: 10.1016/j.jhydrol.2017.07.053. https://revistas.eia.edu.co/index.php/reveia/article/download/1347/1340 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas |
spellingShingle |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas Sepulveda Suescun, Juan Pablo Alzate Zuluaga, Norbey Yovany Murillo Escobar, Juan Pablo Orrego Metaute, Diana Alexandra Correa Ochoa, Mauricio Andres Transformada Wavelet Imputación de datos Predicción Regresión Wavelet Transform Data imputation Prediction Regression |
title_short |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas |
title_full |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas |
title_fullStr |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas |
title_full_unstemmed |
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas |
title_sort |
análisis de características tiempo-frecuencia para la predicción de series temporales de material particulado usando regresión por vectores de soporte y optimización por enjambre de partículas |
title_eng |
Time-Frequency characteristics analysis for forecasting time series of particulate matter using Support Vector Regression and Particle Swarm Optimization |
description |
La contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las estimaciones. Los resultados obtenidos mostraron que, empleando características temporales, más las características tiempo-frecuencia propuestas, se obtiene el mejor desempeño de la SVR-PSO, además se encontró que el uso de la imputación de datos no afecta el desempeño de la SVR-PSO. El sistema propuesto en este trabajo permite disminuir el error de las estimaciones de concentración de PM10 y PM2.5 haciendo uso de características tiempo-frecuencia y es capaz de operar de forma robusta contra datos perdidos, aumentando su viabilidad de ser implementado en escenarios reales.
|
description_eng |
Atmospheric pollution by particulate matter is a problem recognized worldwide as a major risk factor for human health, over last years different models based on artificial intelligence has been proposed to forecast particulate matter concentration with the purpose of generate early warning systems that avoid people exposition. This paper analyzed a characterization scheme in time-frequency domain using the Wavelet to predict time series of PM10 and PM2.5 using the Support Vector Regression optimized with Particle Swarm Optimization (SVR-PSO). This paper also evaluated the effect of data imputation over estimations. Results showed that using time characteristics along with time-frequency characteristics SVR-PSO reach its best performance, also, it was found that use of data imputation does not affect SVR-PSO performance. The system proposed in this paper allow to estimate PM10 and PM2.5 concentrations with less error through time-frequency characteristics, in addition, it is capable to operate robustly against missing data, which improve its viability to be implemented in real scenarios.
|
author |
Sepulveda Suescun, Juan Pablo Alzate Zuluaga, Norbey Yovany Murillo Escobar, Juan Pablo Orrego Metaute, Diana Alexandra Correa Ochoa, Mauricio Andres |
author_facet |
Sepulveda Suescun, Juan Pablo Alzate Zuluaga, Norbey Yovany Murillo Escobar, Juan Pablo Orrego Metaute, Diana Alexandra Correa Ochoa, Mauricio Andres |
topicspa_str_mv |
Transformada Wavelet Imputación de datos Predicción Regresión |
topic |
Transformada Wavelet Imputación de datos Predicción Regresión Wavelet Transform Data imputation Prediction Regression |
topic_facet |
Transformada Wavelet Imputación de datos Predicción Regresión Wavelet Transform Data imputation Prediction Regression |
citationvolume |
17 |
citationissue |
34 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1347 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Ahmat Zainuri, N., Aziz Jemain, A. and Muda, N. (2015) ‘A Comparison of Various Imputation Methods for Missing Values in Air Quality Data (Perbandingan Pelbagai Kaedah Imputasi bagi Data Lenyap untuk Data Kualiti Udara)’, Sains Malaysiana, 44(3), pp. 449–456. Available at: http://www.ukm.edu.my/jsm/pdf_files/SM-PDF-44-3-2015/17 NuryAzmin.pdf. Araghi, A. et al. (2015) ‘Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data’, Atmospheric Research. Elsevier B.V., 155, pp. 52–72. doi: 10.1016/j.atmosres.2014.11.016. Bai, L. et al. (2018) ‘Air pollution forecasts: An overview’, International Journal of Environmental Research and Public Health, 15(4), pp. 1–44. doi: 10.3390/ijerph15040780. Baklanov, A. et al. (2007) ‘Integrated systems for forecasting urban meteorology, air pollution and population exposure’, Atmospheric Chemistry and Physics, 7(3), pp. 855–874. doi: 10.5194/acp-7-855-2007. Betancur Alarcon, L. (2017) ‘Atencion de males por calidad del aire cuesta 1,6 billones al año’, El Tiempo, May. Brugha, R., Edmondson, C. and Davies, J. C. (2018) ‘Outdoor air pollution and cystic fibrosis’, Paediatric Respiratory Reviews, 28, pp. 80–86. doi: https://doi.org/10.1016/j.prrv.2018.03.005. Chen, M. et al. (2015) ‘A clustering algorithm for sample data based on environmental pollution characteristics’, Atmospheric Environment. Elsevier Ltd, 107, pp. 194–203. doi: 10.1016/j.atmosenv.2015.02.042. Chen, Y. et al. (2013) ‘Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis’, Atmospheric Environment. Elsevier Ltd, 74, pp. 346–359. doi: 10.1016/j.atmosenv.2013.04.002. Delpont, B. et al. (2018) ‘Environmental Air Pollution: An Emerging Risk Factor for Stroke’, in Vasan, R. S. and Sawyer, D. B. (eds) Encyclopedia of Cardiovascular Research and Medicine. Oxford: Elsevier, pp. 231–237. doi: https://doi.org/10.1016/B978-0-12-809657-4.99588-7. Donnelly, A., Misstear, B. and Broderick, B. (2015) ‘Real time air quality forecasting using integrated parametric and non-parametric regression techniques’, Atmospheric Environment. Elsevier Ltd, 103(2), pp. 53–65. doi: 10.1016/j.atmosenv.2014.12.011. Ertu\ugrul, Ö. F. and Ta\ugluk, M. E. (2017) ‘A novel version of k nearest neighbor: Dependent nearest neighbor’, Applied Soft Computing Journal, 55, pp. 480–490. doi: 10.1016/j.asoc.2017.02.020. Feng, X. et al. (2015) ‘Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation’, Atmospheric Environment, 107, pp. 118–128. doi: 10.1016/j.atmosenv.2015.02.030. Gallego, A. J. et al. (2018) ‘Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation’, Pattern Recognition. Elsevier Ltd, 74, pp. 531–543. doi: 10.1016/j.patcog.2017.09.038. García Nieto, P. J. et al. (2017) ‘Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain)’, Environmental Modeling & Assessment. doi: 10.1007/s10666-017-9578-y. De Gennaro, G. et al. (2013) ‘Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean’, Science of the Total Environment. Elsevier B.V., 463–464, pp. 875–883. doi: 10.1016/j.scitotenv.2013.06.093. Hu, C. et al. (2014) ‘Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery’, Applied Energy. Elsevier Ltd, 129, pp. 49–55. doi: 10.1016/j.apenergy.2014.04.077. Hu, X. P., Dong, X. D. and Yu, B. H. (2016) ‘Method of Optimal Design with SVR-PSO for Ultrasonic Cutter Assembly’, Procedia CIRP, 50, pp. 779–783. doi: 10.1016/j.procir.2016.04.180. Kalteh, A. M. (2015) ‘Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting’, Water Resources Management, 29(4), pp. 1283–1293. doi: 10.1007/s11269-014-0873-y. Kazem, A. et al. (2013) ‘Support vector regression with chaos-based firefly algorithm for stock market price forecasting’, in Applied Soft Computing. Elsevier B.V., pp. 947–958. doi: 10.1016/j.asoc.2012.09.024. Khaniabadi, Y. O. et al. (2018) ‘Mortality and morbidity due to ambient air pollution in Iran’, Clinical Epidemiology and Global Health. doi: https://doi.org/10.1016/j.cegh.2018.06.006. LINDSAY, P. H. and NORMAN, D. A. (1977) ‘Neural information processing’, Human Information Processing, 8226(November), pp. 190–254. doi: 10.1016/B978-0-12-450960-3.50010-5. Marini, F. and Walczak, B. (2015) ‘Particle swarm optimization (PSO). A tutorial’, Chemometrics and Intelligent Laboratory Systems. Elsevier B.V., 149, pp. 153–165. doi: 10.1016/j.chemolab.2015.08.020. Martínez, J. and Castro, R. (2002) ‘Análisis de la teoría ondículas orientada a las aplicaciones en ingeniería eléctrica:Fundamentos’, E.T.D.I. Industriales Dpt. de ingeniería eléctrica, p. 161. Muñoz, A., Quiroz, C. and Paz, J. (2006) Efectos de la contaminación atmosférica sobre la salud en adultos. Universidad de Antioquia. Murillo-Escobar, J. et al. (2019) ‘Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia’, Urban Climate. Elsevier, 29(March), p. 100473. doi: 10.1016/j.uclim.2019.100473. Partal, T. and Küçük, M. (2006) ‘Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)’, Physics and Chemistry of the Earth, 31(18), pp. 1189–1200. doi: 10.1016/j.pce.2006.04.043. Prasad, K., Gorai, A. K. and Goyal, P. (2016) ‘Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time’, Atmospheric Environment. Elsevier Ltd, 128, pp. 246–262. doi: 10.1016/j.atmosenv.2016.01.007. Qin, S. et al. (2014) ‘Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models’, Atmospheric Environment. Elsevier Ltd, 98, pp. 665–675. doi: 10.1016/j.atmosenv.2014.09.046. Schraufnagel, D. E. et al. (2018) ‘Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems’, Chest. doi: https://doi.org/10.1016/j.chest.2018.10.041. Shahraiyni, H. T. and Sodoudi, S. (2016) ‘Statistical modeling approaches for pm10 prediction in urban areas; A review of 21st-century studies’, Atmosphere, 7(2), pp. 10–13. doi: 10.3390/atmos7020015. Shen, C. H., Huang, Y. and Yan, Y. N. (2016) ‘An analysis of multifractal characteristics of API time series in Nanjing, China’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 451(June 2000), pp. 171–179. doi: 10.1016/j.physa.2016.01.061. Siata (2017) Estabilidad atmosférica en el Valle de Áburra. Colombia. Smola, a J. and Scholkopf, B. (2004) ‘A tutorial on support vector regression’, Statistics and Computing, 14(3), pp. 199–222. doi: Doi 10.1023/B:Stco.0000035301.49549.88. Sun, W. et al. (2013) ‘Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California’, Science of the Total Environment. Elsevier B.V., 443, pp. 93–103. doi: 10.1016/j.scitotenv.2012.10.070. Zhang, Y. et al. (2012) ‘Real-time air quality forecasting, Part II: State of the science, current research needs, and future prospects’, Atmospheric Environment. Elsevier Ltd, 60, pp. 656–676. doi: 10.1016/j.atmosenv.2012.02.041. Zhang, Z. et al. (2017) ‘Application of a novel hybrid method for spatiotemporal data imputation: A case study of the Minqin County groundwater level’, Journal of Hydrology. Elsevier B.V., 553, pp. 384–397. doi: 10.1016/j.jhydrol.2017.07.053. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2020-06-21 |
date_accessioned |
2020-06-21 00:00:00 |
date_available |
2020-06-21 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1347 |
url_doi |
https://doi.org/10.24050/reia.v17i34.1347 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v17i34.1347 |
citationstartpage |
1 |
citationendpage |
15 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1347/1340 |
_version_ |
1811200517521539072 |