Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa.
.
Objetivo: comparar dos técnicas como herramientas para el diagnóstico por laboratorio de la deficiencia de carnitina acilcarnitina translocasa, desorden poco frecuente de herencia autosómico recesiva en la oxidación de ácidos grasos. Materiales y métodos: los fibroblastos de pacientes y controles fueron incubados con sustratos tritiados y sustratos deuterados. Resultados: la oxidación de los sustratos tritiados se encontró muy deprimida en los fibroblastos de pacientes con esta enfermedad; sin embargo, no fue posible establecer un perfil característico para el diagnóstico de la enfermedad utilizando sustratos deuterados. Conclusión: la incubación de fibroblastos en presencia de sustratos tritiados constituye una bu... Ver más
1657-9550
2462-960X
11
2022-03-17
17
24
Revista Biosalud - 2012
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
oai:revistasojs.ucaldas.edu.co:article_4727 |
---|---|
record_format |
ojs |
spelling |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. Comparison of two techniques as carnitine acylcarnitine translocase deficiency diagnosis tools Objetivo: comparar dos técnicas como herramientas para el diagnóstico por laboratorio de la deficiencia de carnitina acilcarnitina translocasa, desorden poco frecuente de herencia autosómico recesiva en la oxidación de ácidos grasos. Materiales y métodos: los fibroblastos de pacientes y controles fueron incubados con sustratos tritiados y sustratos deuterados. Resultados: la oxidación de los sustratos tritiados se encontró muy deprimida en los fibroblastos de pacientes con esta enfermedad; sin embargo, no fue posible establecer un perfil característico para el diagnóstico de la enfermedad utilizando sustratos deuterados. Conclusión: la incubación de fibroblastos en presencia de sustratos tritiados constituye una buena herramienta para el diagnóstico por laboratorio de pacientes afectados por la deficiencia de carnitina acilcarnitina translocasa, no así la incubación con sustratos deuterados. Objective: to compare two laboratory diagnosis techniques for carnitine acylcarnitine translocase deficiency, a rare inherited autosomal recessive disorder in fatty acid oxidation. Materials and methods: fibroblasts of patients and controls were incubated with tritiated substrates and deuterated substrates. Results: a severe depression for oxidizing the tritiated substrates was observed for the fibroblasts of patients with this disease; however it was not possible to establish a characteristic profile for the diagnosis of the disease using deuterated substrates. Conclusion: the incubation of fibroblasts using tritiated substrates constitutes a good tool for laboratory diagnosis of patients suffering carnitine-acylcarnitine translocase deficiency, in contrast, incubation with deuterated substrates does not. Osorio, José Henry ácidos grasos carnitina metabolismo errores innatos del metabolismo fibroblastos marcaje isotópico fatty acids carnitine metabolism inborn errors of metabolism fibroblasts isotope labeling 11 1 Núm. 1 , Año 2012 : Enero - Junio Artículo de revista Journal article 2022-03-17T00:36:48Z 2022-03-17T00:36:48Z 2022-03-17 application/pdf Universidad de Caldas Biosalud 1657-9550 2462-960X https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4727 https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4727 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista Biosalud - 2012 17 24 Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F. The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem J. 1997; 321:713-19. Indiveri C, Giangregorio N, Iacobazzi V, Palmieri F. Site-directed mutagenesis and chemical modiWcation of the six native cysteine residues of the rat mitochondrial carnitine carrier: implications for the role of cysteine-136. Biochemistry 2002; 41:8649-56. Tonazzi A, Giangregorio N, Indiveri C, Palmieri F. Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter, J Biol Chem 2005; 280:19607-12. Pierre G, Macdonald A, Gray G, Hendriksz C, Preece MA, Chakrapani A. Prospective treatment in carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis 2007; 30(5):815. Rubio-Gozalbo ME, Vos P, Forget PPh, Van Der Meer SB, Wanders RJA, Waterham HR, et al. Carnitineacylcarnitine translocase deWciency: case report and review of the literature. Acta Paediatr 2003; 92:501-4. Lowry OH. Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265-75. Ventura FV, Costa CG, Struys EA, Ruiter J, Allers P, Ijlst L, et al. Quantitative acylcarnitine profile in fibroblasts using U-13 Cpalmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chem Acta 1999; 281:1-17. Roe CR, Roe DS. Recent developments in the investigation of inherited metabolic disorders using cultures human cells. Mol Genet Metab 1999; 68:243-57. Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollit RJ. Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H2O from [9, 10- 3H]-myristic and [9,10-3H]-palmitic acids by intact cultured fibroblasts. J Inher Metab Dis 1992; 15:883-90. Roe DS, Yang BZ, Vianey-Saban C, Struys E, Sweetman L, Roe CR. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Mol Genet Metab 2006; 87(1):40-7. Nada MA, Chace DH, Sprecher H, Roe CR. Investigation of ß-oxidation intermediates in normal and MCAD-deficient human fibroblasts using tandem mass spectrometry. Biochem Mol Med 1995; 54:59-66. Roe CR, Roe DS. Recent developments in the investigation of inherited metabolic disorders using cultures human cells. Mol Genet Metab 1999; 68:243-57. Costa C, Costa JM, Slama A, Boutron A, Vequaud C, Legrand A, et al. Mutational spectrum and DNAbased prenatal diagnosis in carnitine-acylcarnitine translocase deWciency. Mol Genet Metab 2003; 78: 68-73. Korman SH, Pitt JJ, Boneh A, Dweikat I, Zater M, Meiner V, et al. A novel SLC25A20 splicing mutation in patients of different ethnic origin with neonatally lethal carnitine-acylcarnitine translocase (CACT) deficiency. Mol Genet Metab 2006; 89(4):332-8. Wang GL, Wang J, Douglas G, Browning M, Hahn S, Ganesh J, et al. Expanded molecular features of carnitine acyl-carnitine translocase (CACT) deficiency by comprehensive molecular analysis. Mol Gen Metab 2011; 103:349-57. Yang BZ, Mallory JM, Roe DS, Brivet M, Strobel GD, Kerri M, et al. Carnitine/Acylcarnitine Translocase Deficiency (Neonatal Phenotype): Successful Prenatal and Postmortem Diagnosis Associated with a Novel Mutation in a Single Family. Mol Gen Metab 2011; 73: 64-70. https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/4727/4314 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CALDAS |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png |
country_str |
Colombia |
collection |
Biosalud |
title |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
spellingShingle |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. Osorio, José Henry ácidos grasos carnitina metabolismo errores innatos del metabolismo fibroblastos marcaje isotópico fatty acids carnitine metabolism inborn errors of metabolism fibroblasts isotope labeling |
title_short |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
title_full |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
title_fullStr |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
title_full_unstemmed |
Comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
title_sort |
comparación de dos técnicas como herramienta diagnóstica de la deficiencia de carnitina acilcarnitina translocasa. |
title_eng |
Comparison of two techniques as carnitine acylcarnitine translocase deficiency diagnosis tools |
description |
Objetivo: comparar dos técnicas como herramientas para el diagnóstico por laboratorio de la deficiencia de carnitina acilcarnitina translocasa, desorden poco frecuente de herencia autosómico recesiva en la oxidación de ácidos grasos. Materiales y métodos: los fibroblastos de pacientes y controles fueron incubados con sustratos tritiados y sustratos deuterados. Resultados: la oxidación de los sustratos tritiados se encontró muy deprimida en los fibroblastos de pacientes con esta enfermedad; sin embargo, no fue posible establecer un perfil característico para el diagnóstico de la enfermedad utilizando sustratos deuterados. Conclusión: la incubación de fibroblastos en presencia de sustratos tritiados constituye una buena herramienta para el diagnóstico por laboratorio de pacientes afectados por la deficiencia de carnitina acilcarnitina translocasa, no así la incubación con sustratos deuterados.
|
description_eng |
Objective: to compare two laboratory diagnosis techniques for carnitine acylcarnitine translocase deficiency, a rare inherited autosomal recessive disorder in fatty acid oxidation. Materials and methods: fibroblasts of patients and controls were incubated with tritiated substrates and deuterated substrates. Results: a severe depression for oxidizing the tritiated substrates was observed for the fibroblasts of patients with this disease; however it was not possible to establish a characteristic profile for the diagnosis of the disease using deuterated substrates. Conclusion: the incubation of fibroblasts using tritiated substrates constitutes a good tool for laboratory diagnosis of patients suffering carnitine-acylcarnitine translocase deficiency, in contrast, incubation with deuterated substrates does not.
|
author |
Osorio, José Henry |
author_facet |
Osorio, José Henry |
topicspa_str_mv |
ácidos grasos carnitina metabolismo errores innatos del metabolismo fibroblastos marcaje isotópico |
topic |
ácidos grasos carnitina metabolismo errores innatos del metabolismo fibroblastos marcaje isotópico fatty acids carnitine metabolism inborn errors of metabolism fibroblasts isotope labeling |
topic_facet |
ácidos grasos carnitina metabolismo errores innatos del metabolismo fibroblastos marcaje isotópico fatty acids carnitine metabolism inborn errors of metabolism fibroblasts isotope labeling |
citationvolume |
11 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2012 : Enero - Junio |
publisher |
Universidad de Caldas |
ispartofjournal |
Biosalud |
source |
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4727 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista Biosalud - 2012 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F. The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem J. 1997; 321:713-19. Indiveri C, Giangregorio N, Iacobazzi V, Palmieri F. Site-directed mutagenesis and chemical modiWcation of the six native cysteine residues of the rat mitochondrial carnitine carrier: implications for the role of cysteine-136. Biochemistry 2002; 41:8649-56. Tonazzi A, Giangregorio N, Indiveri C, Palmieri F. Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter, J Biol Chem 2005; 280:19607-12. Pierre G, Macdonald A, Gray G, Hendriksz C, Preece MA, Chakrapani A. Prospective treatment in carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis 2007; 30(5):815. Rubio-Gozalbo ME, Vos P, Forget PPh, Van Der Meer SB, Wanders RJA, Waterham HR, et al. Carnitineacylcarnitine translocase deWciency: case report and review of the literature. Acta Paediatr 2003; 92:501-4. Lowry OH. Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265-75. Ventura FV, Costa CG, Struys EA, Ruiter J, Allers P, Ijlst L, et al. Quantitative acylcarnitine profile in fibroblasts using U-13 Cpalmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chem Acta 1999; 281:1-17. Roe CR, Roe DS. Recent developments in the investigation of inherited metabolic disorders using cultures human cells. Mol Genet Metab 1999; 68:243-57. Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollit RJ. Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H2O from [9, 10- 3H]-myristic and [9,10-3H]-palmitic acids by intact cultured fibroblasts. J Inher Metab Dis 1992; 15:883-90. Roe DS, Yang BZ, Vianey-Saban C, Struys E, Sweetman L, Roe CR. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Mol Genet Metab 2006; 87(1):40-7. Nada MA, Chace DH, Sprecher H, Roe CR. Investigation of ß-oxidation intermediates in normal and MCAD-deficient human fibroblasts using tandem mass spectrometry. Biochem Mol Med 1995; 54:59-66. Roe CR, Roe DS. Recent developments in the investigation of inherited metabolic disorders using cultures human cells. Mol Genet Metab 1999; 68:243-57. Costa C, Costa JM, Slama A, Boutron A, Vequaud C, Legrand A, et al. Mutational spectrum and DNAbased prenatal diagnosis in carnitine-acylcarnitine translocase deWciency. Mol Genet Metab 2003; 78: 68-73. Korman SH, Pitt JJ, Boneh A, Dweikat I, Zater M, Meiner V, et al. A novel SLC25A20 splicing mutation in patients of different ethnic origin with neonatally lethal carnitine-acylcarnitine translocase (CACT) deficiency. Mol Genet Metab 2006; 89(4):332-8. Wang GL, Wang J, Douglas G, Browning M, Hahn S, Ganesh J, et al. Expanded molecular features of carnitine acyl-carnitine translocase (CACT) deficiency by comprehensive molecular analysis. Mol Gen Metab 2011; 103:349-57. Yang BZ, Mallory JM, Roe DS, Brivet M, Strobel GD, Kerri M, et al. Carnitine/Acylcarnitine Translocase Deficiency (Neonatal Phenotype): Successful Prenatal and Postmortem Diagnosis Associated with a Novel Mutation in a Single Family. Mol Gen Metab 2011; 73: 64-70. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-03-17 |
date_accessioned |
2022-03-17T00:36:48Z |
date_available |
2022-03-17T00:36:48Z |
url |
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4727 |
url_doi |
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4727 |
issn |
1657-9550 |
eissn |
2462-960X |
citationstartpage |
17 |
citationendpage |
24 |
url2_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/4727/4314 |
_version_ |
1811199444578729984 |