Titulo:

Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
.

Guardado en:

0122-0268

1909-0544

28

2023-11-02

e3202

e3202

Martha Jeannette Torres Virviescas, Hernán Alejandro Henao Castro, Johana Paola Coulson-Reinel , Lesly Patricia Tejeda-Benítez - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id oai:revistas.unicordoba.edu.co:article_3202
record_format ojs
spelling Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
Torres-Virviescas, Martha Jeannette
Henao-Castro, Hernán Alejandro
Coulson-Reinel , Johana Paola
Tejeda-Benítez, Lesly Patricia
Freshwater algae
marine algae
bioprospection
contamination
prospection
hydrobiological resources
algas dulceacuícolas
algas marinas
bioprospección
contaminación
prospección
recursos hidrobiológicos
28
3
Núm. 3 , Año 2023 : Revista MVZ Córdoba Volumen 28(3) Septiembre-Diciembre 2023
Artículo de revista
Journal article
2023-11-02T06:36:35Z
2023-11-02T06:36:35Z
2023-11-02
application/pdf
application/pdf
audio/mpeg
audio/mpeg
Universidad de Córdoba
Revista MVZ Córdoba
0122-0268
1909-0544
https://revistamvz.unicordoba.edu.co/article/view/3202
10.21897/rmvz.3202
https://doi.org/10.21897/rmvz.3202
https://creativecommons.org/licenses/by-nc-sa/4.0
Martha Jeannette Torres Virviescas, Hernán Alejandro Henao Castro, Johana Paola Coulson-Reinel , Lesly Patricia Tejeda-Benítez - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
e3202
e3202
El Ouaer M, Turki N, Kallel A, Halaoui M, Trabelsi I, Hassen A. Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp. Environ Dev Sustain. 2019; 22:2651– 2671 https://doi.org/10.1007/s10668-019- 00314-7
Nawas T, Rahman A, Pan S, Dixon K, Petri B, Selvaratnam T. A Review of Landfill Leachate Treatment by Microalgae: Current Status and Future Directions. Processes. 2020; 8(384). https://doi.org/10.3390/pr8040384
Porto B, Gonçalves AL, Esteves AF, De Souza SMA, De Souza, AAU, Vilar VJP, et al. Assessing the potential of microalgae for nutrients removal from a landfill leachate using an innovative tubular photobioreactor. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.127546
Carrizales LT, Panca CMA. Evaluación del impacto de la contaminación de los residuos sólidos sobre suelo y agua del botadero sanitario de Cancharani–Puno. Ñawparisun. 2020; 2(4):29-36. https://unaj.edu.pe/ revista/index.php/vpin/article/view/104
Baldiris-Navarro I, Virviescas M, Aponte, J. Evaluación del uso de la microalga Chlorella vulgaris como Biorremediadora de vertimientos de la Industria Acuícola en el Caribe colombiano. Teknos. 2019; 19(1):10- 15. https://doi.org/10.25044/25392190.988
Hao T B, Balamurugan S, Zhang Z H, Liu S F, Wang X, Li D W, et al. Effective Bioremediation of Tobacco Wastewater by Microalgae at Acidic PH for Synergistic Biomass and Lipid Accumulation. J. Hazard. Mater. 2022; 426:127820. https://doi. org/10.1016/j.jhazmat.2021.127820.
Priya A K, Jalil A A, Vadivel S, Dutta K, Rajendran S, Fujii M, et al. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends . Chemosphere . 2022; 305:135375. https://doi.org/10.1016/j. chemosphere.2022.135375
Vo H N P, Ngo H H, Guo W, Liu Y, Chang S W, Nguyen D D, et al. Identification of the pollutants removal and mechanism by microalgae in saline wastewater. Bioresour Technol. 2019; 275:44-52. https://doi. org/10.1016/j.biortech.2018.12.026
Sousa H, Sousa CA, Simões LC, Simões M. Microalgal-based removal of contaminants of emerging concern. J Hazard Mater. 2022; 423:127153. https://pubmed.ncbi.nlm.nih. gov/34543999/
Cobos M, Estela S, Castro C, Grandez M, Tresierra A, Cabezudo C, et al. Potential of Native Microalgae from the Peruvian Amazon on the Removal of Pollutants. Progress in Microalgae Research - A Path for Shaping Sustainable Futures. IntechOpen; 2022. http://dx.doi.org/10.5772/ intechopen.105686
Viegas C, Nobre C, Mota A, Vilarinho C, Gouveia L, Gonçalves, M. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. J Environ Chem Eng. 2021; 9(3):105187. https://doi.org/10.1016/j. jece.2021.105187
Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour Technol. 2014; 156:322-328. https://doi.org/10.1016/j. biortech.2013.12.112
Infante C, Angulo E, Zárate A, Florez J Z, Barrios F, Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av Cien Ing. 2012; 3(2):159-164. https://www. executivebs.org/publishing.cl/avancesen-ciencias-e-ingenieria-vol-3-nro-2-ano2012-articulo-16/
Ruiz-Martinez A, Martin N, Romero I, Seco A, Ferrer J. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol. 2012; 126:247-253. https://doi. org/10.1016/j.biortech.2012.09.022
Torres M, Sánchez J. Avances del Banco de Cepas de Microalgas en el Centro Internacional Náutico Fluvial y Portuario del SENA. Rev SENNOVA, 2016; 2(1):30-41. https://revistas.sena.edu.co/index.php/ sennova/article/view/536
Forero-Cujiño M A, Montengro, L C, Pinilla-Agudelo G A, Melgarejo-Muñoz L M. Immobilization of microalgae Scenedesmus ovalternus (Scenedesmaceae) and Chlorella vulgaris (Chlorellaceae) in calcium alginate beads. Acta Biol Colomb. 2016; 21(2):437- 442. https://doi.org/10.15446/abc. v21n2.51253
Ramos R, Pizarro R. Crecimiento y capacidad de biorremediación de Chlorella vulgaris (Trebouxiophycea, Chlorophyta) cultivada en aguas residuales generados en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Rev Biol Mar Oceanogr. . 2018; 53(1):75-86. http://dx.doi.org/10.4067/ S0718-19572018000100075
Das C, Ramaiah N, Pereira E, Naseera K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int J Phytoremediation. 2018; 20(3):284- 292. https://doi.org/10.1080/15226514.2 017.1374338
Hu D, Zhang J, Chu R, Yin Z, Hu J, Kristianto Y, et al. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Bioresour Technol. 2021; 342:126003. https://pubmed.ncbi.nlm.nih. gov/34571333/
Coulson JP, Torres MJ, Henao-Castro A, Díaz, G X. Evaluación del potencial de cultivo de cuatro especies microalgales nativas del departamento de Bolívar, Colombia. Rev Mutis. 2022; 12(2). https://doi. org/10.21789/22561498.1821
Arredondo B, Voltolina D, Zenteno T, Arce M, Gomez G. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal 2da edición. La Paz: Centro de Investigaciones Biológicas del Noroeste; 2017.
Mishra P, Pandey C M, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019; 22(1):67-72. https://doi. org/10.4103/aca.ACA_157_18
Nahm F S. Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean J Anesthesiol. 2016; 69(1):8-14. https://doi.org/10.4097/ kjae.2016.69.1.8
Dinno A . Nonparametricpairwise multiple comparisons in independent g r o u p s u s i n g D u n n ’ s t e s t . S t a t a J. 2015; 15(1):292-300. https://doi. org/10.1177/1536867X1501500117
Rebekić A, Lončarić Z, Petrović S, Marić S. Pearson’s or Spearman’s correlation coefficient-which one to use?. Poljoprivreda. 2015; 21(2):47-54. https://doi. org/10.18047/poljo.21.2.8
Suchéras-Marx B, Escarguel G, Ferreira J, Hammer Ø. Statistical confidence intervals for relative abundances and abundancebased ratios: Simple practical solutions for an old overlooked question. Mar Micropaleontol. 2019; 151:101751. https:// doi.org/10.1016/j.marmicro.2019.101751
Gonçalves A, Pires J, Simoes M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017; 24(B):403-415. https://doi.org/10.1016/j. algal.2016.11.008
Jacome C, Ballesteros C, Rea E, Rea L, Poma P. Microalgas en el tratamiento de aguas residuales generadas en industrias de curtiembres. Cienc Tecn UTEQ. 2021; 14(2):47-55. https://doi.org/10.18779/cyt. v14i2.502
Peleg M, Corradini MG, Normand MD. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res Int. 2007; 40(7):808-818. https://doi. org/10.1016/j.foodres.2007.01.012
Paskuliakova A, McGowan T, Tonry S, Touzet N. Microalgal bioremediation of nitrogenous compounds in landfill leachate – The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Research . 2018; 32:162–171. https://doi.org/10.1016/j. algal.2018.03.010
Vitola D, Pérez A, Montes D. Utilización de microalgas como alternativa para la remoción de metales pesados. RIAA. 2022; 13(1):195-203. https://doi. org/10.22490/21456453.4568 32. Baran T, Sargin I, Kaya M, Menteş A, Ceter, T. Design and application of sporopollenin microcapsule supported palladium catalyst: Remarkably high turnover frequency and reusability in catalysis of biaryls. Colloid Interface Sci. 2017; 486:194–203. https:// doi.org/10.1016/j.jcis.2016.09.071
Liu X, Hong Y, Gu W. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. Water Reuse. 2021; 11(2):301-311. https://doi. org/10.2166/wrd.2021.088
Nambukrishnan V, Singaram J. Enhanced biodiesel production by optimizing growth conditions of Chlorella marina in tannery wastewater. Fuel. 2022; 316:123431. https:// doi.org/10.1016/j.fuel.2022.123431
Shaari AL, Che Sa SN, Surif M, Zolkarnain N, Ghazali R. Growth of Marine Microalgae in Landfill Leachate and Their Ability as Pollutants Removal. Trop Life Sci Res. 2021; 32(2):133-146. https://doi.org/10.21315/ tlsr2021.32.2.9
Al Dayel M F, El Sherif F. Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi J Biol Sci. 2021; 28(3):1687–1696. https:// doi.org/10.1016/j.sjbs.2020.12.007
Mitra M, Mishra S. Effect of glucose on growth and fatty acid composition of an euryhaline eustigmatophyte Nannochloropsis oceanica under mixotrophic culture condition, Bioresour. Technol. Rep. 2018; 3:147–153. https://doi.org/10.1016/j. biteb.2018.07.013
Marques I M, Oliveira A C V, de Oliveira O M C, Sales E A, Moreira Í T A. A photobioreactor using Nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. Chemosphere. 2021; 281:130775. https://doi.org/10.1016/j. chemosphere.2021.130775
Hernandez-Perez A, Jabbé JI. Microalgas, cultivo y beneficios. Rev Biol Mar Oceanogr. 2014; 49(2):157-173. https://doi. org/10.4067/S0718-19572014000200001
https://revistamvz.unicordoba.edu.co/article/download/3202/5809
https://revistamvz.unicordoba.edu.co/article/download/3202/5810
https://revistamvz.unicordoba.edu.co/article/download/3202/5583
https://revistamvz.unicordoba.edu.co/article/download/3202/5584
https://revistamvz.unicordoba.edu.co/article/download/3202/5585
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CORDOBA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECORDOBA/logo.png
country_str Colombia
collection Revista MVZ Córdoba
title Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
spellingShingle Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
Torres-Virviescas, Martha Jeannette
Henao-Castro, Hernán Alejandro
Coulson-Reinel , Johana Paola
Tejeda-Benítez, Lesly Patricia
Freshwater algae
marine algae
bioprospection
contamination
prospection
hydrobiological resources
algas dulceacuícolas
algas marinas
bioprospección
contaminación
prospección
recursos hidrobiológicos
title_short Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
title_full Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
title_fullStr Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
title_full_unstemmed Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
title_sort efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas
author Torres-Virviescas, Martha Jeannette
Henao-Castro, Hernán Alejandro
Coulson-Reinel , Johana Paola
Tejeda-Benítez, Lesly Patricia
author_facet Torres-Virviescas, Martha Jeannette
Henao-Castro, Hernán Alejandro
Coulson-Reinel , Johana Paola
Tejeda-Benítez, Lesly Patricia
topic Freshwater algae
marine algae
bioprospection
contamination
prospection
hydrobiological resources
algas dulceacuícolas
algas marinas
bioprospección
contaminación
prospección
recursos hidrobiológicos
topic_facet Freshwater algae
marine algae
bioprospection
contamination
prospection
hydrobiological resources
algas dulceacuícolas
algas marinas
bioprospección
contaminación
prospección
recursos hidrobiológicos
citationvolume 28
citationissue 3
citationedition Núm. 3 , Año 2023 : Revista MVZ Córdoba Volumen 28(3) Septiembre-Diciembre 2023
publisher Universidad de Córdoba
ispartofjournal Revista MVZ Córdoba
source https://revistamvz.unicordoba.edu.co/article/view/3202
language
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Martha Jeannette Torres Virviescas, Hernán Alejandro Henao Castro, Johana Paola Coulson-Reinel , Lesly Patricia Tejeda-Benítez - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-11-02
date_accessioned 2023-11-02T06:36:35Z
date_available 2023-11-02T06:36:35Z
url https://revistamvz.unicordoba.edu.co/article/view/3202
url_doi https://doi.org/10.21897/rmvz.3202
issn 0122-0268
eissn 1909-0544
doi 10.21897/rmvz.3202
citationstartpage e3202
citationendpage e3202
url2_str_mv https://revistamvz.unicordoba.edu.co/article/download/3202/5809
https://revistamvz.unicordoba.edu.co/article/download/3202/5810
url7_str_mv https://revistamvz.unicordoba.edu.co/article/download/3202/5583
https://revistamvz.unicordoba.edu.co/article/download/3202/5584
url3_str_mv https://revistamvz.unicordoba.edu.co/article/download/3202/5585
_version_ 1811201146829668352