Titulo:

Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
.

Sumario:

Objetivo: Analizar los cambios fotosintéticos de las especies Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. y Salvinia auriculata Aubl. sometidas a un tratamiento con agua residual de mina. Metodología: Se expuso a las plantas a un tratamiento a escala de laboratorio con agua residual proveniente de una región minera de Caldas (Colombia) durante seis días (144 horas). Los componentes principales del agua se determinaron con test Nanocolor y los cambios fotosintéticos en las plantas durante la exposición al agua residual se determinaron por métodos espectrofotométricos. Resultados: El agua residual de mina es una matriz compleja cuyo componente mayoritario es el cianuro (CN-) con un valor de 175,00 mg/L superando las disposiciones... Ver más

Guardado en:

0123-3068

2462-8190

22

2018-01-01

43

57

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id oai:revistasojs.ucaldas.edu.co:article_2726
record_format ojs
spelling Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
Effects on the photosynthetic level in three species of aquatic plants treated with waste water of mining origin
Objetivo: Analizar los cambios fotosintéticos de las especies Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. y Salvinia auriculata Aubl. sometidas a un tratamiento con agua residual de mina. Metodología: Se expuso a las plantas a un tratamiento a escala de laboratorio con agua residual proveniente de una región minera de Caldas (Colombia) durante seis días (144 horas). Los componentes principales del agua se determinaron con test Nanocolor y los cambios fotosintéticos en las plantas durante la exposición al agua residual se determinaron por métodos espectrofotométricos. Resultados: El agua residual de mina es una matriz compleja cuyo componente mayoritario es el cianuro (CN-) con un valor de 175,00 mg/L superando las disposiciones del Ministerio de Ambiente y Desarrollo Sostenible de Colombia; las relaciones de clorofi la a/b y carotenos/clorofila total indicaron que las plantas E. crassipes y P. stratiotes respondieron al tratamiento modifi cando las concentraciones de los pigmentos analizados. Conclusiones: La planta E. crassipes disminuyó la relación clorofi la a/b como indicador de estrés, la planta P. stratiotes aumentó la relación carotenos/clorofi la total aumentando la síntesis de carotenos para proteger los tejidos contra el estrés y la planta S. auriculata fue la menos afectada, lo que se traduce en una alta tolerancia o adaptación de esta última especie a los cambios ambientales.
Objective: To analize the photosynthetic changes of the species Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. and Salvinia auriculata Aubl. subjected to a treatment with mining wastewater. Methodology: The plants were exposed to a laboratory-scale treatment with residual water from a mining region of Caldas (Colombia) for six days (144 hours). The main components of the water were determined with Nanocolor test and the photosynthetic changes in the plants during the exposure to the wastewater were determined by spectrophotometric methods. Results: Mining wastewater is a complex matrix whose major component is cyanide (CN-) with a value of 175.00 mg/L surpassing the provisions of the Ministry of Environment and Sustainable Development of Colombia. The relationship of chlorophyll a/b and carotenes/total chlorophyll indicated that the plants E. crassipes and P. stratiotes responded to the treatment by modifying the concentrations of the pigments analyzed. Conclusions: The E. crassipes decreased the chlorophyll a/b ratio as an indicator of stress; the P. stratiotes increased the caroteno/total chlorophyll ratio, increasing the synthesis of carotenes to protect the tissues against stress, and the S. auriculata was the least affected, which translates into a high tolerance or adaptation of the latter species to environmental changes.
Jaramillo Salazar, Marco Tulio
Marín Giraldo, Yelicza
Ocampo Serna, Diana Marcela
Fitorremediación
cambios fotosintéticos
clorofila a
clorofila b
carotenos
Chlorophyll a
chlorophyll b
carotenes
photosynthetic changes
phytoremediation
22
1
Núm. 1 , Año 2018 : Enero - Junio
Artículo de revista
Journal article
2018-01-01T00:00:00Z
2018-01-01T00:00:00Z
2018-01-01
application/pdf
Boletín Científico
Boletín Científico Centro de Museos Museo de Historia Natural
0123-3068
2462-8190
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/2726
10.17151/bccm.2018.22.1.3
https://doi.org/10.17151/bccm.2018.22.1.3
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
43
57
APHA, 2005.- Standard methods for the examination of water and waste water, 21st ed. American Public Health Association, Washington, DC.
ASHRAF, M., & HARRIS, P., 2013.- Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2): 163-190.
ÁVILA, O., CASIERRA, F., RIASCOS, D., 2012.- Contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas agrarios, 17(1): 60-71.
BAO, A., 2015.- Toxicidad ejercida por el triclosán sobre la microalga dulceacuícola Chlamydomonas moewusii Gerloff: Tesis, Universidad de La Coruña, Facultad de Ciencias, La Coruña.
BASANT, A., MALIK, A., SINGH, K., SINHA, S., 2009.- Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology, 5(18): 555-566.
CALLEJAS, K., CONTRERAS, A., MORALES, L. & PEPPI, C., 2013.- Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 4(31): 1-25.
CAMBRÓN, V., HERRERÍAS, Y., ESPAÑA, M., SÁENZ, C., SÁNCHEZ, N. & VARGAS, J., 2011.- Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo. Revista Chapingo serie ciencias forestales y del ambiente, 17(2): 253-260.
CRUZ, A., FORTES, D., HERRERA, R., GARCÍA, M., GONZÁLEZ, S. & ROMERO, A., 2009.- Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT-115 en la estación poco lluviosa. Revista Cubana de Ciencia Agrícola, 43(2): 183-186.
DHIR, B., & SRIVASTAVA, S., 2013. - Heavy Metal Tolerance in Metal Hyperaccumulator Plant, Salvinia natans. S. Bull Environ Contam Toxicol, 90: 720.
DHIR, B., KUMAR, R., MEHTA, D., SARADHI, P., SHARMA, A., & SHARMILLA, P., 2011. - Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety, 6(74): 1678-1684.
EBEL, M., EVANGELOU, M. & SHAEFFER, A., 2007. - Cyanide phytoremediation by water hyacinths (Eichhorniacrassipes). Chemosfere, 66(5): 816-823.
FARNESE, J., GUSMAN, G., LEAO, G. & OLIVEIRA, J., 2013.- Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol, 3(74): 1201-1209.
FASIDI, I. & ODJEGBA, V., 2004.- Accumulation of Trace Elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 7(13): 637-646.
FLORES, E. & JARAMILLO, M., 2012.- Fitorremediación mediante el uso de dos especies vegetales Lemnaminor (Lenteja de agua), y Eichhornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera: Tesis, Universidad Politécnica Salesiana de Ecuador, Cuenca-Ecuador.
FLORES, M., GUERRERO, J. & VERGARA, F., 2011.- Efecto del tiempo de almacenamiento y tipo de procesamiento en los antioxidantes de nopal. Temas selectos de ingeniería de alimentos, 5(2): 84-96.
GOEL, N., HARRON, J., HU, B., MILLER, J., MOHAMMED, G., NOLAND, T., SAMPSON, P. & ZARCO, P., 2004.- Needle chlorophyll content estimation through modelling version using hyperspectral data from boreal conifer forest canopies. Remote Sensing of Environment, 89(2): 189-199.
GÓMEZ, J., MONROY, O., OLGUÍN, E., SÁNCHEZ, G., 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air and Soil Pollution, 1(194): 77-90.
GONZÁLEZ, A., 2009.- Aplicación del medidor portátil de clorofila en programas de mejora de trigo y cebada. Agroecología, 4: 111-116.
GONZÁLEZ, J., HILAL, M., PAGANO, E., PRADO, C., PRADO, F. & RODRÍGUEZ, L., 2010.- Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 1-3(177): 546-553.
HANOVER, J. & TOWNSEND, A., 1972.- Altitudinal variation in photosynthesis, growth, and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genetica, 21(3-4): 133-139.
KUMAR, N., RAI, N., SINGH, R., & TEWARI, A., 2008.- Amelioration of municipal sludge by Pistia stratiotes L.: Role of antioxidant enzymes in detoxification of metals. Bioresource Technology, 18(99): 8715-8721.
LARA, J. & MARTELO, J., 2012.- Macrófitas flotantes en el tratamiento de aguas residuales: una revisión del estado del arte. Ingeniería y Ciencia, 8(15): 221-243.
MAITI, D. & PRASAD, B., 2016.- Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and non-mining areas: a field study. Biorem. J, 2(20): 144-152.
RASHED, M., & SOLTAN, M., 2003.- Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, 7(2): 321-334.
SERRANO, M., 2006.- Fitorremediación: una alternativa para la recuperación de suelos contaminados por hidrocarburos. Universidad Industrial de Santander. Escuela de Química.
https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/2726/2524
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CALDAS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png
country_str Colombia
collection Boletín Científico Centro de Museos Museo de Historia Natural
title Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
spellingShingle Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
Jaramillo Salazar, Marco Tulio
Marín Giraldo, Yelicza
Ocampo Serna, Diana Marcela
Fitorremediación
cambios fotosintéticos
clorofila a
clorofila b
carotenos
Chlorophyll a
chlorophyll b
carotenes
photosynthetic changes
phytoremediation
title_short Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
title_full Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
title_fullStr Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
title_full_unstemmed Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
title_sort efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero
title_eng Effects on the photosynthetic level in three species of aquatic plants treated with waste water of mining origin
description Objetivo: Analizar los cambios fotosintéticos de las especies Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. y Salvinia auriculata Aubl. sometidas a un tratamiento con agua residual de mina. Metodología: Se expuso a las plantas a un tratamiento a escala de laboratorio con agua residual proveniente de una región minera de Caldas (Colombia) durante seis días (144 horas). Los componentes principales del agua se determinaron con test Nanocolor y los cambios fotosintéticos en las plantas durante la exposición al agua residual se determinaron por métodos espectrofotométricos. Resultados: El agua residual de mina es una matriz compleja cuyo componente mayoritario es el cianuro (CN-) con un valor de 175,00 mg/L superando las disposiciones del Ministerio de Ambiente y Desarrollo Sostenible de Colombia; las relaciones de clorofi la a/b y carotenos/clorofila total indicaron que las plantas E. crassipes y P. stratiotes respondieron al tratamiento modifi cando las concentraciones de los pigmentos analizados. Conclusiones: La planta E. crassipes disminuyó la relación clorofi la a/b como indicador de estrés, la planta P. stratiotes aumentó la relación carotenos/clorofi la total aumentando la síntesis de carotenos para proteger los tejidos contra el estrés y la planta S. auriculata fue la menos afectada, lo que se traduce en una alta tolerancia o adaptación de esta última especie a los cambios ambientales.
description_eng Objective: To analize the photosynthetic changes of the species Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. and Salvinia auriculata Aubl. subjected to a treatment with mining wastewater. Methodology: The plants were exposed to a laboratory-scale treatment with residual water from a mining region of Caldas (Colombia) for six days (144 hours). The main components of the water were determined with Nanocolor test and the photosynthetic changes in the plants during the exposure to the wastewater were determined by spectrophotometric methods. Results: Mining wastewater is a complex matrix whose major component is cyanide (CN-) with a value of 175.00 mg/L surpassing the provisions of the Ministry of Environment and Sustainable Development of Colombia. The relationship of chlorophyll a/b and carotenes/total chlorophyll indicated that the plants E. crassipes and P. stratiotes responded to the treatment by modifying the concentrations of the pigments analyzed. Conclusions: The E. crassipes decreased the chlorophyll a/b ratio as an indicator of stress; the P. stratiotes increased the caroteno/total chlorophyll ratio, increasing the synthesis of carotenes to protect the tissues against stress, and the S. auriculata was the least affected, which translates into a high tolerance or adaptation of the latter species to environmental changes.
author Jaramillo Salazar, Marco Tulio
Marín Giraldo, Yelicza
Ocampo Serna, Diana Marcela
author_facet Jaramillo Salazar, Marco Tulio
Marín Giraldo, Yelicza
Ocampo Serna, Diana Marcela
topicspa_str_mv Fitorremediación
cambios fotosintéticos
clorofila a
clorofila b
carotenos
topic Fitorremediación
cambios fotosintéticos
clorofila a
clorofila b
carotenos
Chlorophyll a
chlorophyll b
carotenes
photosynthetic changes
phytoremediation
topic_facet Fitorremediación
cambios fotosintéticos
clorofila a
clorofila b
carotenos
Chlorophyll a
chlorophyll b
carotenes
photosynthetic changes
phytoremediation
citationvolume 22
citationissue 1
citationedition Núm. 1 , Año 2018 : Enero - Junio
publisher Boletín Científico
ispartofjournal Boletín Científico Centro de Museos Museo de Historia Natural
source https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/2726
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references APHA, 2005.- Standard methods for the examination of water and waste water, 21st ed. American Public Health Association, Washington, DC.
ASHRAF, M., & HARRIS, P., 2013.- Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2): 163-190.
ÁVILA, O., CASIERRA, F., RIASCOS, D., 2012.- Contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas agrarios, 17(1): 60-71.
BAO, A., 2015.- Toxicidad ejercida por el triclosán sobre la microalga dulceacuícola Chlamydomonas moewusii Gerloff: Tesis, Universidad de La Coruña, Facultad de Ciencias, La Coruña.
BASANT, A., MALIK, A., SINGH, K., SINHA, S., 2009.- Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology, 5(18): 555-566.
CALLEJAS, K., CONTRERAS, A., MORALES, L. & PEPPI, C., 2013.- Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 4(31): 1-25.
CAMBRÓN, V., HERRERÍAS, Y., ESPAÑA, M., SÁENZ, C., SÁNCHEZ, N. & VARGAS, J., 2011.- Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo. Revista Chapingo serie ciencias forestales y del ambiente, 17(2): 253-260.
CRUZ, A., FORTES, D., HERRERA, R., GARCÍA, M., GONZÁLEZ, S. & ROMERO, A., 2009.- Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT-115 en la estación poco lluviosa. Revista Cubana de Ciencia Agrícola, 43(2): 183-186.
DHIR, B., & SRIVASTAVA, S., 2013. - Heavy Metal Tolerance in Metal Hyperaccumulator Plant, Salvinia natans. S. Bull Environ Contam Toxicol, 90: 720.
DHIR, B., KUMAR, R., MEHTA, D., SARADHI, P., SHARMA, A., & SHARMILLA, P., 2011. - Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety, 6(74): 1678-1684.
EBEL, M., EVANGELOU, M. & SHAEFFER, A., 2007. - Cyanide phytoremediation by water hyacinths (Eichhorniacrassipes). Chemosfere, 66(5): 816-823.
FARNESE, J., GUSMAN, G., LEAO, G. & OLIVEIRA, J., 2013.- Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol, 3(74): 1201-1209.
FASIDI, I. & ODJEGBA, V., 2004.- Accumulation of Trace Elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 7(13): 637-646.
FLORES, E. & JARAMILLO, M., 2012.- Fitorremediación mediante el uso de dos especies vegetales Lemnaminor (Lenteja de agua), y Eichhornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera: Tesis, Universidad Politécnica Salesiana de Ecuador, Cuenca-Ecuador.
FLORES, M., GUERRERO, J. & VERGARA, F., 2011.- Efecto del tiempo de almacenamiento y tipo de procesamiento en los antioxidantes de nopal. Temas selectos de ingeniería de alimentos, 5(2): 84-96.
GOEL, N., HARRON, J., HU, B., MILLER, J., MOHAMMED, G., NOLAND, T., SAMPSON, P. & ZARCO, P., 2004.- Needle chlorophyll content estimation through modelling version using hyperspectral data from boreal conifer forest canopies. Remote Sensing of Environment, 89(2): 189-199.
GÓMEZ, J., MONROY, O., OLGUÍN, E., SÁNCHEZ, G., 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air and Soil Pollution, 1(194): 77-90.
GONZÁLEZ, A., 2009.- Aplicación del medidor portátil de clorofila en programas de mejora de trigo y cebada. Agroecología, 4: 111-116.
GONZÁLEZ, J., HILAL, M., PAGANO, E., PRADO, C., PRADO, F. & RODRÍGUEZ, L., 2010.- Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 1-3(177): 546-553.
HANOVER, J. & TOWNSEND, A., 1972.- Altitudinal variation in photosynthesis, growth, and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genetica, 21(3-4): 133-139.
KUMAR, N., RAI, N., SINGH, R., & TEWARI, A., 2008.- Amelioration of municipal sludge by Pistia stratiotes L.: Role of antioxidant enzymes in detoxification of metals. Bioresource Technology, 18(99): 8715-8721.
LARA, J. & MARTELO, J., 2012.- Macrófitas flotantes en el tratamiento de aguas residuales: una revisión del estado del arte. Ingeniería y Ciencia, 8(15): 221-243.
MAITI, D. & PRASAD, B., 2016.- Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and non-mining areas: a field study. Biorem. J, 2(20): 144-152.
RASHED, M., & SOLTAN, M., 2003.- Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, 7(2): 321-334.
SERRANO, M., 2006.- Fitorremediación: una alternativa para la recuperación de suelos contaminados por hidrocarburos. Universidad Industrial de Santander. Escuela de Química.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-01-01
date_accessioned 2018-01-01T00:00:00Z
date_available 2018-01-01T00:00:00Z
url https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/2726
url_doi https://doi.org/10.17151/bccm.2018.22.1.3
issn 0123-3068
eissn 2462-8190
doi 10.17151/bccm.2018.22.1.3
citationstartpage 43
citationendpage 57
url2_str_mv https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/download/2726/2524
_version_ 1811199547291992064