Titulo:

Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
.

Guardado en:

2389-9182

29

2024-01-01

40

52

Temas Agrarios - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id oai:revistas.unicordoba.edu.co:article_3407
record_format ojs
spelling Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
Tabesh, Mohammadreza
Hashemi, Seyed Armin
Tabibian, Sahar
Abbasipour, Mohsen
Hosseini, Maghsood
SVM
Forest classification
Supervised classification
SVM
clasificación florestal
clasificación supervisionada
29
1
Núm. 1 , Año 2024 : Publicación continua - Volumen 29(1) de 2024
Artículo de revista
Journal article
2024-01-01T00:00:00Z
2024-01-01T00:00:00Z
2024-01-01
application/pdf
application/pdf
Universidad de Córdoba
Temas Agrarios
2389-9182
https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3407
10.21897/xsxr5z31
https://doi.org/10.21897/xsxr5z31
http://creativecommons.org/licenses/by-nc/4.0
Temas Agrarios - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
40
52
Afify. H.A. 2011. Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area, Vol 50, No 2, P 187-195.
Bauer, T. and Steinnocher, K. 2001. Per-parcel Land Use Classification in Urban Areas Applying a Rule-based Technique, GeoBIT/GIS, Vol. 6, pp. 24-27
Cervantes, J., Garcia-Lamont, F., Rodriguez-Mazahua, L. and Lopez, A. 2020. A comprehensive survey on support vector machine classification: Applications, challenges and trends.Neurocomputing, no. 408:189-215.
Chen, D., Stow, D.A. and Gong, P. 2004. Examining the Effect of Spatial Resolution and Texture Window Size on Classification Accuracy: An Urban Environment Case, International Journal of Remote Sensing, Vol. 25 (11): 2177-2192.
Cihlar, J. and Jansen, L.J.M. 2001. From Land Cover to Land Use: A Method for Efficient Land Use Mapping Over Large Areas, Professional Geographer, Vol. 53, No. 2, pp. 275-289.
Fazli Farsani, A., Qadawi. R., and Farzaneh. M. 2014. Investigating the performance of land use classification algorithms using image fusion techniques (case study: Beheshtabad sub-basin), Journal of Remote Sensing and Geographical Information System in Natural Resources, 6(1): 91- 106.
Gholoobi, M., Tayyebi, A., Taleyi, M. and Tayyebi, A.H. 2010.Comparing Pixel Based and Object Based Approaches in Land Use Classification in Mountainous Areas. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part , Kyoto Japan 2010, Commission WG VIII/8 ˚ Land, PP. 789-794.
Herold, M., Scepan, J., Müller, A. and Günther S. 2002. Object-oriented Mapping and Analysis of Urban Land use/cover Using IKONOS Data, Proceedings of 22nd EARSEL Symposium Geoinformation for European, wide integration, Prague, June.
Higginbottom, T.P., Collar, N.J., Symeonaki, E. and Marsden, S.J. 2019. Deforestation dynamics in an endemic-rich mountain system: Conservation successes and challenges in West Java 1990–2015. Biological Conservation, 229: 152-159.
Hilbert, D.W. and Ostendorf, B. 2001. The utility of artificial neural networks for modeling the distribution of vegetation in past, present and future climates. Ecological Modeling, 146:311-327.
Ingram, J.C., Dawson, T.P. and Whittaker, R.J. 2005. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94:491-507.
Jain, R. K. and Jain, K. 2017. Modeling Urban Land Cover Growth Dynamics Based on Land Change Modeler (LCM) Using Remote Sensing: A Case Study of Gurgaon, India, Advances in Computational Sciences and Technology, ISSN 0973 -6107. 10 (10): 2947-2961.
Kazeminia, A., Rangzan, K. and Mahmoud Abadi, M. 2016. Studying the severity of desertification using the Medalus model (case study: West Ahvaz lands), Journal of Remote Sensing and Geographical Information System in Natural Resources, 8(2): 111-126.
Lackner, M. and Conway, T.M. 2008. Determining Land-use Information from Land Cover Through an Object-oriented Classification of IKONOS Imagery, Canadian Journal of Remote Sensing 34 (2): 77-92.
Liu, T. and Yang, X. 2015.Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56: 42-54.
Longley, P.A. and Mesev, V. 2000. On the measurement and generalization of urban form. Environment and Planning A, 32(3):473-488.
Lu, D., Mausel, P., Brondi´zio, E. and Moran, E. 2004. Change detection techniques. INT. J. REMOTE SENSING, JUNE 20, 2004, VOL. 25, NO. 12, 2365–2407.
Mather, P.M. 2005. Computer processing of remotely-sensed images, Third Edition, John iley and Sons, Ltd, 319p.
Mohammadi, S.H., Habashi, K.H. and Pourmanafi, S. 2017. Monitoring and forecasting changes in land use/cover and its relationship with drought (Case study: sub-basin of Parcel B2, Zaindeh Rood watershed). Journal of Remote Sensing and Geographical Information System in Natural Resources, 9(1): 24-39.
Rafiei, R. M., Abdul Rasul, S. and Khorasani, Nemat, E. 2018. Determining land use changes by comparison method after classification of IRS and LandSat satellite images, Journal of Remote Sensing and GIS Application in Natural Resources Sciences, 3: 53-61.
Richards, J. A. and Richards, J. A. 1999. Remote sensing digital image analysis. 3: Springer.
Samadzadegan, F. and Mahmoudi F. 2014. Data integration in remote sensing and concepts and methods. Publishing Institute, University of Tehran. 312.
Stehman, S.V. 2004. A critical evaluation of the normalized error matrix in map accuracy assessment. Photogrammetric Engineering and Remote Sensing, 70: 743-751.
Sugumaran, R. 2001. Forest Land Cover Classification Using Statistical and Artificial Neural Network Approaches Applied to IRS LISS - III Sensor, Geocarto International, Vol. 16, No. 2, pp. 39-44.
Swetanisha, S., Amiya, R. and Dayal, K. 2022. Land use/land cover classification using machine learning models. International Journal of Electrical & Computer Engineering., 12 (2) : 2040-2046.
Wu, Q. Li, H.Q. Wang, R.S., Paulussen, J., He, Y., Wang, M., Wang, B.H. and Wang Z. 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78(4): 322-333
Zhao, G. X., Lin, G. and Warner, T. 2008.Using the maticmapper data for change detection and sustainable use of cultivated land: A case study in the Yellow river delta, China", International Journal of Remote Sensing, 25 (13): 25-40.
https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/download/3407/5825
https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/download/3407/5874
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CORDOBA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECORDOBA/logo.png
country_str Colombia
collection Temas Agrarios
title Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
spellingShingle Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
Tabesh, Mohammadreza
Hashemi, Seyed Armin
Tabibian, Sahar
Abbasipour, Mohsen
Hosseini, Maghsood
Forest classification
Supervised classification
clasificación florestal
clasificación supervisionada
title_short Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
title_full Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
title_fullStr Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
title_full_unstemmed Investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de Irán
title_sort investigación de la clasificación de máquinas de vectores de soporte en la estimación del área de bosques caducifolios latifoliados en el norte de irán
author Tabesh, Mohammadreza
Hashemi, Seyed Armin
Tabibian, Sahar
Abbasipour, Mohsen
Hosseini, Maghsood
author_facet Tabesh, Mohammadreza
Hashemi, Seyed Armin
Tabibian, Sahar
Abbasipour, Mohsen
Hosseini, Maghsood
topic Forest classification
Supervised classification
clasificación florestal
clasificación supervisionada
topic_facet Forest classification
Supervised classification
clasificación florestal
clasificación supervisionada
citationvolume 29
citationissue 1
citationedition Núm. 1 , Año 2024 : Publicación continua - Volumen 29(1) de 2024
publisher Universidad de Córdoba
ispartofjournal Temas Agrarios
source https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3407
language
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Temas Agrarios - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01T00:00:00Z
date_available 2024-01-01T00:00:00Z
url https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3407
url_doi https://doi.org/10.21897/xsxr5z31
eissn 2389-9182
doi 10.21897/xsxr5z31
citationstartpage 40
citationendpage 52
url2_str_mv https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/download/3407/5825
https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/download/3407/5874
_version_ 1811200310036660224