Titulo:

Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas
.

Sumario:

La contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las es... Ver más

Guardado en:

1794-1237

2463-0950

17

2020-06-21

1

15

Revista EIA - 2020

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2