La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida
.
Objetivo: Determinar la comunidad de miriápodos asociada a la hojarasca en dos estrategias de restauración de un área protegida de Colombia, un bosque secundario y una plantación de aliso. Alcance: El conocimiento de la biodiversidad asociada con la descomposición de la hojarasca en un ecosistema restaurado podría contribuir a evaluar la eficiencia y el éxito de la restauración. Dentro de esta biodiversidad, los miriápodos influyen en la dinámica de la materia orgánica al transformar la hojarasca reduciendo la superficie de descomposición y afectando a las comunidades de organismos asociados a la descomposición. Metodología: Diseñamos un experimento de translocación utilizando hojarasca de Alnus acuminata Kunth y Hedyosmum bonp... Ver más
0123-3068
2462-8190
26
2021-01-01
13
23
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
oai:revistasojs.ucaldas.edu.co:article_6875 |
---|---|
record_format |
ojs |
spelling |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida Restoration strategy drives the leaf litter myriapod richness (Arthropoda: Myriapoda) on a protected area Objetivo: Determinar la comunidad de miriápodos asociada a la hojarasca en dos estrategias de restauración de un área protegida de Colombia, un bosque secundario y una plantación de aliso. Alcance: El conocimiento de la biodiversidad asociada con la descomposición de la hojarasca en un ecosistema restaurado podría contribuir a evaluar la eficiencia y el éxito de la restauración. Dentro de esta biodiversidad, los miriápodos influyen en la dinámica de la materia orgánica al transformar la hojarasca reduciendo la superficie de descomposición y afectando a las comunidades de organismos asociados a la descomposición. Metodología: Diseñamos un experimento de translocación utilizando hojarasca de Alnus acuminata Kunth y Hedyosmum bonplandianum Kunth, las especies más abundantes en cada estrategia de restauración que se puso en marcha desde los años 60 en la Reserva natural Río Blanco y Quebrada Olivares, Manizales, Colombia. Medimos la riqueza y abundancia de miriápodos después de dos y cuatro meses de descomposición de la hojarasca. Principales resultados: Las clases Diplododa, Chilopoda y Symphyla colonizaron la hojarasca de A. acuminata y H. bonplandianum en ambas estrategias de restauración. La estrategia de restauración afecto la riqueza, abundancia y composición de miriápodos. La riqueza y abundancia de miriápodos fue mayor en la plantación de aliso, los milpiés mostraron la mayor abundancia. La composición de miriápodos difirió entre las especies de hojarasca. La composición vegetal de cada estrategia de restauración podría generar diferencias en la calidad de la hojarasca y, en consecuencia, en los recursos disponibles para la colonización de la comunidad de miriápodos, lo que contribuye directa e indirectamente al proceso de descomposición en las estrategias de restauración. Objective: To determine the leaf litter myriapod community in two restoration strategies of a protective area of Colombia, a secondary forest and an Andean alder plantation. Scope: The knowledge of the biodiversity of invertebrates associated with leaf litter breakdown in restoration forests may contribute to assessing the restoration process efficiency and success. Within this forested soil biodiversity framework, myriapods influence organic matter dynamics by transforming leaf litter (or other plant-derived materials), reducing the surface of decomposition, and affecting decomposer communities and their interactions. Methodology: We designed a leaf litter translocation experiment using leaf litter of Alnus acuminata Kunth and Hedyosmum bonplandianum Kunth, the most abundant species in each restoration strategy underway from the 60s in the Reserva Natural Río Blancoy Quebrada Olivares, Manizales, Colombia. We measured the myriapod richness and abundance two and four months after beginning the leaf litter decomposition experimental trials. Main results: Classes Diplododa, Chilopoda, and Symphyla colonized the leaf litter in both restoration strategies. The restoration strategy affected myriapod richness, abundance and composition. Myriapod richness and abundance were greater in the Andean alder plantation, millipedes were the most abundance myriapods. Myriapod composition also differs among litter species. The plant composition of each restoration strategy could lead to differences in litterfall quality and, consequently, in the resources available for the colonization of the myriapod community, which contributes directly and indirectly to the decomposition process in the restoration strategies. Ospina Bautista, Fabiola López Bedoya, Pablo A. Estévez, Jaime Vicente Martínez Torres, Daniela Galvis Jiménez, Sebastián Diplopoda Procesos del ecosistema hojarasca Plantación área protegida Diplopoda ecosystem processes leaf litter forest plantation protected area 26 1 Núm. 1 , Año 2022 : Enero - Junio Artículo de revista Journal article 2022-01-01T00:00:00Z 2022-01-01T00:00:00Z 2021-01-01 application/pdf Boletín Científico Boletín Científico Centro de Museos Museo de Historia Natural 0123-3068 2462-8190 https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/6875 10.17151/bccm.2022.26.1.1 https://doi.org/10.17151/bccm.2022.26.1.1 eng https://creativecommons.org/licenses/by-nc-sa/4.0/ 13 23 Adis, J. (Editor). (2002). Amazonian Arachnida and Myriapoda: Identification keys to all classes, orders, families, some genera, and lists of known terrestrial species. Pensoft Pub. Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration ecology. Restoration Ecology, 8(4), 328-338. https://doi.org/10.1046/j.1526-100x.2000.80048.x Anderson, M. J. (2017). Permutational multivariate analysis of variance(Permanova). In Wiley StatsRef: Statistics Reference Online, pp. 1-15. American Cancer Society. https://doi.org/10.1002/9781118445112.stat07841 Anderson, J.M., S.A. Huish, P. Ineson, M.A. Leonard, & Splatt, P.R. (1985). Interactions of invertebrates, microorganisms and tree roots in nitrogen and mineral element fluxes in deciduous woodland soils, pp. 377-392 In: A.H. Fitter, D. Atkinson, D. J. Read, M.B. Usher (Eds.) Ecological interactions in soil: Plant, Microbes and Animals. Blackwell Publishing. Barreto da Silva, W., Périco, E., Schmidt Dalzochio, M., Santos, M., & Cajaiba, R. L. (2018). Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, 429, 189-197. https://doi.org/10.1016/j.foreco.2018.07.020 Blakely, J. K., D.A. Neher, & Spongberg, A.L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Applied Soil Ecology, 21(1), 71-88. https://doi.org/10.1016/S0929-1393(02)00023-9 Cajaiba, R. L., Périco, E., Caron, E., Dalzochio, M. S., Silva, W. B., & Santos, M. (2017). Are disturbance gradients in neotropical ecosystems detected using rove beetles? A case study in the Brazilian Amazon. Forest Ecology and Management, 405, 319-327. https://doi.org/10.1016/j.foreco.2017.09.058 Caldeira, M.V.W., R.D. Silva, S.R. Kunz, J.P. Zorzanelli, & Godinho, T.O. (2013). Biomassa e nutrientes da serapilheira em diferentes coberturas florestais. Comunicata Scientiae 4(2),111-119. Carcamo, H.A., T.A. Abe, C.E. Prescott, F.B. Holl, & Chanway, C.P. (2000). Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Canadian Journal of Forest Research, 30(5), 817-826. https://doi.org/10.1139/x00-014 Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18(1), 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x Cole, R. J., K.D. Holl, R.A. Zahawi, P. Wickey, & Townsend, A.R. (2016). Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution, 6(15), 5158-5168. https://doi.org/10.1002/ece3.2220 Corpocaldas. (2010). Reserva Forestal Protectora de las Cuencas Hidrógraficas de Río Blanco y Quebrada Olivares. Plan de Manejo. Coulis, M., S. Hättenschwiler, S. Rapior, & Coq S. (2009). The fate of condensed tannins during litter consumption by soil animals. Soil Biology and Biochemistry, 4, 2573-2578. https://doi.org/10.1016/j.soilbio.2009.09.022 Coulis, M., S. Hättenschwiler, N. Fromin, & David, J.F. (2013). Macroarthropod-micro- organism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biology and Biochemistry, 64, 114-121 https://doi.org/10.1016/j.soilbio.2013.04.012 Crawley, M.J. (2007). The R Book: West Sussex. John Wiley & Sons. Crowther, T.W., L. Boddy, &. Jones, T.H. (2012). Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J, 6: 1992-2001. https://doi.org/10.1038/ismej.2012.53 David, J.F., & Gillon, D. (2002). Annual feeding rate of the millipede Glomeris marginata on holm oak (Quercus ilex) leaf litter under Mediterranean conditions. Pedobiologia 46(1),42-52. https://doi.org/10.1078/0031-4056-00112 David, J.F. & Handa, I.T. (2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4), 881-895. https://doi.org/10.1111/j.1469-185X.2010.00138.x David, J. F. (2014). The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology and Biochemistry, 76,109-118. https://doi.org/10.1016/j.soilbio.2014.05.009 FAO (Food and Agriculture Organisation). (2001). State of the World’s Forests 2001. FAO (Food and Agriculture Organisation). (2015). Evaluación de los recursos forestales mundiales 2015. Second edition. Filser, J. (2002). The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia,46(3-4), 234-245. https://doi.org/10.1078/0031-4056-00130 Fox, J. & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second edition. SAGE. Frasson, J.M.F, J.L.O. Rosado, S.G. Elias, & Harter-Marques, B. (2016). Litter decomposition of two pioneer tree species and associated soil fauna in areas reclaimed after surface coal mining in Southern Brazil. Revista Brasileira de Ciência do Solo, 40(0). https://doi.org/10.1590/18069657rbcs20150444 Fujii, S., & Takeda, H. (2017). Succession of soil microarthropod communities during the aboveground and belowground litter decomposition processes. Soil Biology and Biochemistry, 110, 95-102. https://doi.org/10.1016/j.soilbio.2017.03.003 Gunther, B., B.C. Rall, O. Ferlian, S. Scheu, & Eitzinger, B. (2014). Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos, 123(10), 1192-1198. https://doi.org/10.1111/j.1600-0706.2013.00868.x Guendehou, G. H., S. Liski, M. Tuomi, M. Moudachirou, B. Sinsin, & Mäkipää, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical. Ecology,55(2), 207-220. https://core.ac.uk/download/pdf/52269172.pdf Hall, J., M. S., Ashton, E. J. Garen, E & Jose, S. (2011). The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553-1557. https://doi.org/10.1016/j.foreco.2010.12.011 Hansen, R.A., & Coleman, D.C. (1998). Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari, Oribatida) in litterbags. Applied Soil Ecology, 9(1-3), 17-23. https://doi.org/10.1016/S0929-1393(98)00048-1 Hasegawa, M., & Takeda, H. (1993). Changes in feeding attributes of four collembolan populations during the decomposition process of pine needles. Pedobiologia 39,155-169. Hobbs, R. J., S. Arico, J. Aronson, J.S. Baron, P. Bridgewater, V.A. Cramer, P.R. Epstein, J.J. Ewel, C.A. Klink, A.E. Lugo, D. Norton, D. Ojima, M.D. Richardson, E. Sanderson, F. Valladares, M. Vilà, R. Zamora, & Zobel, M. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15(1), 1-7. https://doi.org/10.1111/j.1466-822X.2006.00212.x Irmler, U. (2000). Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiología, 44(2), 105-118. https://doi.org/10.1078/S0031-4056(04)70032-3 Lavelle, P., & Spain, A.V. (2001). Soil Ecology. Kluwer Academic. Lensing, J. R., & Wise, D.H. (2006). Predicted climate change alters the indirect effect of predators on an ecosystem process. Proceedings of the National Academy of Sciences, 103(42), 15502-15505. https://doi.org/10.1073/pnas.0607064103 Lilleskov, E.A., & Bruns, T.D. (2005). Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4), 762-769. http://www.jstor.org/stable/3762225 Mcalpine, C., C.P. Catterall, R. Nally, D. Lindenmayer, J.L. Reid, K.D. Holl, A.F. Bennett, R.K. Runting, K. Wilson, R.J. Hobbs, L. Seabrook, S. Cunningham, A. Moilanen, M. Maron, L. Shoo, I. Lunt, P. Vesk, L. Rumpff, & Martin, T.G. (2016). Integrating plant- and animal- based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 14(1), 37-45. https://doi.org/10.1002/16-0108.1 Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H. Stevens, E. Szoecs, & Wagner, H. (2018). Vegan: Community Ecology Package. R package vegan, version 2.2-1. https://www.worldagroforestry.org/publication/vegan-community-ecology-package-r-package-vegan-vers-22-1 Paquette, A., & Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment, 8(1), 27-34. https://doi.org/10.1890/080116 Pramanik, R., K. Sarkar, & Joy, V.C. (2001). Efficiency of detritivore soil arthropods in mobilizing nutrients from leaf litter. Tropical ecology,42(1),51-58. Patricio, M. S., L.F. Nunes, & Pereira, E.L. (2012). Litterfall and litter decomposition in chestnut high forest stands in northern Portugal. Forest Systems, 21(2), 259. https://doi.org/10.5424/fs/2012212-02711 R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ Salmon, S., & Geoffroy, J. (2005). Earthworms and Collembola relationships: effects of predatory centipedes and humus forms. Soil Biology and Biochemistry, 37(3), 487-495. https://doi.org/10.1016/j.soilbio.2004.08.011 Santonja, M., A., Aupic-samain, E. Forey, & Chauvat, M. (2018). Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola, European Journal of Soil Biology, 89, 9-13. https://doi.org/10.1016/j.ejsobi.2018.08.002 Scheller, U., & Adis, J. (1996). A pictorial key for the symphylan families and genera of the Neotropical Region south of Central Mexico (Myriapoda, Symphyla). Studies on Neotropical Fauna and Environment, 31(1), 57-61. https://doi.org/10.1076/ Shelley, R. M., & Mercurio, R.A. (2005). Ectonocryptoides quadrimeropus, a new centipede genus and species from Jalisco, Mexico; proposal of Ectonocryptopinae, analysis of subfamilial relationships, and a key to subfamilies and genera of the Scolopocryptopidae (Scolopendromorpha). Zootaxa, 1094(1), 25. https://doi.org/10.11646/zootaxa.1094.1.2 Shiels, A. B., & Walker, L.R. (2003). Bird perches increase forest seeds on Puerto Rican landslides. Restoration Ecology,11(4): 457-465. Silver, W.L., S.J. Hall, & Gonzáles, G. (2014). Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. Forest Ecology and Management, 332, 47-55. https://doi.org/10.1016/j.foreco.2014.05.018 Suzuki, Y., S.J. Grayston, & Prescott, C.E. (2013). Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type. Soil Biology and Biochemistry, 57, 116-123. https://doi.org/10.1016/j.soilbio.2012.07.020 Triplehorn, C.A. & N.F Johnson. (2005). Borror and DeLong’s lntroduction to the Study of lnsects. Thomson Brooks/Cole. 864 p. Vohland, K., & Schroth, G. (1999). Distribution patterns of the litter macrofauna in agroforestry and monoculture plantations in Central Amazonia as affected by plant species and management. Applied Soil Ecology,13(1), 57-68. https://doi.org/10.1016/S0929-1393(99)00021-9 Voříšková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477-486. https://doi.org/10.1038/ismej.2012.116 Wardle, D.A., G.W. Yeates, G.M. Barker, & Bonner, K.I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38(5), 1052-1062. https://doi.org/10.1016/j.soilbio.2005.09.003 https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/6875/6210 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CALDAS |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png |
country_str |
Colombia |
collection |
Boletín Científico Centro de Museos Museo de Historia Natural |
title |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida |
spellingShingle |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida Ospina Bautista, Fabiola López Bedoya, Pablo A. Estévez, Jaime Vicente Martínez Torres, Daniela Galvis Jiménez, Sebastián Diplopoda Procesos del ecosistema hojarasca Plantación área protegida Diplopoda ecosystem processes leaf litter forest plantation protected area |
title_short |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida |
title_full |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida |
title_fullStr |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida |
title_full_unstemmed |
La estrategia de restauración define la riqueza de Miriápodos (Arthropoda: Myriapoda) de la hojarasca en un área protegida |
title_sort |
la estrategia de restauración define la riqueza de miriápodos (arthropoda: myriapoda) de la hojarasca en un área protegida |
title_eng |
Restoration strategy drives the leaf litter myriapod richness (Arthropoda: Myriapoda) on a protected area |
description |
Objetivo: Determinar la comunidad de miriápodos asociada a la hojarasca en dos estrategias de restauración de un área protegida de Colombia, un bosque secundario y una plantación de aliso. Alcance: El conocimiento de la biodiversidad asociada con la descomposición de la hojarasca en un ecosistema restaurado podría contribuir a evaluar la eficiencia y el éxito de la restauración. Dentro de esta biodiversidad, los miriápodos influyen en la dinámica de la materia orgánica al transformar la hojarasca reduciendo la superficie de descomposición y afectando a las comunidades de organismos asociados a la descomposición. Metodología: Diseñamos un experimento de translocación utilizando hojarasca de Alnus acuminata Kunth y Hedyosmum bonplandianum Kunth, las especies más abundantes en cada estrategia de restauración que se puso en marcha desde los años 60 en la Reserva natural Río Blanco y Quebrada Olivares, Manizales, Colombia. Medimos la riqueza y abundancia de miriápodos después de dos y cuatro meses de descomposición de la hojarasca. Principales resultados: Las clases Diplododa, Chilopoda y Symphyla colonizaron la hojarasca de A. acuminata y H. bonplandianum en ambas estrategias de restauración. La estrategia de restauración afecto la riqueza, abundancia y composición de miriápodos. La riqueza y abundancia de miriápodos fue mayor en la plantación de aliso, los milpiés mostraron la mayor abundancia. La composición de miriápodos difirió entre las especies de hojarasca. La composición vegetal de cada estrategia de restauración podría generar diferencias en la calidad de la hojarasca y, en consecuencia, en los recursos disponibles para la colonización de la comunidad de miriápodos, lo que contribuye directa e indirectamente al proceso de descomposición en las estrategias de restauración.
|
description_eng |
Objective: To determine the leaf litter myriapod community in two restoration strategies of a protective area of Colombia, a secondary forest and an Andean alder plantation. Scope: The knowledge of the biodiversity of invertebrates associated with leaf litter breakdown in restoration forests may contribute to assessing the restoration process efficiency and success. Within this forested soil biodiversity framework, myriapods influence organic matter dynamics by transforming leaf litter (or other plant-derived materials), reducing the surface of decomposition, and affecting decomposer communities and their interactions. Methodology: We designed a leaf litter translocation experiment using leaf litter of Alnus acuminata Kunth and Hedyosmum bonplandianum Kunth, the most abundant species in each restoration strategy underway from the 60s in the Reserva Natural Río Blancoy Quebrada Olivares, Manizales, Colombia. We measured the myriapod richness and abundance two and four months after beginning the leaf litter decomposition experimental trials. Main results: Classes Diplododa, Chilopoda, and Symphyla colonized the leaf litter in both restoration strategies. The restoration strategy affected myriapod richness, abundance and composition. Myriapod richness and abundance were greater in the Andean alder plantation, millipedes were the most abundance myriapods. Myriapod composition also differs among litter species. The plant composition of each restoration strategy could lead to differences in litterfall quality and, consequently, in the resources available for the colonization of the myriapod community, which contributes directly and indirectly to the decomposition process in the restoration strategies.
|
author |
Ospina Bautista, Fabiola López Bedoya, Pablo A. Estévez, Jaime Vicente Martínez Torres, Daniela Galvis Jiménez, Sebastián |
author_facet |
Ospina Bautista, Fabiola López Bedoya, Pablo A. Estévez, Jaime Vicente Martínez Torres, Daniela Galvis Jiménez, Sebastián |
topicspa_str_mv |
Diplopoda Procesos del ecosistema hojarasca Plantación área protegida |
topic |
Diplopoda Procesos del ecosistema hojarasca Plantación área protegida Diplopoda ecosystem processes leaf litter forest plantation protected area |
topic_facet |
Diplopoda Procesos del ecosistema hojarasca Plantación área protegida Diplopoda ecosystem processes leaf litter forest plantation protected area |
citationvolume |
26 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2022 : Enero - Junio |
publisher |
Boletín Científico |
ispartofjournal |
Boletín Científico Centro de Museos Museo de Historia Natural |
source |
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/6875 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Adis, J. (Editor). (2002). Amazonian Arachnida and Myriapoda: Identification keys to all classes, orders, families, some genera, and lists of known terrestrial species. Pensoft Pub. Aide, T. M., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration ecology. Restoration Ecology, 8(4), 328-338. https://doi.org/10.1046/j.1526-100x.2000.80048.x Anderson, M. J. (2017). Permutational multivariate analysis of variance(Permanova). In Wiley StatsRef: Statistics Reference Online, pp. 1-15. American Cancer Society. https://doi.org/10.1002/9781118445112.stat07841 Anderson, J.M., S.A. Huish, P. Ineson, M.A. Leonard, & Splatt, P.R. (1985). Interactions of invertebrates, microorganisms and tree roots in nitrogen and mineral element fluxes in deciduous woodland soils, pp. 377-392 In: A.H. Fitter, D. Atkinson, D. J. Read, M.B. Usher (Eds.) Ecological interactions in soil: Plant, Microbes and Animals. Blackwell Publishing. Barreto da Silva, W., Périco, E., Schmidt Dalzochio, M., Santos, M., & Cajaiba, R. L. (2018). Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, 429, 189-197. https://doi.org/10.1016/j.foreco.2018.07.020 Blakely, J. K., D.A. Neher, & Spongberg, A.L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Applied Soil Ecology, 21(1), 71-88. https://doi.org/10.1016/S0929-1393(02)00023-9 Cajaiba, R. L., Périco, E., Caron, E., Dalzochio, M. S., Silva, W. B., & Santos, M. (2017). Are disturbance gradients in neotropical ecosystems detected using rove beetles? A case study in the Brazilian Amazon. Forest Ecology and Management, 405, 319-327. https://doi.org/10.1016/j.foreco.2017.09.058 Caldeira, M.V.W., R.D. Silva, S.R. Kunz, J.P. Zorzanelli, & Godinho, T.O. (2013). Biomassa e nutrientes da serapilheira em diferentes coberturas florestais. Comunicata Scientiae 4(2),111-119. Carcamo, H.A., T.A. Abe, C.E. Prescott, F.B. Holl, & Chanway, C.P. (2000). Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Canadian Journal of Forest Research, 30(5), 817-826. https://doi.org/10.1139/x00-014 Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18(1), 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x Cole, R. J., K.D. Holl, R.A. Zahawi, P. Wickey, & Townsend, A.R. (2016). Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution, 6(15), 5158-5168. https://doi.org/10.1002/ece3.2220 Corpocaldas. (2010). Reserva Forestal Protectora de las Cuencas Hidrógraficas de Río Blanco y Quebrada Olivares. Plan de Manejo. Coulis, M., S. Hättenschwiler, S. Rapior, & Coq S. (2009). The fate of condensed tannins during litter consumption by soil animals. Soil Biology and Biochemistry, 4, 2573-2578. https://doi.org/10.1016/j.soilbio.2009.09.022 Coulis, M., S. Hättenschwiler, N. Fromin, & David, J.F. (2013). Macroarthropod-micro- organism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biology and Biochemistry, 64, 114-121 https://doi.org/10.1016/j.soilbio.2013.04.012 Crawley, M.J. (2007). The R Book: West Sussex. John Wiley & Sons. Crowther, T.W., L. Boddy, &. Jones, T.H. (2012). Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J, 6: 1992-2001. https://doi.org/10.1038/ismej.2012.53 David, J.F., & Gillon, D. (2002). Annual feeding rate of the millipede Glomeris marginata on holm oak (Quercus ilex) leaf litter under Mediterranean conditions. Pedobiologia 46(1),42-52. https://doi.org/10.1078/0031-4056-00112 David, J.F. & Handa, I.T. (2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4), 881-895. https://doi.org/10.1111/j.1469-185X.2010.00138.x David, J. F. (2014). The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology and Biochemistry, 76,109-118. https://doi.org/10.1016/j.soilbio.2014.05.009 FAO (Food and Agriculture Organisation). (2001). State of the World’s Forests 2001. FAO (Food and Agriculture Organisation). (2015). Evaluación de los recursos forestales mundiales 2015. Second edition. Filser, J. (2002). The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia,46(3-4), 234-245. https://doi.org/10.1078/0031-4056-00130 Fox, J. & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second edition. SAGE. Frasson, J.M.F, J.L.O. Rosado, S.G. Elias, & Harter-Marques, B. (2016). Litter decomposition of two pioneer tree species and associated soil fauna in areas reclaimed after surface coal mining in Southern Brazil. Revista Brasileira de Ciência do Solo, 40(0). https://doi.org/10.1590/18069657rbcs20150444 Fujii, S., & Takeda, H. (2017). Succession of soil microarthropod communities during the aboveground and belowground litter decomposition processes. Soil Biology and Biochemistry, 110, 95-102. https://doi.org/10.1016/j.soilbio.2017.03.003 Gunther, B., B.C. Rall, O. Ferlian, S. Scheu, & Eitzinger, B. (2014). Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos, 123(10), 1192-1198. https://doi.org/10.1111/j.1600-0706.2013.00868.x Guendehou, G. H., S. Liski, M. Tuomi, M. Moudachirou, B. Sinsin, & Mäkipää, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical. Ecology,55(2), 207-220. https://core.ac.uk/download/pdf/52269172.pdf Hall, J., M. S., Ashton, E. J. Garen, E & Jose, S. (2011). The ecology and ecosystem services of native trees: Implications for reforestation and land restoration in Mesoamerica. Forest Ecology and Management, 261(10), 1553-1557. https://doi.org/10.1016/j.foreco.2010.12.011 Hansen, R.A., & Coleman, D.C. (1998). Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari, Oribatida) in litterbags. Applied Soil Ecology, 9(1-3), 17-23. https://doi.org/10.1016/S0929-1393(98)00048-1 Hasegawa, M., & Takeda, H. (1993). Changes in feeding attributes of four collembolan populations during the decomposition process of pine needles. Pedobiologia 39,155-169. Hobbs, R. J., S. Arico, J. Aronson, J.S. Baron, P. Bridgewater, V.A. Cramer, P.R. Epstein, J.J. Ewel, C.A. Klink, A.E. Lugo, D. Norton, D. Ojima, M.D. Richardson, E. Sanderson, F. Valladares, M. Vilà, R. Zamora, & Zobel, M. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15(1), 1-7. https://doi.org/10.1111/j.1466-822X.2006.00212.x Irmler, U. (2000). Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiología, 44(2), 105-118. https://doi.org/10.1078/S0031-4056(04)70032-3 Lavelle, P., & Spain, A.V. (2001). Soil Ecology. Kluwer Academic. Lensing, J. R., & Wise, D.H. (2006). Predicted climate change alters the indirect effect of predators on an ecosystem process. Proceedings of the National Academy of Sciences, 103(42), 15502-15505. https://doi.org/10.1073/pnas.0607064103 Lilleskov, E.A., & Bruns, T.D. (2005). Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4), 762-769. http://www.jstor.org/stable/3762225 Mcalpine, C., C.P. Catterall, R. Nally, D. Lindenmayer, J.L. Reid, K.D. Holl, A.F. Bennett, R.K. Runting, K. Wilson, R.J. Hobbs, L. Seabrook, S. Cunningham, A. Moilanen, M. Maron, L. Shoo, I. Lunt, P. Vesk, L. Rumpff, & Martin, T.G. (2016). Integrating plant- and animal- based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 14(1), 37-45. https://doi.org/10.1002/16-0108.1 Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H. Stevens, E. Szoecs, & Wagner, H. (2018). Vegan: Community Ecology Package. R package vegan, version 2.2-1. https://www.worldagroforestry.org/publication/vegan-community-ecology-package-r-package-vegan-vers-22-1 Paquette, A., & Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment, 8(1), 27-34. https://doi.org/10.1890/080116 Pramanik, R., K. Sarkar, & Joy, V.C. (2001). Efficiency of detritivore soil arthropods in mobilizing nutrients from leaf litter. Tropical ecology,42(1),51-58. Patricio, M. S., L.F. Nunes, & Pereira, E.L. (2012). Litterfall and litter decomposition in chestnut high forest stands in northern Portugal. Forest Systems, 21(2), 259. https://doi.org/10.5424/fs/2012212-02711 R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ Salmon, S., & Geoffroy, J. (2005). Earthworms and Collembola relationships: effects of predatory centipedes and humus forms. Soil Biology and Biochemistry, 37(3), 487-495. https://doi.org/10.1016/j.soilbio.2004.08.011 Santonja, M., A., Aupic-samain, E. Forey, & Chauvat, M. (2018). Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola, European Journal of Soil Biology, 89, 9-13. https://doi.org/10.1016/j.ejsobi.2018.08.002 Scheller, U., & Adis, J. (1996). A pictorial key for the symphylan families and genera of the Neotropical Region south of Central Mexico (Myriapoda, Symphyla). Studies on Neotropical Fauna and Environment, 31(1), 57-61. https://doi.org/10.1076/ Shelley, R. M., & Mercurio, R.A. (2005). Ectonocryptoides quadrimeropus, a new centipede genus and species from Jalisco, Mexico; proposal of Ectonocryptopinae, analysis of subfamilial relationships, and a key to subfamilies and genera of the Scolopocryptopidae (Scolopendromorpha). Zootaxa, 1094(1), 25. https://doi.org/10.11646/zootaxa.1094.1.2 Shiels, A. B., & Walker, L.R. (2003). Bird perches increase forest seeds on Puerto Rican landslides. Restoration Ecology,11(4): 457-465. Silver, W.L., S.J. Hall, & Gonzáles, G. (2014). Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. Forest Ecology and Management, 332, 47-55. https://doi.org/10.1016/j.foreco.2014.05.018 Suzuki, Y., S.J. Grayston, & Prescott, C.E. (2013). Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type. Soil Biology and Biochemistry, 57, 116-123. https://doi.org/10.1016/j.soilbio.2012.07.020 Triplehorn, C.A. & N.F Johnson. (2005). Borror and DeLong’s lntroduction to the Study of lnsects. Thomson Brooks/Cole. 864 p. Vohland, K., & Schroth, G. (1999). Distribution patterns of the litter macrofauna in agroforestry and monoculture plantations in Central Amazonia as affected by plant species and management. Applied Soil Ecology,13(1), 57-68. https://doi.org/10.1016/S0929-1393(99)00021-9 Voříšková, J., & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7(3), 477-486. https://doi.org/10.1038/ismej.2012.116 Wardle, D.A., G.W. Yeates, G.M. Barker, & Bonner, K.I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38(5), 1052-1062. https://doi.org/10.1016/j.soilbio.2005.09.003 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2021-01-01 |
date_accessioned |
2022-01-01T00:00:00Z |
date_available |
2022-01-01T00:00:00Z |
url |
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/6875 |
url_doi |
https://doi.org/10.17151/bccm.2022.26.1.1 |
issn |
0123-3068 |
eissn |
2462-8190 |
doi |
10.17151/bccm.2022.26.1.1 |
citationstartpage |
13 |
citationendpage |
23 |
url2_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/6875/6210 |
_version_ |
1811199622042877952 |