Titulo:

Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
.

Sumario:

En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación d... Ver más

Guardado en:

1657-9550

2462-960X

19

2025-02-05

7

30

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

id oai:revistasojs.ucaldas.edu.co:article-9851
record_format ojs
spelling Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
Liem, J. F., Suryandari, D. A., Malik, S. G., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., & Pangaribuan, B. (2022). The Role of CYP2B6∗6 Gene Polymorphisms in 3,5,6-Trichloro- 2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers. Journal of Preventive Medicine and Public Health, 55(3), 280–288. https://doi.org/10.3961/jpmph.21.641
Mohamad-Shalan, N. A. A., Mustapha, N. M., & Mohamed, S. (2017). Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice. Regulatory Toxicology and Pharmacology, 83, 46–53. https://doi.org/10.1016/j.yrtph.2016.11.022
Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
Mendrick, D. L. (2008). Genomic and genetic biomarkers of toxicity. Toxicology, 245(3), 175–181. https://doi.org/10.1016/j.tox.2007.11.013
Medina, E. (2020). Aplicación de la metabolómica al control de la seguridad de los alimentos y la prevención de las enfermedades. [tesis de Maestría, Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/157877/Medina - Aplicación de la metabolómica en el control de la seguridad de los alimentos y en la pre....pdf?sequence=1&isAllowed=y
Mason, C. L., Leedale, J., Tasoulis, S., Jarman, I., Antoine, D. J., & Webb, S. D. (2018). Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT: Pharmacometrics \& Systems Pharmacology, 7(6), 394–403. https://doi.org/10.1002/psp4.12298
Marques, A., Lourenço, H. M., Nunes, M. L., Roseiro, C., Santos, C., Barranco, A., Rainieri, S., Langerholc, T., & Cencic, A. (2011). New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Research International, 44(2), 510–522. https://doi.org/10.1016/j.foodres.2010.12.003
Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M. da, & Rodrigues, A. S. de L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Science of The Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994
Lytou, A. E., Panagou, E. Z., & Nychas, G. J. E. (2019). Volatilomics for food quality and authentication. Current Opinion in Food Science, 28, 88–95. https://doi.org/10.1016/j.cofs.2019.10.003
Lu, T. P., & Chen, J. J. (2015). Identification of drug-induced toxicity biomarkers for treatment determination. Pharmaceutical Statistics, 14(4), 284–293. https://doi.org/10.1002/pst.1684
Lu, F., Cao, M., Wu, B., Li, X., Liu, H., Chen, D., & Liu, S. (2013). Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology, 149(1), 311–320. https://doi.org/10.1016/j.jep.2013.06.040
Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021
Louden, C., & Roberts, R. A. (2020). Validating In Vitro Toxicity Biomarkers Against Clinical Endpoints. In Biomarkers in Drug Discovery and Development (pp. 379–388). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119187547.ch19
Li, Z., Zheng, L., Shi, J., Zhang, G., Lu, L., Zhu, L., Zhang, J., & Liu, Z. (2015). Toxic markers of matrine determined using 1H-NMR-based metabolomics in cultured cells in vitro and rats in vivo. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/598412
Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631–632, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269
Li, Q., Yan, X., Zhang, Y., Zhou, J., Yang, L., Wu, S., Peng, C., & Pan, X. (2022). Risk compounds, potential mechanisms and biomarkers of traditional Chinese medicine-induced reproductive toxicity. Journal of Applied Toxicology, 42(11), 1734–1756. https://doi.org/10.1002/jat.4290
Köhler, H. R., Hiittenrauch, K., Berkus, M., Gräff, S., & Alberti, G. (1996). Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Applied Soil Ecology, 3(1), 1–15. https://doi.org/10.1016/0929-1393(95)00073-9
Khoo, L. W., Kow, A. S. F., Maulidiani, M., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). Hematological, biochemical, histopathological and1H-NMR Metabolomics application in acute toxicity evaluation of clinacanthus nutans water leaf extract. Molecules, 23(9). https://doi.org/10.3390/molecules23092172
Josić, Djuro, Rešetar, D., Peršurić, Ž., Martinović, T., & Kraljevic Pavelić, S. (2017). Chapter 29 - Detection of Microbial Toxins by -Omics Methods: A Growing Role of Proteomics. En M. L. Colgrave (Ed.), Proteomics in Food Science. (pp. 485–506). Academic Press. https://doi.org/10.1016/B978-0-12-804007-2.00029-1
Josić, D, Peršurić, Ž., Rešetar, D., Martinović, T., Saftić, L., & Kraljević Pavelić, S. (2017). Chapter Six - Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 81, 187–229). Academic Press. https://doi.org/10.1016/bs.afnr.2016.12.001
Jong, M.-C., Li, J., Noor, H. M., He, Y., & Gin, K. Y.H. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of The Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459
Jaskulak, M., & Grobelak, A. (2019). Chapter 6 - Cadmium Phytotoxicity—Biomarkers. En M. Hasanuzzaman, M. N. Vara Prasad, & K. Nahar (Eds.), Cadmium Tolerance in Plants. (pp. 177–191). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00006-0
Iqbal, M., Abbas, M., Adil, M., Nazir, A., & Ahmad, I. (2020). Aflatoxins Biosynthesis, Toxicity and Intervention Strategies: A Review. SSRN Electronic Journal, 5(3), 168–191. https://doi.org/10.2139/ssrn.3407341
Hassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain Phase i and II Enzymes as Toxicity Biomarker: An Overview. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2429-z
Gibson, J. (2015). Air pollution, climate change, and health. The Lancet. Oncology, 16(6), e269. https://doi.org/10.1016/S1470-2045(15)70238-X
Garcia-Calvo, E., Machuca, A., Nerín, C., Rosales-Conrado, N., Anunciação, D. S., & Luque-Garcia, J. L. (2020). Integration of untargeted and targeted mass spectrometry-based metabolomics provides novel insights into the potential toxicity associated to surfynol. Food and Chemical Toxicology, 146, 111849. https://doi.org/10.1016/j.fct.2020.111849
Gallego, J. L., & Olivero-Verbel, J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, 116558. https://doi.org/10.1016/j.envpol.2021.116558
Nusair, S. D., Ananbeh, M., Zayed, A., Ahmad, M. I., & Qinna, N. A. (2022). Postmortem sampling time effect on toxicity biomarkers in rats exposed to an acute lethal methomyl dose. Toxicology Reports, 9, 1674–1680. https://doi.org/10.1016/j.toxrep.2022.08.010
Pathak, S., Catanzaro, R., Vasan, D., Marotta, F., Chabria, Y., Jothimani, G., Verma, R. S., Ramachandran, M., Khuda-Bukhsh, A. R., & Banerjee, A. (2020). Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug and Chemical Toxicology, 43(5), 454–467. https://doi.org/10.1080/01480545.2018.1499773
Essers, A. J. A., Alink, G. M., Speijers, G. J. A., Alexander, J., Bouwmeister, P. J., van den Brandt, P. A., Ciere, S., Gry, J., Herrman, J., Kuiper, H. A., Mortby, E., Renwick, A. G., Shrimpton, D. H., Vainio, H., Vittozzi, L., & Koeman, J. H. (1998). Food plant toxicants and safety: Risk assessment and regulation of inherent toxicants in plant foods. Environmental Toxicology and Pharmacology, 5(3), 155–172. https://doi.org/10.1016/S1382-6689(98)00003-9
Yebenes, G. de M. J., Loza, E., & Carmona, L. (2015). Predicting Toxicity: Biomarkers and the Value of the Patient’s Opinion. In Current Pharmaceutical Design (Vol. 21, Issue 2, pp. 233–240). http://dx.doi.org/10.2174/1381612820666140825124352
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ART
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova, 14(25), 121–138. https://doi.org/10.22490/24629448.173
Yu, D., Yong, D., & Dong, S. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. Journal of Environmental Sciences, 25(4), 785–790. https://doi.org/10.1016/S1001-0742(12)60119-3
Yesildag, K., Eroz, R., Genc, A., Dogan, T., & Satici, E. (2022). Evaluation of the protective effects of morin against acrylamide-induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. Journal of Food Biochemistry, 46(7), e14111. https://doi.org/10.1111/jfbc.14111
Yang, S., Ulhassan, Z., Shah, A. M., Khan, A. R., Azhar, W., Hamid, Y., Hussain, S., Sheteiwy, M. S., Salam, A., & Zhou, W. (2021). Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 166, 1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013
Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
Yan, H., Qiao, Z., Shen, B., Xiang, P., & Shen, M. (2016). Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Science International, 267, 129–135. https://doi.org/10.1016/j.forsciint.2016.08.027
Vasileiadis, S., Brunetti, G., Marzouk, E., Wakelin, S., Kowalchuk, G. A., Lombi, E., & Donner, E. (2018). Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 52(15), 8745–8755. https://doi.org/10.1021/acs.est.8b00677
Ullah, S., Ahmad, S., Altaf, Y., Dawar, F. U., Anjum, S. I., Baig, M. M. F. A., Fahad, S., Al-Misned, F., Atique, U., Guo, X., Nabi, G., & Wanghe, K. (2022). Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: A multi-biomarkers based study. Journal of King Saud University - Science, 34(2), 101752. https://doi.org/10.1016/j.jksus.2021.101752
Süloğlu, A. K., Koçkaya, E. A., & Selmanoğlu, G. (2022). Toxicity of benzyl benzoate as a food additive and pharmaceutical agent. Toxicology and Industrial Health, 38(4), 221–233. https://doi.org/10.1177/07482337221086133
Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by directinfusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10(6), 1050–1058. https://doi.org/10.1007/s11306-014-0693-3
Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95. https://doi.org/10.1016/j.ecoenv.2019.04.018
Shipelin, V. A., Smirnova, T. A., Gmoshinskii, I. V., & Tutelyan, V. A. (2015). Analysis of Toxicity Biomarkers of Fullerene C60 Nanoparticles by Confocal Fluorescent Microscopy. Bulletin of Experimental Biology and Medicine, 158(4), 443–449. https://doi.org/10.1007/s10517-015-2781-4
Sahu, S. C. (2022). Genomic and Epigenomic Biomarkers for Predictive Toxicity and Disease. In Genomic and Epigenomic Biomarkers of Toxicology and Disease (pp. 1–5). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781119807704.ch1
Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047
Ríos-Sánchez, E., Gónzalez-Zamora, A., Olivas-Calderón, E. H., Anguiano-Vega, G. A., & Pérez-Morales, R. (2019). Hidrocarburos Aromáticos Policíclicos: Una revisión actualizada de un problema antiguo. Quimica Farmacéutica y Clinica. 2(9), 36–47.
Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., Chari, B. P. V, Saka, S., Vechalapu, R. R., Kamal, M. A., Tarasov, V. V, Chubarev, V. N., Siva Kumar, K., & Aliev, G. (2018). Chapter 2 - Probiotics: Supplements, Food, Pharmaceutical Industry. En A. M. Grumezescu & A. M. Holban (Eds.). Therapeutic, Probiotic, and Unconventional Foods. (pp. 15–25). Academic Press. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
Puente, C., & Ramaroson, R. (2006). Medicion y analisis de los compuestos organicos volatiles en la atmosfera: Ultimas tecnicas, aplicabilidad y resultados a nivel europeo. Revista ION, 19(1), 43–47. https://revistas.uis.edu.co/index.php/revistaion/article/view/539
Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration & Biodegradation, 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992
Fan, A. M. (2014). Chapter 64 - Biomarkers in toxicology, risk assessment, and environmental chemical regulations. Biomarkers in Toxicology, pp. 1057–1080. Academic Press. https://doi.org/10.1016/B978-0-12-404630-6.00064-6
El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002
Publication
Biosalud
En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación de metabolitos respuesta. Finalmente, se busca comprender la aplicación de la metabolómica y la xenometabolómica frente a la identificación de biomarcadores de toxicidad en el medio ambiente y en los alimentos, ante la presencia de agentes contaminantes actuales como plaguicidas, metales pesados, plásticos y microplásticos, que permiten ver la importancia de estas ciencias en la identificación de biomarcadores mediante el desarrollo de las ómicas.
https://creativecommons.org/licenses/by-nc-sa/4.0/
Español
Betancourt Arango, Juan Pablo
Dong, H., Yan, G. L., Han, Y., Sun, H., Zhang, A. H., Li, X. N., & Wang, X. J. (2015). UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chinese Journal of Natural Medicines, 13(9), 687–698. https://doi.org/10.1016/S1875-5364(15)30067-4
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/9851
Patiño Ospina, Alejandro
Taborda Ocampo, Gonzalo
Universidad de Caldas
Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842
application/pdf
Fiscal Ladino, Jhon Alexander
contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
Artículo de revista
Núm. 1 , Año 2020 : Enero-Junio
1
19
Afsa, S., Vieira, M., Nogueira, A., Mansour, H., & Nunes, B. (2022). A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. Environmental Science and Pollution Research, 29(13), 19132–19147. https://doi.org/10.1007/s11356-021-16977-7
Al-Salhi, R., Abdul-Sada, A., Lange, A., Tyler, C., & Hill, E. (2012). The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environmental Science & Technology, 46(16), 9080–9088. https://doi.org/10.1021/es3014453
xenometabolómica
Capitão, A., Santos, J., Barreto, A., Amorim, M. J. B., & Maria, V. L. (2022). Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 12(9). https://doi.org/10.3390/nano12091478
Do Amaral, A., Costa-Gomes, J., Weimer, G., Marins, A., Loro, V., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114
Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y. K., & Shukla, S. (2022). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2022.2059650
Dear, J. W., & Antoine, D. J. (2014). Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Review of Clinical Pharmacology, 7(2), 181–189. https://doi.org/10.1586/17512433.2014.880650
De Oliveira, J. S. P., Vieira, L. G., Carvalho, W. F., de Souza, M. B., de Lima Rodrigues, A. S., Simões, K., de Melo De Silva, D., dos Santos Mendonça, J., Hirano, L. Q. L., Santos, A. L. Q., & Malafaia, G. (2020). Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment, 737, 140304. https://doi.org/10.1016/j.scitotenv.2020.140304
David, A., Abdul-Sada, A., Lange, A., Tyler, C. R., & Hill, E. M. (2014). A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography. A, 1365, 72–85. https://doi.org/10.1016/j.chroma.2014.09.001
Dang, Q., Zhao, X., Yang, T., Gong, T., He, X., Tan, W., & Xi, B. (2022). Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Science of The Total Environment, 824, 153837. https://doi.org/10.1016/j.scitotenv.2022.153837
Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., & Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104. https://doi.org/10.1016/j.cotox.2020.01.002
Chetwynd, A. J., David, A., Hill, E. M., & Abdul-Sada, A. (2014). Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno) metabolome. Journal of Mass Spectrometry : JMS, 49(10), 1063–1069. https://doi.org/10.1002/jms.3426
Chen, W., Zhu, R., Ye, X., Sun, Y., Tang, Q., Liu, Y., Yan, F., Yu, T., Zheng, X., & Tu, P. (2022). Foodderived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food Funct., 13(3), 1447–1458. https://doi.org/10.1039/D1FO02983E
Capela E Silva, F., Sousa, A. C., Pastorinho, M. R., Mizukawa, H., & Ishizuka, M. (2022). Editorial: Animal Poisoning and Biomarkers of Toxicity. In Frontiers in veterinary science (Vol. 9, p. 891483). https://doi.org/10.3389/fvets.2022.891483
Aliferis, K. (2020). Chapter 6 - Metabolomics in plant protection product research and development: discovering the mode(s)-of-action and mechanisms of toxicity. En D. Álvarez-Muñoz & M. B. T.-E. M. Farré (eds.). Environmental Metabolomics. (pp. 163–194). Elsevier. https://doi.org/10.1016/C2018-0-03345-9
Cao, W., Wu, Z., Liang, C., Jing, P., Cui, S., Yang, G., & Lin, L. (2018). Determination of deltamethrin and its toxicity biomarkers in rabbit urine by high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography (Se Pu), 36(6), 523 – 530. https://doi.org/10.3724/SP.J.1123.2018.03002
Burdisso, P., Zoni, J., Raisa, R. M., & Vila, A. J. (2017). Metabolómica: Aplicaciones clave en salud y producción de alimentos. Revista BCR, 22–28.
Budny, J. A. (2014). Commentary: The French revolution, toxicity biomarkers and digging holes. International Journal of Toxicology, 33(4), 268–270. https://doi.org/10.1177/1091581814537036
Brendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual- Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 69(5), 1727–1738. https://doi.org/10.1021/acs.jafc.0c07447
Brandelli, A., Lopes, N. A., & Boelter, J. F. (2017). 2 - Food applications of nanostructured antimicrobials. In A. M. B. T.-F. P. Grumezescu (Ed.), Nanotechnology in the Agri-Food Industry (pp. 35–74). Academic Press. https://doi.org/10.1016/B978-0-12-804303-5.00002-X
Blaauboer, B. J., Boekelheide, K., Clewell, H. J., Daneshian, M., Dingemans, M. M. L., Goldberg, A. M., Heneweer, M., Jaworska, J., Kramer, N. I., Leist, M., Seibert, H., Testai, E., Vandebriel, R. J., Yager, J. D., & Zurlo, J. (2012). The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex, 29(4), 411–425. https://doi.org/10.14573/altex.2012.4.411
Beyoğlu, D., Zhou, Y., Chen, C., & Idle, J. R. (2018). Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochemical Pharmacology, 156, 491–500. https://doi.org/10.1016/j.bcp.2018.09.022
Betancourt-Arango, J. P., Villaroel-Solis, E. E., Fiscal-Ladino, J. A., & Taborda-Ocampo, G. (2024). Volatilomics: An emerging discipline within Omics Sciences - A systematic review [version 1; peer review: awaiting peer review]. F1000Research, 13(991). https://doi.org/10.12688/f1000research.149773.1
Beger, R., Yu, L. R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65. https://doi.org/10.1016/j.cotox.2017.06.008
In today’s world lies the importance of identifying biomarkers of toxicity as a preventive way in the presence of various chemical contaminants that act as xenobiotic agents in various organiss, in addition to allowing the evaluation of food safety in various matrices, through the development of new exploratory methodologies such as metabolomics and xenometabolomics. In this way, the objective of this review lies in the analysis in relation to the information reported towards the determination of toxicity biomarkers studied in plants and different food products, in addition to the analysis of the different current applications of omics sciences for the determination of response metabolites. Finally, it seeks to understand the application of metabolomics and xenometabolomics to the identification of biomarkers of toxicity in the environment and in food, in the presence of current pollutants such as pesticides, heavy metals, plastics and microplastics, which allow us to see the importance of these sciences in the identification of biomarkers through the development of omics.
emerging contaminants
Applications of xenometabolomics for the identification of biomarkers of toxicity: a review of the topic
omic sciences
toxicity biomarkers
xenometabolomics
Journal article
https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/9851/7756
2025-02-05T00:00:00Z
2025-02-05T00:00:00Z
2025-02-05
1657-9550
2462-960X
https://doi.org/10.17151/biosa.2020.19.1.1
7
30
10.17151/biosa.2020.19.1.1
institution UNIVERSIDAD DE CALDAS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECALDAS/logo.png
country_str Colombia
collection Biosalud
title Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
spellingShingle Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
Betancourt Arango, Juan Pablo
Patiño Ospina, Alejandro
Taborda Ocampo, Gonzalo
Fiscal Ladino, Jhon Alexander
contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
title_short Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_full Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_fullStr Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_full_unstemmed Aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_sort aplicaciones de la xenometabolómica para la identificación de biomarcadores de toxicidad: una revisión del tema
title_eng Applications of xenometabolomics for the identification of biomarkers of toxicity: a review of the topic
description En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación de metabolitos respuesta. Finalmente, se busca comprender la aplicación de la metabolómica y la xenometabolómica frente a la identificación de biomarcadores de toxicidad en el medio ambiente y en los alimentos, ante la presencia de agentes contaminantes actuales como plaguicidas, metales pesados, plásticos y microplásticos, que permiten ver la importancia de estas ciencias en la identificación de biomarcadores mediante el desarrollo de las ómicas.
description_eng In today’s world lies the importance of identifying biomarkers of toxicity as a preventive way in the presence of various chemical contaminants that act as xenobiotic agents in various organiss, in addition to allowing the evaluation of food safety in various matrices, through the development of new exploratory methodologies such as metabolomics and xenometabolomics. In this way, the objective of this review lies in the analysis in relation to the information reported towards the determination of toxicity biomarkers studied in plants and different food products, in addition to the analysis of the different current applications of omics sciences for the determination of response metabolites. Finally, it seeks to understand the application of metabolomics and xenometabolomics to the identification of biomarkers of toxicity in the environment and in food, in the presence of current pollutants such as pesticides, heavy metals, plastics and microplastics, which allow us to see the importance of these sciences in the identification of biomarkers through the development of omics.
author Betancourt Arango, Juan Pablo
Patiño Ospina, Alejandro
Taborda Ocampo, Gonzalo
Fiscal Ladino, Jhon Alexander
author_facet Betancourt Arango, Juan Pablo
Patiño Ospina, Alejandro
Taborda Ocampo, Gonzalo
Fiscal Ladino, Jhon Alexander
topicspa_str_mv contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
topic contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
topic_facet contaminantes emergentes
ciencias ómicas
biomarcadores de toxicidad
xenometabolómica
emerging contaminants
omic sciences
toxicity biomarkers
xenometabolomics
citationvolume 19
citationissue 1
citationedition Núm. 1 , Año 2020 : Enero-Junio
publisher Universidad de Caldas
ispartofjournal Biosalud
source https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/9851
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
references Liem, J. F., Suryandari, D. A., Malik, S. G., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., & Pangaribuan, B. (2022). The Role of CYP2B6∗6 Gene Polymorphisms in 3,5,6-Trichloro- 2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers. Journal of Preventive Medicine and Public Health, 55(3), 280–288. https://doi.org/10.3961/jpmph.21.641
Mohamad-Shalan, N. A. A., Mustapha, N. M., & Mohamed, S. (2017). Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice. Regulatory Toxicology and Pharmacology, 83, 46–53. https://doi.org/10.1016/j.yrtph.2016.11.022
Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
Mendrick, D. L. (2008). Genomic and genetic biomarkers of toxicity. Toxicology, 245(3), 175–181. https://doi.org/10.1016/j.tox.2007.11.013
Medina, E. (2020). Aplicación de la metabolómica al control de la seguridad de los alimentos y la prevención de las enfermedades. [tesis de Maestría, Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/157877/Medina - Aplicación de la metabolómica en el control de la seguridad de los alimentos y en la pre....pdf?sequence=1&isAllowed=y
Mason, C. L., Leedale, J., Tasoulis, S., Jarman, I., Antoine, D. J., & Webb, S. D. (2018). Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT: Pharmacometrics \& Systems Pharmacology, 7(6), 394–403. https://doi.org/10.1002/psp4.12298
Marques, A., Lourenço, H. M., Nunes, M. L., Roseiro, C., Santos, C., Barranco, A., Rainieri, S., Langerholc, T., & Cencic, A. (2011). New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Research International, 44(2), 510–522. https://doi.org/10.1016/j.foodres.2010.12.003
Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M. da, & Rodrigues, A. S. de L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Science of The Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994
Lytou, A. E., Panagou, E. Z., & Nychas, G. J. E. (2019). Volatilomics for food quality and authentication. Current Opinion in Food Science, 28, 88–95. https://doi.org/10.1016/j.cofs.2019.10.003
Lu, T. P., & Chen, J. J. (2015). Identification of drug-induced toxicity biomarkers for treatment determination. Pharmaceutical Statistics, 14(4), 284–293. https://doi.org/10.1002/pst.1684
Lu, F., Cao, M., Wu, B., Li, X., Liu, H., Chen, D., & Liu, S. (2013). Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology, 149(1), 311–320. https://doi.org/10.1016/j.jep.2013.06.040
Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021
Louden, C., & Roberts, R. A. (2020). Validating In Vitro Toxicity Biomarkers Against Clinical Endpoints. In Biomarkers in Drug Discovery and Development (pp. 379–388). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119187547.ch19
Li, Z., Zheng, L., Shi, J., Zhang, G., Lu, L., Zhu, L., Zhang, J., & Liu, Z. (2015). Toxic markers of matrine determined using 1H-NMR-based metabolomics in cultured cells in vitro and rats in vivo. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/598412
Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631–632, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269
Li, Q., Yan, X., Zhang, Y., Zhou, J., Yang, L., Wu, S., Peng, C., & Pan, X. (2022). Risk compounds, potential mechanisms and biomarkers of traditional Chinese medicine-induced reproductive toxicity. Journal of Applied Toxicology, 42(11), 1734–1756. https://doi.org/10.1002/jat.4290
Köhler, H. R., Hiittenrauch, K., Berkus, M., Gräff, S., & Alberti, G. (1996). Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Applied Soil Ecology, 3(1), 1–15. https://doi.org/10.1016/0929-1393(95)00073-9
Khoo, L. W., Kow, A. S. F., Maulidiani, M., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). Hematological, biochemical, histopathological and1H-NMR Metabolomics application in acute toxicity evaluation of clinacanthus nutans water leaf extract. Molecules, 23(9). https://doi.org/10.3390/molecules23092172
Josić, Djuro, Rešetar, D., Peršurić, Ž., Martinović, T., & Kraljevic Pavelić, S. (2017). Chapter 29 - Detection of Microbial Toxins by -Omics Methods: A Growing Role of Proteomics. En M. L. Colgrave (Ed.), Proteomics in Food Science. (pp. 485–506). Academic Press. https://doi.org/10.1016/B978-0-12-804007-2.00029-1
Josić, D, Peršurić, Ž., Rešetar, D., Martinović, T., Saftić, L., & Kraljević Pavelić, S. (2017). Chapter Six - Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 81, 187–229). Academic Press. https://doi.org/10.1016/bs.afnr.2016.12.001
Jong, M.-C., Li, J., Noor, H. M., He, Y., & Gin, K. Y.H. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of The Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459
Jaskulak, M., & Grobelak, A. (2019). Chapter 6 - Cadmium Phytotoxicity—Biomarkers. En M. Hasanuzzaman, M. N. Vara Prasad, & K. Nahar (Eds.), Cadmium Tolerance in Plants. (pp. 177–191). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00006-0
Iqbal, M., Abbas, M., Adil, M., Nazir, A., & Ahmad, I. (2020). Aflatoxins Biosynthesis, Toxicity and Intervention Strategies: A Review. SSRN Electronic Journal, 5(3), 168–191. https://doi.org/10.2139/ssrn.3407341
Hassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain Phase i and II Enzymes as Toxicity Biomarker: An Overview. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2429-z
Gibson, J. (2015). Air pollution, climate change, and health. The Lancet. Oncology, 16(6), e269. https://doi.org/10.1016/S1470-2045(15)70238-X
Garcia-Calvo, E., Machuca, A., Nerín, C., Rosales-Conrado, N., Anunciação, D. S., & Luque-Garcia, J. L. (2020). Integration of untargeted and targeted mass spectrometry-based metabolomics provides novel insights into the potential toxicity associated to surfynol. Food and Chemical Toxicology, 146, 111849. https://doi.org/10.1016/j.fct.2020.111849
Gallego, J. L., & Olivero-Verbel, J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, 116558. https://doi.org/10.1016/j.envpol.2021.116558
Nusair, S. D., Ananbeh, M., Zayed, A., Ahmad, M. I., & Qinna, N. A. (2022). Postmortem sampling time effect on toxicity biomarkers in rats exposed to an acute lethal methomyl dose. Toxicology Reports, 9, 1674–1680. https://doi.org/10.1016/j.toxrep.2022.08.010
Pathak, S., Catanzaro, R., Vasan, D., Marotta, F., Chabria, Y., Jothimani, G., Verma, R. S., Ramachandran, M., Khuda-Bukhsh, A. R., & Banerjee, A. (2020). Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug and Chemical Toxicology, 43(5), 454–467. https://doi.org/10.1080/01480545.2018.1499773
Essers, A. J. A., Alink, G. M., Speijers, G. J. A., Alexander, J., Bouwmeister, P. J., van den Brandt, P. A., Ciere, S., Gry, J., Herrman, J., Kuiper, H. A., Mortby, E., Renwick, A. G., Shrimpton, D. H., Vainio, H., Vittozzi, L., & Koeman, J. H. (1998). Food plant toxicants and safety: Risk assessment and regulation of inherent toxicants in plant foods. Environmental Toxicology and Pharmacology, 5(3), 155–172. https://doi.org/10.1016/S1382-6689(98)00003-9
Yebenes, G. de M. J., Loza, E., & Carmona, L. (2015). Predicting Toxicity: Biomarkers and the Value of the Patient’s Opinion. In Current Pharmaceutical Design (Vol. 21, Issue 2, pp. 233–240). http://dx.doi.org/10.2174/1381612820666140825124352
Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova, 14(25), 121–138. https://doi.org/10.22490/24629448.173
Yu, D., Yong, D., & Dong, S. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. Journal of Environmental Sciences, 25(4), 785–790. https://doi.org/10.1016/S1001-0742(12)60119-3
Yesildag, K., Eroz, R., Genc, A., Dogan, T., & Satici, E. (2022). Evaluation of the protective effects of morin against acrylamide-induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. Journal of Food Biochemistry, 46(7), e14111. https://doi.org/10.1111/jfbc.14111
Yang, S., Ulhassan, Z., Shah, A. M., Khan, A. R., Azhar, W., Hamid, Y., Hussain, S., Sheteiwy, M. S., Salam, A., & Zhou, W. (2021). Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 166, 1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013
Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
Yan, H., Qiao, Z., Shen, B., Xiang, P., & Shen, M. (2016). Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Science International, 267, 129–135. https://doi.org/10.1016/j.forsciint.2016.08.027
Vasileiadis, S., Brunetti, G., Marzouk, E., Wakelin, S., Kowalchuk, G. A., Lombi, E., & Donner, E. (2018). Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 52(15), 8745–8755. https://doi.org/10.1021/acs.est.8b00677
Ullah, S., Ahmad, S., Altaf, Y., Dawar, F. U., Anjum, S. I., Baig, M. M. F. A., Fahad, S., Al-Misned, F., Atique, U., Guo, X., Nabi, G., & Wanghe, K. (2022). Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: A multi-biomarkers based study. Journal of King Saud University - Science, 34(2), 101752. https://doi.org/10.1016/j.jksus.2021.101752
Süloğlu, A. K., Koçkaya, E. A., & Selmanoğlu, G. (2022). Toxicity of benzyl benzoate as a food additive and pharmaceutical agent. Toxicology and Industrial Health, 38(4), 221–233. https://doi.org/10.1177/07482337221086133
Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by directinfusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10(6), 1050–1058. https://doi.org/10.1007/s11306-014-0693-3
Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95. https://doi.org/10.1016/j.ecoenv.2019.04.018
Shipelin, V. A., Smirnova, T. A., Gmoshinskii, I. V., & Tutelyan, V. A. (2015). Analysis of Toxicity Biomarkers of Fullerene C60 Nanoparticles by Confocal Fluorescent Microscopy. Bulletin of Experimental Biology and Medicine, 158(4), 443–449. https://doi.org/10.1007/s10517-015-2781-4
Sahu, S. C. (2022). Genomic and Epigenomic Biomarkers for Predictive Toxicity and Disease. In Genomic and Epigenomic Biomarkers of Toxicology and Disease (pp. 1–5). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781119807704.ch1
Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047
Ríos-Sánchez, E., Gónzalez-Zamora, A., Olivas-Calderón, E. H., Anguiano-Vega, G. A., & Pérez-Morales, R. (2019). Hidrocarburos Aromáticos Policíclicos: Una revisión actualizada de un problema antiguo. Quimica Farmacéutica y Clinica. 2(9), 36–47.
Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., Chari, B. P. V, Saka, S., Vechalapu, R. R., Kamal, M. A., Tarasov, V. V, Chubarev, V. N., Siva Kumar, K., & Aliev, G. (2018). Chapter 2 - Probiotics: Supplements, Food, Pharmaceutical Industry. En A. M. Grumezescu & A. M. Holban (Eds.). Therapeutic, Probiotic, and Unconventional Foods. (pp. 15–25). Academic Press. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
Puente, C., & Ramaroson, R. (2006). Medicion y analisis de los compuestos organicos volatiles en la atmosfera: Ultimas tecnicas, aplicabilidad y resultados a nivel europeo. Revista ION, 19(1), 43–47. https://revistas.uis.edu.co/index.php/revistaion/article/view/539
Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration & Biodegradation, 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992
Fan, A. M. (2014). Chapter 64 - Biomarkers in toxicology, risk assessment, and environmental chemical regulations. Biomarkers in Toxicology, pp. 1057–1080. Academic Press. https://doi.org/10.1016/B978-0-12-404630-6.00064-6
El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002
Dong, H., Yan, G. L., Han, Y., Sun, H., Zhang, A. H., Li, X. N., & Wang, X. J. (2015). UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chinese Journal of Natural Medicines, 13(9), 687–698. https://doi.org/10.1016/S1875-5364(15)30067-4
Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842
Afsa, S., Vieira, M., Nogueira, A., Mansour, H., & Nunes, B. (2022). A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. Environmental Science and Pollution Research, 29(13), 19132–19147. https://doi.org/10.1007/s11356-021-16977-7
Al-Salhi, R., Abdul-Sada, A., Lange, A., Tyler, C., & Hill, E. (2012). The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environmental Science & Technology, 46(16), 9080–9088. https://doi.org/10.1021/es3014453
Capitão, A., Santos, J., Barreto, A., Amorim, M. J. B., & Maria, V. L. (2022). Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 12(9). https://doi.org/10.3390/nano12091478
Do Amaral, A., Costa-Gomes, J., Weimer, G., Marins, A., Loro, V., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114
Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y. K., & Shukla, S. (2022). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2022.2059650
Dear, J. W., & Antoine, D. J. (2014). Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Review of Clinical Pharmacology, 7(2), 181–189. https://doi.org/10.1586/17512433.2014.880650
De Oliveira, J. S. P., Vieira, L. G., Carvalho, W. F., de Souza, M. B., de Lima Rodrigues, A. S., Simões, K., de Melo De Silva, D., dos Santos Mendonça, J., Hirano, L. Q. L., Santos, A. L. Q., & Malafaia, G. (2020). Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment, 737, 140304. https://doi.org/10.1016/j.scitotenv.2020.140304
David, A., Abdul-Sada, A., Lange, A., Tyler, C. R., & Hill, E. M. (2014). A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography. A, 1365, 72–85. https://doi.org/10.1016/j.chroma.2014.09.001
Dang, Q., Zhao, X., Yang, T., Gong, T., He, X., Tan, W., & Xi, B. (2022). Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Science of The Total Environment, 824, 153837. https://doi.org/10.1016/j.scitotenv.2022.153837
Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., & Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104. https://doi.org/10.1016/j.cotox.2020.01.002
Chetwynd, A. J., David, A., Hill, E. M., & Abdul-Sada, A. (2014). Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno) metabolome. Journal of Mass Spectrometry : JMS, 49(10), 1063–1069. https://doi.org/10.1002/jms.3426
Chen, W., Zhu, R., Ye, X., Sun, Y., Tang, Q., Liu, Y., Yan, F., Yu, T., Zheng, X., & Tu, P. (2022). Foodderived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food Funct., 13(3), 1447–1458. https://doi.org/10.1039/D1FO02983E
Capela E Silva, F., Sousa, A. C., Pastorinho, M. R., Mizukawa, H., & Ishizuka, M. (2022). Editorial: Animal Poisoning and Biomarkers of Toxicity. In Frontiers in veterinary science (Vol. 9, p. 891483). https://doi.org/10.3389/fvets.2022.891483
Aliferis, K. (2020). Chapter 6 - Metabolomics in plant protection product research and development: discovering the mode(s)-of-action and mechanisms of toxicity. En D. Álvarez-Muñoz & M. B. T.-E. M. Farré (eds.). Environmental Metabolomics. (pp. 163–194). Elsevier. https://doi.org/10.1016/C2018-0-03345-9
Cao, W., Wu, Z., Liang, C., Jing, P., Cui, S., Yang, G., & Lin, L. (2018). Determination of deltamethrin and its toxicity biomarkers in rabbit urine by high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography (Se Pu), 36(6), 523 – 530. https://doi.org/10.3724/SP.J.1123.2018.03002
Burdisso, P., Zoni, J., Raisa, R. M., & Vila, A. J. (2017). Metabolómica: Aplicaciones clave en salud y producción de alimentos. Revista BCR, 22–28.
Budny, J. A. (2014). Commentary: The French revolution, toxicity biomarkers and digging holes. International Journal of Toxicology, 33(4), 268–270. https://doi.org/10.1177/1091581814537036
Brendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual- Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 69(5), 1727–1738. https://doi.org/10.1021/acs.jafc.0c07447
Brandelli, A., Lopes, N. A., & Boelter, J. F. (2017). 2 - Food applications of nanostructured antimicrobials. In A. M. B. T.-F. P. Grumezescu (Ed.), Nanotechnology in the Agri-Food Industry (pp. 35–74). Academic Press. https://doi.org/10.1016/B978-0-12-804303-5.00002-X
Blaauboer, B. J., Boekelheide, K., Clewell, H. J., Daneshian, M., Dingemans, M. M. L., Goldberg, A. M., Heneweer, M., Jaworska, J., Kramer, N. I., Leist, M., Seibert, H., Testai, E., Vandebriel, R. J., Yager, J. D., & Zurlo, J. (2012). The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex, 29(4), 411–425. https://doi.org/10.14573/altex.2012.4.411
Beyoğlu, D., Zhou, Y., Chen, C., & Idle, J. R. (2018). Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochemical Pharmacology, 156, 491–500. https://doi.org/10.1016/j.bcp.2018.09.022
Betancourt-Arango, J. P., Villaroel-Solis, E. E., Fiscal-Ladino, J. A., & Taborda-Ocampo, G. (2024). Volatilomics: An emerging discipline within Omics Sciences - A systematic review [version 1; peer review: awaiting peer review]. F1000Research, 13(991). https://doi.org/10.12688/f1000research.149773.1
Beger, R., Yu, L. R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65. https://doi.org/10.1016/j.cotox.2017.06.008
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_2df8fbb1
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2025-02-05
date_accessioned 2025-02-05T00:00:00Z
date_available 2025-02-05T00:00:00Z
url https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/9851
url_doi https://doi.org/10.17151/biosa.2020.19.1.1
issn 1657-9550
eissn 2462-960X
doi 10.17151/biosa.2020.19.1.1
citationstartpage 7
citationendpage 30
url2_str_mv https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/9851/7756
_version_ 1823467816840331264