Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa
.
La psilocibina es un alcaloide psicodélico producido naturalmente por diversas especies de hongos, especialmente del género Psilocybe, cuyo uso por parte de culturas precolombinas ha sido ampliamente documentado. En la última década, tras años de estigmatización y restricción de uso, se han reactivado las investigaciones sobre las potencialidades terapéuticas de este psicodélico clásico para el tratamiento de múltiples trastornos psiquiátricos, entre ellos el trastorno depresivo mayor. La depresión es un desorden afectivo del estado de ánimo cuya prevalencia mundial se ha incrementado considerablemente en los últimos años y cuyo tratamiento con fármacos convencionales tiene limitada eficacia. Los hallazgos recientes señalan que la psilocibi... Ver más
0122-8455
2590-7840
28
2022-01-01
91
113
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
oai:revistasojs.ucaldas.edu.co:article_8403 |
---|---|
record_format |
ojs |
spelling |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa Evidence and perspectives on the antidepressant potential of the "magic alkaloid" Psilocybin: a narrative review La psilocibina es un alcaloide psicodélico producido naturalmente por diversas especies de hongos, especialmente del género Psilocybe, cuyo uso por parte de culturas precolombinas ha sido ampliamente documentado. En la última década, tras años de estigmatización y restricción de uso, se han reactivado las investigaciones sobre las potencialidades terapéuticas de este psicodélico clásico para el tratamiento de múltiples trastornos psiquiátricos, entre ellos el trastorno depresivo mayor. La depresión es un desorden afectivo del estado de ánimo cuya prevalencia mundial se ha incrementado considerablemente en los últimos años y cuyo tratamiento con fármacos convencionales tiene limitada eficacia. Los hallazgos recientes señalan que la psilocibina, en cambio, pueden tener un efecto antidepresivo rápido y sostenido, incluso en individuos con depresión resistente al tratamiento. Aunque aún no se han dilucidado por completo los mecanismos subyacentes a dicho efecto, se ha planteado que estaría mediado por cambios a nivel de neurotransmisión, de plasticidad estructural y funcional y de conectividad de diferentes redes cerebrales. En esta revisión narrativa se presenta una síntesis de la evidencia clínica a favor del efecto antidepresivo de la psilocibina, se exponen algunos mecanismos de acción plausibles que han sido objeto de estudio y se discuten algunos interrogantes y perspectivas del uso del alcaloide en el ámbito clínico. Psilocybin is a psychedelic alkaloid produced naturally by various species of mushrooms, especially the genus Psilocybe, whose use by the pre-Columbian cultures has been widely documented. In the last decade, after years of stigmatization and restriction of use, research has been reactivated on the therapeutic potential of this classic psychedelic alkaloid for the treatment of multiple psychiatric disorders, including the major depressive disorder. Depression is a mood disorder whose worldwide prevalence has increased considerably in recent years and whose treatment with conventional drugs has limited effectiveness. Recent findings indicate that psilocybin, in contrast, may have a rapid and sustained antidepressant effect, even in individuals with treatment-resistant depression. Although the mechanisms underlying this effect have not yet been completely elucidated, it has been suggested that it would be mediated by changes at the level of neurotransmission, structural and functional plasticity, and connectivity of different brain networks. This narrative review presents a synthesis of the clinical evidence in favor of the antidepressant effect of psilocybin, exposes some plausible mechanisms of action that have been studied, and discusses some questions and perspectives on the use of the alkaloid in the clinical setting. Velásquez Toledo, María Marcela psicodélicos clásicos trastorno depresivo mayor sistema serotoninérgico plasticidad neuronal redes neuronales classic psychedelics major depressive disorder serotonergic system neuronal plasticity neuronal networks 28 35 Núm. 35 , Año 2023 : Enero - Junio Artículo de revista Journal article 2023-01-01T00:00:00Z 2023-01-01T00:00:00Z 2022-01-01 application/pdf Universidad de Caldas Cultura y Droga 0122-8455 2590-7840 https://revistasojs.ucaldas.edu.co/index.php/culturaydroga/article/view/8403 10.17151/culdr.2023.28.35.5 https://doi.org/10.17151/culdr.2023.28.35.5 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ 91 113 Aday, J. S., Davoli, C. C. y Bloesch, E. K. (2019). 2018: A watershed year for psychedelic science. Drug Science, Policy and Law, 5. https://doi.org/10.1177/2050324519872284 Anke, T. (2020). Secondary metabolites from mushrooms. The Journal of Antibiotics, 73(10), 655-656. https://doi.org/10.1038/s41429-020-0358-6 Artigas, F., Bortolozzi, A. y Celada, P. (2018). Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. European Neuropsychopharmacology, 28(4), 445-456. https://doi.org/10.1016/J.EURONEURO.2017.10.032 Artin, H., Zisook, S. y Ramanathan, D. (2021). How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World Journal of Psychiatry, 11(6), 201. https://doi.org/10.5498/WJP.V11.I6.201 Barrett, L. F., Bliss-Moreau, E., Duncan, S. L., Rauch, S. L. y Wright, C. I. (2007). The amygdala and the experience of affect. Social Cognitive and Affective Neuroscience, 2(2), 73-83. https://doi.org/10.1093/SCAN/NSL042 Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J. y Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548-555. https://doi.org/10.1093/SCAN/NSQ080 Berthoux, C., Barre, A., Bockaert, J., Marin, P. y Bécamel, C. (2019). Sustained Activation of Postsynaptic 5-HT2A Receptors Gates Plasticity at Prefrontal Cortex Synapses. Cerebral Cortex (New York, N.Y. : 1991), 29(4), 1659-1669. https://doi.org/10.1093/CERCOR/BHY064 Blei, F., Fricke, J., Wick, J., Slot, J. C. y Hoffmeister, D. (2018). Iterative l-Tryptophan Methylation in Psilocybe Evolved by Subdomain Duplication. Chembiochem: A European Journal of Chemical Biology, 19(20), 2160-2166. https://doi.org/10.1002/CBIC.201800336 Bogenschutz, M. P. y Ross, S. (2018). Therapeutic applications of classic hallucinogens. In Current Topics in Behavioral Neurosciences (Vol. 36, pp. 361-391). Springer Verlag. https://doi.org/10.1007/7854_2016_464 Brenan, J. P. M., Schultes, R. E. y Hofmann, A. (1980). Plants of the Gods: Origins of Hallucinogenic Use. Kew Bulletin, 35(3), 708. https://doi.org/10.2307/4110029 Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J. y Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279-296. https://doi.org/10.1016/J.NEUBIOREV.2008.09.002 Calvey, T. y Howells, F. M. (2018). An introduction to psychedelic neuroscience. In Progress in Brain Research (1st ed., Vol. 242). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.09.013 Carhart-Harris, R., Giribaldi, B., Watts, R., Baker-Jones, M., Murphy-Beiner, A., Murphy, R., Martell, J., Blemings, A., Erritzoe, D. y Nutt, D. J. (2021). Trial of Psilocybin versus Escitalopram for Depression. The New England Journal of Medicine, 384(15), 1402-1411. https://doi.org/10.1056/NEJMOA2032994 Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M. J., Erritzoe, D., Kaelen, M., Bloomfield, M., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Pilling, S., Curran, V. H. y Nutt, D. J. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. The Lancet Psychiatry, 3(7), 619-627. https://doi.org/10.1016/S2215-0366(16)30065-7 Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A., Wise, R. G. y Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. https://doi.org/10.1073/pnas.1119598109 Carhart-Harris, R. L. y Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091-1120. https://doi.org/10.1177/0269881117725915 Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., Tanner, M., Kaelen, M., McGonigle, J., Murphy, K., Leech, R., Curran, H. V. y Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-13282-7 Carod-Artal, F. J. (2015). Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurología (English Edition), 30(1), 42-49. https://doi.org/10.1016/J.NRLENG.2011.07.010 Castrén, E. y Antila, H. (2017). Neuronal plasticity and neurotrophic factors in drug responses. Molecular Psychiatry, 22(8), 1085-1095. https://doi.org/10.1038/MP.2017.61 Celada, P., Puig, M. V., Amargós-Bosch, M., Adell, A. y Artigas, F. (2004). The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 29(4), 252-265. Christoffel, D. J., Golden, S. A. y Russo, S. J. (2011). Structural and synaptic plasticity in stress-related disorders. Reviews in the Neurosciences, 22(5), 535-549. https://doi.org/10.1515/RNS.2011.044 Csabai, D., Wiborg, O. y Czéh, B. (2018). Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression. Frontiers in Cellular Neuroscience, 12, 24. https://doi.org/10.3389/FNCEL.2018.00024/BIBTEX Culpepper, L., Lam, R. W. y McIntyre, R. S. (2017). Cognitive Impairment in Patients With Depression: Awareness, Assessment, and Management. The Journal of Clinical Psychiatry, 78(9), 3185. https://doi.org/10.4088/JCP.TK16043AH5C D’ambrose, S. A. y Callahan, J. (2020). Legal Status of Psychedelic Drugs and Research Involving Possible Medical Uses. www.cga.ct.gov/olr Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H. y Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry, 78(5), 481-489. https://doi.org/10.1001/JAMAPSYCHIATRY.2020.3285 Daws, R. E., Timmermann, C., Giribaldi, B., Sexton, J. D., Wall, M. B., Erritzoe, D., Roseman, L., Nutt, D. y Carhart-Harris, R. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nature Medicine, 28(4), 844-851. https://doi.org/10.1038/S41591-022-01744-Z de Almeida, R. N., Galvão, A. C. de M., da Silva, F. S., Silva, E. A. dos S., Palhano Fontes, F., Maia-de-Oliveira, J. P., de Araújo, D. B., Lobão-Soares, B. y Galvão Coelho, N. L. (2019). Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Frontiers in Psychology, 10(JUN). https://doi.org/10.3389/FPSYG.2019.01234 De Gregorio, D., Enns, J. P., Nuñez, N. A., Posa, L. y Gobbi, G. (2018). D-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. In Progress in Brain Research (Vol. 242, pp. 69-96). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.07.008 de Veen, B. T. H., Schellekens, A. F. A., Verheij, M. M. M. y Homberg, J. R. (2017). Psilocybin for treating substance use disorders? In Expert Review of Neurotherapeutics (Vol. 17, Issue 2, pp. 203-212). Taylor & Francis. https://doi.org/10.1080/14737175.2016.1220834 de Vos, C. M. H., Mason, N. L. y Kuypers, K. P. C. (2021). Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Frontiers in Psychiatry, 12. https://doi.org/10.3389/FPSYT.2021.724606 Demain, A. L. y Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1-39. https://doi.org/10.1007/3-540-44964-7_1 Dinis-Oliveira, R. J. (2017). Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metabolism Reviews, 49(1), 84-91. https://doi.org/10.1080/03602532.2016.1278228 Duman, R. S., Heninger, G. R. y Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54(7), 597-606. https://doi.org/10.1001/ARCHPSYC.1997.01830190015002 Erritzoe, D., Roseman, L., Nour, M. M., MacLean, K., Kaelen, M., Nutt, D. J. y Carhart-Harris, R. L. (2018). Effects of psilocybin therapy on personality structure. Acta Psychiatrica Scandinavica, 138(5), 368-378. https://doi.org/10.1111/ACPS.12904 Franco-Molano, A. E. y Uribe-Calle, E. (2000). Agaricals and Boletals Fungi of Colombia (Hongos Agaricales y Boletales de Colombia). Biota Colombiana, 1(1), 25-43. http://www.redalyc.org/comocitar.oa?id=49110102 Goeleven, E., De Raedt, R., Baert, S. y Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93(1-3), 149-157. https://doi.org/10.1016/J.JAD.2006.03.007 Goldstein-Piekarski, A. N. y Williams, L. M. (2019). A Neural Circuit-Based Model for Depression Anchored in a Synthesis of Insights From Functional Neuroimaging. Neurobiology of Depression: Road to Novel Therapeutics, 241-256. https://doi.org/10.1016/B978-0-12-813333-0.00021-4 Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., Cosimano, M. P. y Klinedinst, M. A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double blind trial. Journal of Psychopharmacology, 30(12), 1181-1197. https://doi.org/10.1177/0269881116675513 Grob, C. S., Danforth, A. L., Chopra, G. S., Hagerty, M., McKay, C. R., Halberstad, A. L. y Greer, G. R. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Archives of General Psychiatry, 68(1), 71-78. https://doi.org/10.1001/ARCHGENPSYCHIATRY.2010.116 Guzmán, G. (2005). Species diversity of the genus Psilocybe (Basidiomycotina, Agaricales, Strophariaceae) in the world mycobiota, with special attention to hallucinogenic properties. International Journal of Medicinal Mushrooms, 7(1-2), 305-331. https://doi.org/10.1615/INTJMEDMUSHR.V7.I12.280 Halberstadt, A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural Brain Research, 277, 99-120. https://doi.org/10.1016/J.BBR.2014.07.016 Hayes, C., Wahba, M. y Watson, S. (2022). Will psilocybin lose its magic in the clinical setting? Therapeutic Advances in Psychopharmacology, 12:2045. https://doi.org/10.1177/20451253221090822 Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. y Thompson, S. M. (2021). Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proceedings of the National Academy of Sciences of the United States of America, 118(17), e2022489118. https://www.pnas.org/doi/10.1073/pnas.2022489118 Hieronymus, F., Lisinski, A., Eriksson, E. y Østergaard, S. D. (2021). Do side effects of antidepressants impact efficacy estimates based on the Hamilton Depression Rating Scale? A pooled patient-level analysis. Translational Psychiatry, 11(1), 1-9. https://doi.org/10.1038/s41398-021-01364-0 Hofmann, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., Petrzilka, T. y Troxler, F. (1959). Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta, 42(5), 1557-1572. https://doi.org/10.1002/HLCA.19590420518 Holmes, S. E., Scheinost, D., Finnema, S. J., Naganawa, M., Davis, M. T., DellaGioia, N., Nabulsi, N., Matuskey, D., Angarita, G. A., Pietrzak, R. H., Duman, R. S., Sanacora, G., Krystal, J. H., Carson, R. E. y Esterlis, I. (2019). Lower synaptic density is associated with depression severity and network alterations. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-09562-7 Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., Theunissen, E. L., Holze, F., Liechti, M. E., Varghese, N., Eckert, A., Feilding, A., Ramaekers, J. G. y Kuypers, K. P. C. (2021). Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacology and Translational Science, 4(2), 461-466. https://doi.org/10.1021/acsptsci.0c00099 Johnson, M. W. y Griffiths, R. R. (2017). Potential Therapeutic Effects of Psilocybin. Neurotherapeutics, 14(3), 734-740. https://doi.org/10.1007/s13311-017-0542-y Johnson, M. W., Griffiths, R. R., Hendricks, P. S. y Henningfield, J. E. (2018). The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 142, 143-166. https://doi.org/10.1016/J.NEUROPHARM.2018.05.012 Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J. y Carhart Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego dissolution under psilocybin. Human Brain Mapping, 36(8), 3137-3153. https://doi.org/10.1002/hbm.22833 Lenz, C., Sherwood, A., Kargbo, R. y Hoffmeister, D. (2021). Taking Different Roads: l-Tryptophan as the Origin of Psilocybe Natural Products. ChemPlusChem, 86(1), 28-35. https://doi.org/10.1002/CPLU.202000581 Lieberman, J. A. y Shalev, D. (2016). Back to the future: Research renewed on the clinical utility of psychedelic drugs. Journal of Psychopharmacology, 30(12), 1198-1200. https://doi.org/10.1177/0269881116675755 Ling, S., Ceban, F., Lui, L. M. W., Lee, Y., Teopiz, K. M., Rodrigues, N. B., Lipsitz, O., Gill, H., Subramaniapillai, M., Mansur, R. B., Lin, K., Ho, R., Rosenblat, J. D., Castle, D. y McIntyre, R. S. (2021). Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs, 36(1), 17-30. https://doi.org/10.1007/S40263-021-00877-Y Liu, W., Ge, T., Leng, Y., Pan, Z., Fan, J., Yang, W. y Cui, R. (2017). The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity. https://doi.org/10.1155/2017/6871089 Lowe, H., Toyang, N., Steele, B., Valentine, H., Grant, J., Ali, A., Ngwa, W. y Gordon, L. (2021). The Therapeutic Potential of Psilocybin. Molecules, 26(10). https://doi.org/10.3390/MOLECULES26102948 Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A. y Olson, D. E. (2018). Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports, 23(11), 3170-3182. https://doi.org/10.1016/j.celrep.2018.05.022 Marks, M. y Cohen, I. G. (2021). Psychedelic therapy: a roadmap for wider acceptance and utilization. Nature Medicine, 27(10), 1669-1671. https://doi.org/10.1038/s41591-021-01530-3 Masand, P. S. y Gupta, S. (2002). Long-Term Side Effects of Newer-Generation Antidepressants: SSRIS, Venlafaxine, Nefazodone, Bupropion, and Mirtazapine. Annals of Clinical Psychiatry, 14(3), 175-182. https://doi.org/10.1023/A:1021141404535 Mateos-Aparicio, P. y Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. https://doi.org/10.3389/FNCEL.2019.00066/BIBTEX McKenna, T. (1992). Food of the gods : the search for the original tree of knowledge : a radical history of plants, drugs and human evolution. Bantam Books. Michaels, T. I., Purdon, J., Collins, A. y Williams, M. T. (2018). Inclusion of people of color in psychedelic-assisted psychotherapy: a review of the literature. BMC Psychiatry, 18(1). https://doi.org/10.1186/S12888-018-1824-6 Mithoefer, M. C., Grob, C. S. y Brewerton, T. D. (2016). Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. The Lancet Psychiatry, 3(5), 481-488. https://doi.org/10.1016/S2215-0366(15)00576-3 Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P. y Horowitz, M. A. (2022). The serotonin theory of depression: a systematic umbrella review of the evidence. Molecular Psychiatry, 1-14. https://doi.org/10.1038/s41380-022-01661-0 Nichols, D. E. (2004). Hallucinogens. Pharmacology and Therapeutics, 101(2), 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002 Nichols, D. E. (2020). Psilocybin: from ancient magic to modern medicine. The Journal of Antibiotics, 73(10), 679-686. https://doi.org/10.1038/s41429-020-0311-8 Olson, D. E. (2018). Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics. Journal of Experimental Neuroscience, 12. https://doi.org/10.1177/1179069518800508 Pandarakalam, J. P. (2018). Challenges of treatment-resistant depression. In Psychiatria Danubina (Vol. 30, Issue 3, pp. 273-284). Medicinska Naklada Zagreb. https://doi.org/10.24869/psyd.2018.273 Penn, E. y Tracy, D. K. (2012). The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Therapeutic Advances in Psychopharmacology, 2(5), 179-188. https://doi.org/10.1177/2045125312445469 Perez-Caballero, L., Torres-Sanchez, S., Romero-López-Alberca, C., González-Saiz, F., Mico, J. A. y Berrocoso, E. (2019). Monoaminergic system and depression. Cell and Tissue Research, 377(1), 107-113. https://doi.org/10.1007/S00441-018-2978-8/FIGURES/1 Renner, F., Lobbestael, J., Peeters, F., Arntz, A., Huibers, M., Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., Burmeister, M., Cohen-Woods, S., Etain, B., Fisher, H. L., Goldman, N., Guillaume, S., Horwood, J., Juhasz, G., … Estimates, G. H. (2017). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Journal of Affective Disorders, 7(3), 1-12. https://doi.org/10.1038/s41386-019-0324-9 Rodríguez-Arce, J. M. y Winkelman, M. J. (2021). Psychedelics, Sociality, and Human Evolution. Frontiers in Psychology, 12, 4333. https://doi.org/10.3389/FPSYG.2021.729425/BIBTEX Rosenzweig-Lipson, S., Beyer, C. E., Hughes, Z. A., Khawaja, X., Rajarao, S. J., Malberg, J. E., Rahman, Z., Ring, R. H. y Schechter, L. E. (2007). Differentiating antidepressants of the future: Efficacy and safety. Pharmacology & Therapeutics, 113(1), 134-153. https://doi.org/10.1016/J.PHARMTHERA.2006.07.002 Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S. E., Belser, A., Kalliontzi, K., Babb, J., Su, Z., Corby, P. y Schmidt, B. L. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. Journal of Psychopharmacology, 30(12), 1165-1180. https://doi.org/10.1177/0269881116675512 Rucker, J. J. H., Iliff, J. y Nutt, D. J. (2018). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology, 142, 200-218. https://doi.org/10.1016/J.NEUROPHARM.2017.12.040 Santos, H. C. y Marques, J. G. (2021). What is the clinical evidence on psilocybin for the treatment of psychiatric disorders? A systematic review. Porto Biomedical Journal, 6(1), e128. https://doi.org/10.1097/J.PBJ.0000000000000128 Sarparast, A., Thomas, K., Malcolm, B. y Stauffer, C. S. (2022). Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology, 239(6), 1945-1976. https://doi.org/10.1007/S00213-022-06083-Y Sellers, E. M., Romach, M. K. y Leiderman, D. B. (2018). Studies with psychedelic drugs in human volunteers. Neuropharmacology, 142, 116-134. https://doi.org/10.1016/J.NEUROPHARM.2017.11.029 Stebelska, K. (2013). Fungal hallucinogens psilocin, ibotenic acid, and muscimol: Analytical methods and biologic activities. Therapeutic Drug Monitoring, 35(4), 420-442. https://doi.org/10.1097/FTD.0b013e31828741a5 Strauss, D., Ghosh, S., Murray, Z. y Gryzenhout, M. (2022). An Overview on the Taxonomy, Phylogenetics and Ecology of the Psychedelic Genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Frontiers in Forests and Global Change, 0, 79. https://doi.org/10.3389/FFGC.2022.813998 Stroud, J. B., Freeman, T. P., Leech, R., Hindocha, C., Lawn, W., Nutt, D. J., Curran, H. V. y Carhart-Harris, R. L. (2018). Psilocybin with psychological support improves emotional face recognition in treatment-resistant depression. Psychopharmacology, 235(2), 459-466. https://doi.org/10.1007/s00213-017-4754-y Van Court, R. C., Wiseman, M. S., Meyer, K. W., Ballhorn, D. J., Amses, K. R., Slot, J. C., Dentinger, B. T. M., Garibay-Orijel, R. y Uehling, J. K. (2022). Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biology, 126(4), 308-319. https://doi.org/10.1016/J.FUNBIO.2022.01.003 Vargas, M. V, Meyer, R., Avanes, A. A., Rus, M. y Olson, D. E. (2021). Psychedelics and Other Psychoplastogens for Treating Mental Illness. Frontiers in Psychiatry, 12, 727117. https://doi.org/10.3389/fpsyt.2021.727117 Vasco, A., Esperanza, A. y Molano, F. (2021). Diversity of Colombian macrofungi (Ascomycota - Basidiomycota). v1.2. Universidad de Antioquia. Dataset/Checklist. https://doi.org/10.15472/o8vo29 Vollenweider, F. X. y Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. In Nature Reviews Neuroscience(Vol. 11, Issue 9, pp. 642-651). https://doi.org/10.1038/nrn2884 Wasson, R. G. (1957). Seeking the Magic Mushroom. LIFE Magazine, 109-120. Watts, R., Day, C., Krzanowski, J., Nutt, D. y Carhart-Harris, R. (2017). Patients’ Accounts of Increased “Connectedness” and “Acceptance” After Psilocybin for Treatment-Resistant Depression. Journal of Humanistic Psychology, 57(5), 520-564. https://doi.org/10.1177/0022167817709585 World Health Organization. (2021). Depression. Depression. https://www.who.int/news-room/fact-sheets/detail/depression Yaden, D. B. y Griffiths, R. R. (2021). The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. ACS Pharmacology and Translational Science, 4(2), 568-572. https://doi.org/10.1021/acsptsci.0c00194 Yang, T., Nie, Z., Shu, H., Kuang, Y., Chen, X., Cheng, J., Yu, S. y Liu, H. (2020). The Role of BDNF on Neural Plasticity in Depression. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00082 Zeiss, R., Gahr, M., & Graf, H. (2021). Rediscovering Psilocybin as an Antidepressive Treatment Strategy. Pharmaceuticals, 14(10). https://doi.org/10.3390/PH14100985 Zhang, G. y Stackman, R. W. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Frontiers in Pharmacology, 6(OCT), 225. https://doi.org/10.3389/FPHAR.2015.00225/BIBTEX https://revistasojs.ucaldas.edu.co/index.php/culturaydroga/article/download/8403/6974 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CALDAS |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png |
country_str |
Colombia |
collection |
Cultura y Droga |
title |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
spellingShingle |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa Velásquez Toledo, María Marcela psicodélicos clásicos trastorno depresivo mayor sistema serotoninérgico plasticidad neuronal redes neuronales classic psychedelics major depressive disorder serotonergic system neuronal plasticity neuronal networks |
title_short |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
title_full |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
title_fullStr |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
title_full_unstemmed |
Evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
title_sort |
evidencias y perspectivas del potencial antidepresivo del “alcaloide mágico” psilocibina: una revisión narrativa |
title_eng |
Evidence and perspectives on the antidepressant potential of the "magic alkaloid" Psilocybin: a narrative review |
description |
La psilocibina es un alcaloide psicodélico producido naturalmente por diversas especies de hongos, especialmente del género Psilocybe, cuyo uso por parte de culturas precolombinas ha sido ampliamente documentado. En la última década, tras años de estigmatización y restricción de uso, se han reactivado las investigaciones sobre las potencialidades terapéuticas de este psicodélico clásico para el tratamiento de múltiples trastornos psiquiátricos, entre ellos el trastorno depresivo mayor. La depresión es un desorden afectivo del estado de ánimo cuya prevalencia mundial se ha incrementado considerablemente en los últimos años y cuyo tratamiento con fármacos convencionales tiene limitada eficacia. Los hallazgos recientes señalan que la psilocibina, en cambio, pueden tener un efecto antidepresivo rápido y sostenido, incluso en individuos con depresión resistente al tratamiento. Aunque aún no se han dilucidado por completo los mecanismos subyacentes a dicho efecto, se ha planteado que estaría mediado por cambios a nivel de neurotransmisión, de plasticidad estructural y funcional y de conectividad de diferentes redes cerebrales. En esta revisión narrativa se presenta una síntesis de la evidencia clínica a favor del efecto antidepresivo de la psilocibina, se exponen algunos mecanismos de acción plausibles que han sido objeto de estudio y se discuten algunos interrogantes y perspectivas del uso del alcaloide en el ámbito clínico.
|
description_eng |
Psilocybin is a psychedelic alkaloid produced naturally by various species of mushrooms, especially the genus Psilocybe, whose use by the pre-Columbian cultures has been widely documented. In the last decade, after years of stigmatization and restriction of use, research has been reactivated on the therapeutic potential of this classic psychedelic alkaloid for the treatment of multiple psychiatric disorders, including the major depressive disorder. Depression is a mood disorder whose worldwide prevalence has increased considerably in recent years and whose treatment with conventional drugs has limited effectiveness. Recent findings indicate that psilocybin, in contrast, may have a rapid and sustained antidepressant effect, even in individuals with treatment-resistant depression. Although the mechanisms underlying this effect have not yet been completely elucidated, it has been suggested that it would be mediated by changes at the level of neurotransmission, structural and functional plasticity, and connectivity of different brain networks. This narrative review presents a synthesis of the clinical evidence in favor of the antidepressant effect of psilocybin, exposes some plausible mechanisms of action that have been studied, and discusses some questions and perspectives on the use of the alkaloid in the clinical setting.
|
author |
Velásquez Toledo, María Marcela |
author_facet |
Velásquez Toledo, María Marcela |
topicspa_str_mv |
psicodélicos clásicos trastorno depresivo mayor sistema serotoninérgico plasticidad neuronal redes neuronales |
topic |
psicodélicos clásicos trastorno depresivo mayor sistema serotoninérgico plasticidad neuronal redes neuronales classic psychedelics major depressive disorder serotonergic system neuronal plasticity neuronal networks |
topic_facet |
psicodélicos clásicos trastorno depresivo mayor sistema serotoninérgico plasticidad neuronal redes neuronales classic psychedelics major depressive disorder serotonergic system neuronal plasticity neuronal networks |
citationvolume |
28 |
citationissue |
35 |
citationedition |
Núm. 35 , Año 2023 : Enero - Junio |
publisher |
Universidad de Caldas |
ispartofjournal |
Cultura y Droga |
source |
https://revistasojs.ucaldas.edu.co/index.php/culturaydroga/article/view/8403 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Aday, J. S., Davoli, C. C. y Bloesch, E. K. (2019). 2018: A watershed year for psychedelic science. Drug Science, Policy and Law, 5. https://doi.org/10.1177/2050324519872284 Anke, T. (2020). Secondary metabolites from mushrooms. The Journal of Antibiotics, 73(10), 655-656. https://doi.org/10.1038/s41429-020-0358-6 Artigas, F., Bortolozzi, A. y Celada, P. (2018). Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. European Neuropsychopharmacology, 28(4), 445-456. https://doi.org/10.1016/J.EURONEURO.2017.10.032 Artin, H., Zisook, S. y Ramanathan, D. (2021). How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World Journal of Psychiatry, 11(6), 201. https://doi.org/10.5498/WJP.V11.I6.201 Barrett, L. F., Bliss-Moreau, E., Duncan, S. L., Rauch, S. L. y Wright, C. I. (2007). The amygdala and the experience of affect. Social Cognitive and Affective Neuroscience, 2(2), 73-83. https://doi.org/10.1093/SCAN/NSL042 Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J. y Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548-555. https://doi.org/10.1093/SCAN/NSQ080 Berthoux, C., Barre, A., Bockaert, J., Marin, P. y Bécamel, C. (2019). Sustained Activation of Postsynaptic 5-HT2A Receptors Gates Plasticity at Prefrontal Cortex Synapses. Cerebral Cortex (New York, N.Y. : 1991), 29(4), 1659-1669. https://doi.org/10.1093/CERCOR/BHY064 Blei, F., Fricke, J., Wick, J., Slot, J. C. y Hoffmeister, D. (2018). Iterative l-Tryptophan Methylation in Psilocybe Evolved by Subdomain Duplication. Chembiochem: A European Journal of Chemical Biology, 19(20), 2160-2166. https://doi.org/10.1002/CBIC.201800336 Bogenschutz, M. P. y Ross, S. (2018). Therapeutic applications of classic hallucinogens. In Current Topics in Behavioral Neurosciences (Vol. 36, pp. 361-391). Springer Verlag. https://doi.org/10.1007/7854_2016_464 Brenan, J. P. M., Schultes, R. E. y Hofmann, A. (1980). Plants of the Gods: Origins of Hallucinogenic Use. Kew Bulletin, 35(3), 708. https://doi.org/10.2307/4110029 Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J. y Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279-296. https://doi.org/10.1016/J.NEUBIOREV.2008.09.002 Calvey, T. y Howells, F. M. (2018). An introduction to psychedelic neuroscience. In Progress in Brain Research (1st ed., Vol. 242). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.09.013 Carhart-Harris, R., Giribaldi, B., Watts, R., Baker-Jones, M., Murphy-Beiner, A., Murphy, R., Martell, J., Blemings, A., Erritzoe, D. y Nutt, D. J. (2021). Trial of Psilocybin versus Escitalopram for Depression. The New England Journal of Medicine, 384(15), 1402-1411. https://doi.org/10.1056/NEJMOA2032994 Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M. J., Erritzoe, D., Kaelen, M., Bloomfield, M., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Pilling, S., Curran, V. H. y Nutt, D. J. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. The Lancet Psychiatry, 3(7), 619-627. https://doi.org/10.1016/S2215-0366(16)30065-7 Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A., Wise, R. G. y Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. https://doi.org/10.1073/pnas.1119598109 Carhart-Harris, R. L. y Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091-1120. https://doi.org/10.1177/0269881117725915 Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., Tanner, M., Kaelen, M., McGonigle, J., Murphy, K., Leech, R., Curran, H. V. y Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-13282-7 Carod-Artal, F. J. (2015). Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurología (English Edition), 30(1), 42-49. https://doi.org/10.1016/J.NRLENG.2011.07.010 Castrén, E. y Antila, H. (2017). Neuronal plasticity and neurotrophic factors in drug responses. Molecular Psychiatry, 22(8), 1085-1095. https://doi.org/10.1038/MP.2017.61 Celada, P., Puig, M. V., Amargós-Bosch, M., Adell, A. y Artigas, F. (2004). The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 29(4), 252-265. Christoffel, D. J., Golden, S. A. y Russo, S. J. (2011). Structural and synaptic plasticity in stress-related disorders. Reviews in the Neurosciences, 22(5), 535-549. https://doi.org/10.1515/RNS.2011.044 Csabai, D., Wiborg, O. y Czéh, B. (2018). Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression. Frontiers in Cellular Neuroscience, 12, 24. https://doi.org/10.3389/FNCEL.2018.00024/BIBTEX Culpepper, L., Lam, R. W. y McIntyre, R. S. (2017). Cognitive Impairment in Patients With Depression: Awareness, Assessment, and Management. The Journal of Clinical Psychiatry, 78(9), 3185. https://doi.org/10.4088/JCP.TK16043AH5C D’ambrose, S. A. y Callahan, J. (2020). Legal Status of Psychedelic Drugs and Research Involving Possible Medical Uses. www.cga.ct.gov/olr Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H. y Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry, 78(5), 481-489. https://doi.org/10.1001/JAMAPSYCHIATRY.2020.3285 Daws, R. E., Timmermann, C., Giribaldi, B., Sexton, J. D., Wall, M. B., Erritzoe, D., Roseman, L., Nutt, D. y Carhart-Harris, R. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nature Medicine, 28(4), 844-851. https://doi.org/10.1038/S41591-022-01744-Z de Almeida, R. N., Galvão, A. C. de M., da Silva, F. S., Silva, E. A. dos S., Palhano Fontes, F., Maia-de-Oliveira, J. P., de Araújo, D. B., Lobão-Soares, B. y Galvão Coelho, N. L. (2019). Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Frontiers in Psychology, 10(JUN). https://doi.org/10.3389/FPSYG.2019.01234 De Gregorio, D., Enns, J. P., Nuñez, N. A., Posa, L. y Gobbi, G. (2018). D-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. In Progress in Brain Research (Vol. 242, pp. 69-96). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.07.008 de Veen, B. T. H., Schellekens, A. F. A., Verheij, M. M. M. y Homberg, J. R. (2017). Psilocybin for treating substance use disorders? In Expert Review of Neurotherapeutics (Vol. 17, Issue 2, pp. 203-212). Taylor & Francis. https://doi.org/10.1080/14737175.2016.1220834 de Vos, C. M. H., Mason, N. L. y Kuypers, K. P. C. (2021). Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Frontiers in Psychiatry, 12. https://doi.org/10.3389/FPSYT.2021.724606 Demain, A. L. y Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1-39. https://doi.org/10.1007/3-540-44964-7_1 Dinis-Oliveira, R. J. (2017). Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metabolism Reviews, 49(1), 84-91. https://doi.org/10.1080/03602532.2016.1278228 Duman, R. S., Heninger, G. R. y Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54(7), 597-606. https://doi.org/10.1001/ARCHPSYC.1997.01830190015002 Erritzoe, D., Roseman, L., Nour, M. M., MacLean, K., Kaelen, M., Nutt, D. J. y Carhart-Harris, R. L. (2018). Effects of psilocybin therapy on personality structure. Acta Psychiatrica Scandinavica, 138(5), 368-378. https://doi.org/10.1111/ACPS.12904 Franco-Molano, A. E. y Uribe-Calle, E. (2000). Agaricals and Boletals Fungi of Colombia (Hongos Agaricales y Boletales de Colombia). Biota Colombiana, 1(1), 25-43. http://www.redalyc.org/comocitar.oa?id=49110102 Goeleven, E., De Raedt, R., Baert, S. y Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93(1-3), 149-157. https://doi.org/10.1016/J.JAD.2006.03.007 Goldstein-Piekarski, A. N. y Williams, L. M. (2019). A Neural Circuit-Based Model for Depression Anchored in a Synthesis of Insights From Functional Neuroimaging. Neurobiology of Depression: Road to Novel Therapeutics, 241-256. https://doi.org/10.1016/B978-0-12-813333-0.00021-4 Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., Cosimano, M. P. y Klinedinst, M. A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double blind trial. Journal of Psychopharmacology, 30(12), 1181-1197. https://doi.org/10.1177/0269881116675513 Grob, C. S., Danforth, A. L., Chopra, G. S., Hagerty, M., McKay, C. R., Halberstad, A. L. y Greer, G. R. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Archives of General Psychiatry, 68(1), 71-78. https://doi.org/10.1001/ARCHGENPSYCHIATRY.2010.116 Guzmán, G. (2005). Species diversity of the genus Psilocybe (Basidiomycotina, Agaricales, Strophariaceae) in the world mycobiota, with special attention to hallucinogenic properties. International Journal of Medicinal Mushrooms, 7(1-2), 305-331. https://doi.org/10.1615/INTJMEDMUSHR.V7.I12.280 Halberstadt, A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural Brain Research, 277, 99-120. https://doi.org/10.1016/J.BBR.2014.07.016 Hayes, C., Wahba, M. y Watson, S. (2022). Will psilocybin lose its magic in the clinical setting? Therapeutic Advances in Psychopharmacology, 12:2045. https://doi.org/10.1177/20451253221090822 Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. y Thompson, S. M. (2021). Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proceedings of the National Academy of Sciences of the United States of America, 118(17), e2022489118. https://www.pnas.org/doi/10.1073/pnas.2022489118 Hieronymus, F., Lisinski, A., Eriksson, E. y Østergaard, S. D. (2021). Do side effects of antidepressants impact efficacy estimates based on the Hamilton Depression Rating Scale? A pooled patient-level analysis. Translational Psychiatry, 11(1), 1-9. https://doi.org/10.1038/s41398-021-01364-0 Hofmann, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., Petrzilka, T. y Troxler, F. (1959). Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta, 42(5), 1557-1572. https://doi.org/10.1002/HLCA.19590420518 Holmes, S. E., Scheinost, D., Finnema, S. J., Naganawa, M., Davis, M. T., DellaGioia, N., Nabulsi, N., Matuskey, D., Angarita, G. A., Pietrzak, R. H., Duman, R. S., Sanacora, G., Krystal, J. H., Carson, R. E. y Esterlis, I. (2019). Lower synaptic density is associated with depression severity and network alterations. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-09562-7 Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., Theunissen, E. L., Holze, F., Liechti, M. E., Varghese, N., Eckert, A., Feilding, A., Ramaekers, J. G. y Kuypers, K. P. C. (2021). Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacology and Translational Science, 4(2), 461-466. https://doi.org/10.1021/acsptsci.0c00099 Johnson, M. W. y Griffiths, R. R. (2017). Potential Therapeutic Effects of Psilocybin. Neurotherapeutics, 14(3), 734-740. https://doi.org/10.1007/s13311-017-0542-y Johnson, M. W., Griffiths, R. R., Hendricks, P. S. y Henningfield, J. E. (2018). The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 142, 143-166. https://doi.org/10.1016/J.NEUROPHARM.2018.05.012 Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J. y Carhart Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego dissolution under psilocybin. Human Brain Mapping, 36(8), 3137-3153. https://doi.org/10.1002/hbm.22833 Lenz, C., Sherwood, A., Kargbo, R. y Hoffmeister, D. (2021). Taking Different Roads: l-Tryptophan as the Origin of Psilocybe Natural Products. ChemPlusChem, 86(1), 28-35. https://doi.org/10.1002/CPLU.202000581 Lieberman, J. A. y Shalev, D. (2016). Back to the future: Research renewed on the clinical utility of psychedelic drugs. Journal of Psychopharmacology, 30(12), 1198-1200. https://doi.org/10.1177/0269881116675755 Ling, S., Ceban, F., Lui, L. M. W., Lee, Y., Teopiz, K. M., Rodrigues, N. B., Lipsitz, O., Gill, H., Subramaniapillai, M., Mansur, R. B., Lin, K., Ho, R., Rosenblat, J. D., Castle, D. y McIntyre, R. S. (2021). Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs, 36(1), 17-30. https://doi.org/10.1007/S40263-021-00877-Y Liu, W., Ge, T., Leng, Y., Pan, Z., Fan, J., Yang, W. y Cui, R. (2017). The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity. https://doi.org/10.1155/2017/6871089 Lowe, H., Toyang, N., Steele, B., Valentine, H., Grant, J., Ali, A., Ngwa, W. y Gordon, L. (2021). The Therapeutic Potential of Psilocybin. Molecules, 26(10). https://doi.org/10.3390/MOLECULES26102948 Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A. y Olson, D. E. (2018). Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports, 23(11), 3170-3182. https://doi.org/10.1016/j.celrep.2018.05.022 Marks, M. y Cohen, I. G. (2021). Psychedelic therapy: a roadmap for wider acceptance and utilization. Nature Medicine, 27(10), 1669-1671. https://doi.org/10.1038/s41591-021-01530-3 Masand, P. S. y Gupta, S. (2002). Long-Term Side Effects of Newer-Generation Antidepressants: SSRIS, Venlafaxine, Nefazodone, Bupropion, and Mirtazapine. Annals of Clinical Psychiatry, 14(3), 175-182. https://doi.org/10.1023/A:1021141404535 Mateos-Aparicio, P. y Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. https://doi.org/10.3389/FNCEL.2019.00066/BIBTEX McKenna, T. (1992). Food of the gods : the search for the original tree of knowledge : a radical history of plants, drugs and human evolution. Bantam Books. Michaels, T. I., Purdon, J., Collins, A. y Williams, M. T. (2018). Inclusion of people of color in psychedelic-assisted psychotherapy: a review of the literature. BMC Psychiatry, 18(1). https://doi.org/10.1186/S12888-018-1824-6 Mithoefer, M. C., Grob, C. S. y Brewerton, T. D. (2016). Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. The Lancet Psychiatry, 3(5), 481-488. https://doi.org/10.1016/S2215-0366(15)00576-3 Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P. y Horowitz, M. A. (2022). The serotonin theory of depression: a systematic umbrella review of the evidence. Molecular Psychiatry, 1-14. https://doi.org/10.1038/s41380-022-01661-0 Nichols, D. E. (2004). Hallucinogens. Pharmacology and Therapeutics, 101(2), 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002 Nichols, D. E. (2020). Psilocybin: from ancient magic to modern medicine. The Journal of Antibiotics, 73(10), 679-686. https://doi.org/10.1038/s41429-020-0311-8 Olson, D. E. (2018). Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics. Journal of Experimental Neuroscience, 12. https://doi.org/10.1177/1179069518800508 Pandarakalam, J. P. (2018). Challenges of treatment-resistant depression. In Psychiatria Danubina (Vol. 30, Issue 3, pp. 273-284). Medicinska Naklada Zagreb. https://doi.org/10.24869/psyd.2018.273 Penn, E. y Tracy, D. K. (2012). The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Therapeutic Advances in Psychopharmacology, 2(5), 179-188. https://doi.org/10.1177/2045125312445469 Perez-Caballero, L., Torres-Sanchez, S., Romero-López-Alberca, C., González-Saiz, F., Mico, J. A. y Berrocoso, E. (2019). Monoaminergic system and depression. Cell and Tissue Research, 377(1), 107-113. https://doi.org/10.1007/S00441-018-2978-8/FIGURES/1 Renner, F., Lobbestael, J., Peeters, F., Arntz, A., Huibers, M., Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., Burmeister, M., Cohen-Woods, S., Etain, B., Fisher, H. L., Goldman, N., Guillaume, S., Horwood, J., Juhasz, G., … Estimates, G. H. (2017). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Journal of Affective Disorders, 7(3), 1-12. https://doi.org/10.1038/s41386-019-0324-9 Rodríguez-Arce, J. M. y Winkelman, M. J. (2021). Psychedelics, Sociality, and Human Evolution. Frontiers in Psychology, 12, 4333. https://doi.org/10.3389/FPSYG.2021.729425/BIBTEX Rosenzweig-Lipson, S., Beyer, C. E., Hughes, Z. A., Khawaja, X., Rajarao, S. J., Malberg, J. E., Rahman, Z., Ring, R. H. y Schechter, L. E. (2007). Differentiating antidepressants of the future: Efficacy and safety. Pharmacology & Therapeutics, 113(1), 134-153. https://doi.org/10.1016/J.PHARMTHERA.2006.07.002 Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S. E., Belser, A., Kalliontzi, K., Babb, J., Su, Z., Corby, P. y Schmidt, B. L. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. Journal of Psychopharmacology, 30(12), 1165-1180. https://doi.org/10.1177/0269881116675512 Rucker, J. J. H., Iliff, J. y Nutt, D. J. (2018). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology, 142, 200-218. https://doi.org/10.1016/J.NEUROPHARM.2017.12.040 Santos, H. C. y Marques, J. G. (2021). What is the clinical evidence on psilocybin for the treatment of psychiatric disorders? A systematic review. Porto Biomedical Journal, 6(1), e128. https://doi.org/10.1097/J.PBJ.0000000000000128 Sarparast, A., Thomas, K., Malcolm, B. y Stauffer, C. S. (2022). Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology, 239(6), 1945-1976. https://doi.org/10.1007/S00213-022-06083-Y Sellers, E. M., Romach, M. K. y Leiderman, D. B. (2018). Studies with psychedelic drugs in human volunteers. Neuropharmacology, 142, 116-134. https://doi.org/10.1016/J.NEUROPHARM.2017.11.029 Stebelska, K. (2013). Fungal hallucinogens psilocin, ibotenic acid, and muscimol: Analytical methods and biologic activities. Therapeutic Drug Monitoring, 35(4), 420-442. https://doi.org/10.1097/FTD.0b013e31828741a5 Strauss, D., Ghosh, S., Murray, Z. y Gryzenhout, M. (2022). An Overview on the Taxonomy, Phylogenetics and Ecology of the Psychedelic Genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Frontiers in Forests and Global Change, 0, 79. https://doi.org/10.3389/FFGC.2022.813998 Stroud, J. B., Freeman, T. P., Leech, R., Hindocha, C., Lawn, W., Nutt, D. J., Curran, H. V. y Carhart-Harris, R. L. (2018). Psilocybin with psychological support improves emotional face recognition in treatment-resistant depression. Psychopharmacology, 235(2), 459-466. https://doi.org/10.1007/s00213-017-4754-y Van Court, R. C., Wiseman, M. S., Meyer, K. W., Ballhorn, D. J., Amses, K. R., Slot, J. C., Dentinger, B. T. M., Garibay-Orijel, R. y Uehling, J. K. (2022). Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biology, 126(4), 308-319. https://doi.org/10.1016/J.FUNBIO.2022.01.003 Vargas, M. V, Meyer, R., Avanes, A. A., Rus, M. y Olson, D. E. (2021). Psychedelics and Other Psychoplastogens for Treating Mental Illness. Frontiers in Psychiatry, 12, 727117. https://doi.org/10.3389/fpsyt.2021.727117 Vasco, A., Esperanza, A. y Molano, F. (2021). Diversity of Colombian macrofungi (Ascomycota - Basidiomycota). v1.2. Universidad de Antioquia. Dataset/Checklist. https://doi.org/10.15472/o8vo29 Vollenweider, F. X. y Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. In Nature Reviews Neuroscience(Vol. 11, Issue 9, pp. 642-651). https://doi.org/10.1038/nrn2884 Wasson, R. G. (1957). Seeking the Magic Mushroom. LIFE Magazine, 109-120. Watts, R., Day, C., Krzanowski, J., Nutt, D. y Carhart-Harris, R. (2017). Patients’ Accounts of Increased “Connectedness” and “Acceptance” After Psilocybin for Treatment-Resistant Depression. Journal of Humanistic Psychology, 57(5), 520-564. https://doi.org/10.1177/0022167817709585 World Health Organization. (2021). Depression. Depression. https://www.who.int/news-room/fact-sheets/detail/depression Yaden, D. B. y Griffiths, R. R. (2021). The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. ACS Pharmacology and Translational Science, 4(2), 568-572. https://doi.org/10.1021/acsptsci.0c00194 Yang, T., Nie, Z., Shu, H., Kuang, Y., Chen, X., Cheng, J., Yu, S. y Liu, H. (2020). The Role of BDNF on Neural Plasticity in Depression. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00082 Zeiss, R., Gahr, M., & Graf, H. (2021). Rediscovering Psilocybin as an Antidepressive Treatment Strategy. Pharmaceuticals, 14(10). https://doi.org/10.3390/PH14100985 Zhang, G. y Stackman, R. W. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Frontiers in Pharmacology, 6(OCT), 225. https://doi.org/10.3389/FPHAR.2015.00225/BIBTEX |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-01-01 |
date_accessioned |
2023-01-01T00:00:00Z |
date_available |
2023-01-01T00:00:00Z |
url |
https://revistasojs.ucaldas.edu.co/index.php/culturaydroga/article/view/8403 |
url_doi |
https://doi.org/10.17151/culdr.2023.28.35.5 |
issn |
0122-8455 |
eissn |
2590-7840 |
doi |
10.17151/culdr.2023.28.35.5 |
citationstartpage |
91 |
citationendpage |
113 |
url2_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/culturaydroga/article/download/8403/6974 |
_version_ |
1811199554916188160 |