Titulo:

Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
.

Guardado en:

0122-0268

1909-0544

26

2021-05-02

e2317

e2317

Rafael Arturo Torres-Fajardo, Rosa Isabel Higuera-Piedrahita - 2021

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id oai:revistas.unicordoba.edu.co:article_2317
record_format ojs
spelling Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
Torres-Fajardo, Rafael Arturo
Higuera-Piedrahita, Rosa Isabel
Ethnoveterinary
gastrointestinal nematodes
goat
parasite egg count
parasitic diseases
plant secondary metabolites
sheep
Conteo de huevos de parásitos
enfermedades parasitarias
etnoveterinaria
nematodos gastrointestinales
cabras
metabolitos secundarios de plantas
ovejas
26
3
Núm. 3 , Año 2021 : Revista MVZ Córdoba Volumen 26(3) Septiembre-Diciembre 2021
Artículo de revista
Journal article
2021-05-02T00:00:00Z
2021-05-02T00:00:00Z
2021-05-02
application/pdf
application/pdf
application/zip
application/zip
application/xml
application/xml
audio/mpeg
audio/mpeg
Universidad de Córdoba
Revista MVZ Córdoba
0122-0268
1909-0544
https://revistamvz.unicordoba.edu.co/article/view/e2317
10.21897/rmvz.2317
https://doi.org/10.21897/rmvz.2317
https://creativecommons.org/licenses/by-nc-sa/4.0/
Rafael Arturo Torres-Fajardo, Rosa Isabel Higuera-Piedrahita - 2021
e2317
e2317
Mavrot F, Hertzberg H, Torgerson P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit Vectors. 2015; 8(1):1–11. http://dx.doi.org/10.1186/s13071-015-1164-z
Zajac AM, Garza J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet Clin North Am - Food Anim Pract. 2020; 36(1):73–87. https://doi.org/10.1016/j.cvfa.2019.12.005
Kaplan RM, Vidyashankar AN. An inconvenient truth: global worming and anthelmintic resistance. Vet Parasitol. 2012; 186(1-2):70-78. https://doi.org/10.1016/j.vetpar.2011.11.048
Torres-Acosta JFJ, Mendoza-de-Gives P, Aguilar-Caballero AJ, Cuéllar-Ordaz JA. Anthelmintic resistance in sheep farms: update of the situation in the American continent. Vet Parasitol. 2012; 189(1):89-96. https://doi.org/10.1016/j.vetpar.2012.03.037
Scott I, Pomroy WE, Kenyon PR, Smith G, Adlington B, Moss A. Lack of efficacy of monepantel against Teladorsagia circumcinta and Trichostrongylus colubriformis. Vet Parasitol. 2013; 198(1-2):166-171. https://doi.org/10.1016/j.vetpar.2013.07.037
Van-de-Brom R, Moll L, Kappert C, Vellema P. Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol; 2015; 209(3-4):278-280. https://doi.org/10.1016/j.vetpar.2017.09.010
Salles N, Love S. Resistance of Haemonchus sp. to monepantel and reduced efficacy of a derquantel / abamectin combination confirmed in sheep in NSW, Australia. Vet Parasitol. 2016; 228:193-196. https://doi.org/10.1016/j.vetpar.2016.08.016
Cerutti J, Cooper L, Torrents J, Suárez G, Anziani OS. Eficacia reducida de derquantel y abamectina en ovinos y caprinos con Haemonchus sp resistentes a lactonas macrocíclicas. Rev Vet. 2018; 29(1):22-25. http://dx.doi.org/10.30972/vet.2912782
Charlier J, Rinaldi L, Musella V, Ploeger HW, Chartier C, Rose Vineer H, et al. Initial assessment of the burden of parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med. 2020; 182:105103. https://doi.org/10.1016/j.prevetmed.2020.105103
Charlier J, van der Voort M, Kenyon F, Skuce P, Vercruysse J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014; 30(7):361-367. https://doi.org/10.1016/j.pt.2014.04.009
Torres-Acosta JFJ, Hoste H, Sandoval-Castro CA, Torres-Fajardo RA, Ventura-Cordero J, González-Pech PG, et al. The art of war against gastrointestinal nematodes in sheep and goat herds of the tropics. Rev Acad (Pontif Univ Catól Paraná, Online). 2019; 17(1):39–46. https://periodicos.pucpr.br/index.php/cienciaanimal/issue/view/1977
Burke JM, Miller JE. Sustainable approaches to parasite control in ruminant livestock. Vet Clin North Am Food Anim Pract. 2020; 36(1):89-107. https://doi.org/10.1016/j.cvfa.2019.11.007
Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H, Aguilar-Caballero AJ, Cámara-Sarmiento MA, Alonso-Díaz MA. Nutritional manipulation of sheep and goats for the control of gastrointestinal nematodes under hot humid and subhumid tropical conditions. Small Rum Res. 2012; 103(1):28-40. https://doi.org/10.1016/j.smallrumres.2011.10.016
Hoste H, Torres-Acosta JFJ, Quijada J, Chan-Pérez I, Dakheel MM, Kommuru DS, et al. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv Parasitol. 2016; 93:239-351. https://doi.org/10.1016/bs.apar.2016.02.025
Heckendorn F, Bieber A, Werne A, Saratsis A, Maurer V, Stricker C. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes. Parasite. 2017; 24:32. https://doi.org10.1051/parasite/2017033
Bishop SC. A consideration of resistance and tolerance for ruminant nematode infections. Front Genet. 2012; 3:168. https://doi.org/10.3389/fgene.2012.00168
Claerebout E, Geldholf P. Helminth vaccines in ruminants: From development to application. Vet Clin North Am Food Anim Pract. 2020; 36(1):159-171. https://doi.org/10.1016/j.cvfa.2019.10.001
Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, et al. Advances in the development of anti-Haemonchus contortus vaccines: Challenges, opportunities and perspectives. Vaccines. 2020; 8(3):555. https://doi.org/10.3390/vaccines8030555
Galindo-Barboza AJ, Torres-Acosta JFJ, Cámara-Sarmiento R, Sandoval-Castro CA, Aguilar-Caballero AJ, Ojeda-Robertos NF, et al. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in sheep. Vet Parasitol. 2011; 176(2-3):201-207. https://doi.org/10.1016/j.vetpar.2010.11.012
Whitley NC, Dykes G, Vazquez J, Burke JM, Terrill T. Effect of Copper Oxide Wire Particles without anthelmintic treatment or anthelmintic treatment alone on gastrointestinal nematode (GIN) fecal egg counts in goats. J Anim Sci; 2021: 99(Suppl.S2). https://doi-org.ezproxy.javeriana.edu.co/10.1093/jas/skab096.079
Mahieu M, Arquet R, Fleury J, Bonneau M, Mandonnet N. Mixed grazing of adult goats and cattle: Lessons from long-term monitoring. Vet Parasitol. 2020; 280:109087. https://doi.org/10.1016/j.vetpar.2020.109087
Szewc M, De Waal T, Zintl A. Biological methods for the control of gastrointestinal nematodes. Vet J. 2021; 268:105602. https://doi.org/10.1016/j.tvjl.2020.105602
Comans-Pérez RJ, Sánchez JE, Al-Ani LKT, González-Cortázar M, Castañeda-Ramírez GS, Mendoza-de-Gives P, et al. Biological control of sheep nematode Haemonchus contortus using edible mushrooms. Biol Control. 2021; 152:104420. https://doi.org/10.1016/j.biocontrol.2020.104420
Borges DGL, Borges FA. Plants and their medicinal potential for controlling gastrointestinal nematodes in ruminants. Nematoda. 2016; 3e:92016. https://dx.doi.org/10.4322/nematoda.00916
García-Bustos JF, Sleebs BE, Gasser RB. An appraisal of natural products active against parasitic nematodes of animals. Parasit Vectors. 2019; 12(1):1-22. https://doi.org/10.1186/s13071-019-3537-1
Liu M, Panda SK, Luyten W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules. 2020; 10(3):426. https://doi.org/10.3390/biom10030426
Mithöfer A, Boland W. Plant defense against herbivores: Chemical aspects. Annu Rev Plant Biol. 2012; 63:431-450. https://doi.org/10.1146/annurev-arplant-042110-103854
Agrawal AA, Weber MG. On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett. 2015; 18(10):985-991. https://doi.org/10.1111/ele.12482
Ma T, Gao H, Zhang D, Shi Y, Zhang T, Shen X, Wu S, Xiang L, Chen S. Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin in Artemisia annua L. Chin Med. 2020; 15:67. https://doi.org/10.1186/s13020-020-00344-8
De Morais LAS. Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic Bras. 2009; 27(2):S4050-4063. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/143457/1/2009AA-051.pdf
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2028; 23(4):762. https://doi.org/ 10.3390/molecules23040762
Neilson EH, Goodger JQD, Woodrow IE, Møller BL. Plant chemical defense: At what cost?. Trends Plant Sci. 2013; 18(5):250–258. http://dx.doi.org/10.1016/j.tplants.2013.01.001
Mueller-Harvey I, Bee G, Dohme-Meier F, Hoste H, Karonen M, Kölliker R, et al. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 2019; 59(3):861–885. https://doi.org/10.2135/cropsci2017.06.0369
Villalba JJ, Costes-Thiré M, Ginane C. Phytochemicals in animal health: Diet selection and trade-offs between costs and benefits. Proc Nutr Soc. 2017; 76(2):113–121. https://doi.org/10.1017/S0029665116000719
Muir J. The multi-faceted role of condensed tannins in the goat ecosystem. Small Rumin Res. 2011; 98(1-3):115–120. http://dx.doi.org/10.1016/j.smallrumres.2011.03.028
Hackmann TJ, Spain JN. Invited review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J Dairy Sci. 2010; 93(4):1320–1334. https://doi.org/10.3168/jds.2009-2071
Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. Mol Plant. 2019; 12(7):899–919. https://doi.org/10.1016/j.molp.2019.06.001
Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011; 62:49–66. https://doi.org/10.1146/annurev-arplant-042110-103814
Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, et al. Natural products – modifying metabolite pathways in plants. Biotechnol J. 2013; 8(10):1159-71. https://doi.org/10.1002/biot.201300224
Dubois O, Allanic C, Charvet CL, Guégnard F, Février H, Théry-Koné I, et al. Lupin (Lupinus spp.) seeds exert anthelmintic activity associated with their alkaloid content. Sci Rep. 2019. 9(1):1-12. https://doi.org/10.1038/s41598-019-45654-6
Herath HMPD, Preston S, Jabbar A, García-Bustos J, Taki AC, Addison RS, et al. Identification of Fromiamycalin and Halaminol A from Australian marine sponge extracts with anthelmintic activity against Haemonchus contortus. Mar Drugs. 2019; 17:598. https://doi.org/10.3390/md17110598
Spiegler V, Liebau E, Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat Prod Rep. 2017; 34(6):627–643. https://doi.org/10.1039/c6np00126b
Oliveira Santos F, Ponce Morais Cerqueira A, Branco A, José Moreira Batatinha M, Borges Botura M. Anthelmintic activity of plants against gastrointestinal nematodes of goats: A review. Parasitology. 2019;146(10):1233–1246. https://doi.org/10.1017/S0031182019000672
Hoste H, Martínez-Ortíz-de-Montellano C, Manoralaki F, Brunet S, Ojeda-Robertos N, Fourquaux I, et al. Direct and indirect effect of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol. 2012; 186(1-2):18–27. https://doi.org/10.1016/j.vetpar.2011.11.042
Piluzza G, Sulas L, Bullita S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014; 69(1):32–48. https://doi.org/10.1111/gfs.12053
Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants. Curr Opin Plant Biol. 2020; 55:1-10. https://doi.org/10.1016/j.pbi.2020.01.005
Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol. 2012; 176(1-4):78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010
Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007; 3:408-414. https://doi.org/10.1038/nchembio.2007.5
Mudianta IW, White AM, Suciati, Katavic PL, Krishnaraj RR, Winters AE, et al. Chemoecological studies on marine natural products: Terpene chemistry from marine mollusks. Pure Appl Chem. 2014; 86(6):995–1002. https://doi.org/10.1515/pac-2013-1111
Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci. 2006; 25:417-440. https://doi.org/10.1080/07352680600899973
Bruce TJA, Pickett JA. Perception of plant volatile blends by herbivorous insects — Finding the right mix. Phytochemistry. 2011; 72(13):1605-1611. https://doi.org/10.1016/j.phytochem.2011.04.011
Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol. 2008; 145:209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
García C, Montero G, Coronado MA, Valdez B, Stoytcheva M, Rosas N, et al. Valorization of Eucalyptus Leaves by Essential Oil Extraction as an Added Value Product in Mexico. Waste and Biomass Valorization. 2017;8(4):1187–1197. https://doi.org/10.1007/s12649-016-9695-x
Torres RNS, Moura DC, Ghedini CP, Ezequiel JMB, Almeida MTC. Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Rumin Res. 2020; 189:106148. https://doi.org/10.1016/j.smallrumres.2020.106148
Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ. 2016; 545–546:556–568. http://dx.doi.org/10.1016/j.scitotenv.2015.12.103
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind Crops Prod. 2015; 76:174–187. http://dx.doi.org/10.1016/j.indcrop.2015.06.050
Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol. 2019; 2(2):49-55. https://doi.org/10.1016/j.gaost.2019.03.001
Srivastava A, Lall R, Sinha A, Gupta RC. Essential Oils. En Nutraceuticals in Veterinary Medicine. Gupta R, Srivastava A, Lall R (Eds.). Switzerland: Springer Nature; 2019. https://doi.org/10.1007/978-3-030-04624-8
Mukherje N, Mukherjee S, Saini P, Roy P, Babu S. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review. Mini-Reviews Med Chem. 2016; 16(17):1415-1441. https://doi.org/10.2174/1389557516666151120121036
Abdel-Rahman FH, Alaniz NM, Saleh MA. Nematicidal activity of terpenoids. J Environ Sci Heal B. 2013; 48(1):16-22. https://doi.org/10.1080/03601234.2012.716686
André WPP, Ribeiro WLC, Oliveira LMB, Macedo ITF, Rondon FCM, Bevilaqua CML. Óleos essenciais e seus compostos bioativos no controle de nematoides gastrintestinais de pequenos ruminantes. Acta Sci Vet. 2018; 46:1522. https://doi.org/10.22456/1679-9216.81804
Ketzis JK, Taylor A, Bowman DD, Brown DL, Warnick LD, Erb HN. Chenopodium ambrosioides and its essential oils as treatments for Haemonchus contortus and mixed adult-nematode infections in goats. Small Rum Res. 2002; 44(3):193-200. https://doi.org/10.1016/S0921-4488(02)00047-0
Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol. 2008; 154(1-2):167-170. https://doi.org/10.1016/j.vetpar.2008.02.023
Macedo ITF, Bevilaqua CML, Oliveira LMB, Camurça-Vasconcelos ALF, Vieira LS, Oliveira FR, et al. Anthelmintic effect of Eucalyptus staigeriana essential oil against gastrointestinal nematodes. Vet Parasitol. 2010; 173(1-2):93-98. https://doi.org/10.1016/j.vetpar.2010.06.004
Squires JM, Foster JG, Lindsay DS, Caudell DL, Zajac AM. Efficacy of an orange oil emulsion as an anthelmintic against Haemonchus contortus in gerbils (Meriones unguiculatus) and in sheep. Vet Parasitol. 2010; 172(1-2):95-99. https://doi.org/10.1016/j.vetpar.2010.04.017
Katiki LM, Chagas ACS, Takahira RK, Juliani HR, Ferreira JFS, Amarante AFT. Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet Parasitol. 2012; 186(3-4):312-318. https://doi.org/10.1016/j.vetpar.2011.12.003
Whitney TR, Wildeus S, Zajac AM. The use of redberry juniper (Juniperus pinchotii) to reduce Haemonchus contortus fecal egg counts and increase ivermectin efficacy. Vet Parasitol. 2013; 197(1-2):82-188. https://doi.org/10.1016/j.vetpar.2013.06.010
Andre WPP, Ribeiro WLC, Cavalcante GS, Santos, JML, Macedo ITF, Paula HCB, et al. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet Parasitol. 2016; 218:52-58. https://doi.org/10.1016/j.vetpar.2016.01.001
Ferreira LE, Benincasa BI, Fachin AL, França SC, Contini SSHT, Chagas ACS, Beleboni RO. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol. 2016; 288:70-76. https://doi.org/10.1016/j.vetpar.2016.08.011
Azando EVB, Olounlade AP, Hounzangbe-Adote MS, Tam Ha TB, Fabre N, Valentin A. Contrôle des parasitoses gastro-intestinales ovines par l’huile essentielle de Zanthoxylum zantoxyloïdes (Fagara zantoxyloïdes). Rev Med Vet. 2017; 168:205-212. https://www.revmedvet.com/2017/RMV168_205_212.pdf
Chagas ACS, Figuereido A, Politi FAS, Moro IJ, Esteves SN, Bizzo HR, Gama PE, Chaves FCM. Efficacy of essential oils from planta cultivated in the Amazonian Biome against gastrointestinal nematodes in sheep. J Parasit Dis. 2018; 42:357-364. https://doi.org/10.1007/s12639-018-1007-x
Katiki LM, Araujo RC, Ziegelmeyer L, Gomes ACP, Gutmanis G, Rodrigues L, et al. Evaluation of encapsulated anethole and carvone in lambs artificially- and naturally – infected with Haemonchus contortus. Exp Parasitol. 2019; 197:36-42. https://doi.org/10.1016/j.exppara.2019.01.002
Wood IB, Amaral NK, Bairden K, Duncan JL, Kassai T, Malone JB, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol. 1995; 58:181–213. https://doi.org/10.1016/0304-4017(95)00806-2
Jackson F, Hoste H. In vitro methods for the primary screening of plant products for direct activity against ruminant gastrointestinal nematodes. En In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe PE, Makkar HPS, Schlink AC (Eds.). FAO/IAEA Springer Edition: Dordrecht, The Netherlands; 2010.
Villalba JJ, Provenza FD. Challenges in Extrapolating In vitro Findings to In Vivo Evaluation of Plant Resources. En In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe PE, Makkar HPS, Schlink AC (Eds.). FAO/IAEA Springer Edition: Dordrecht, The Netherlands; 2010.
Castilho CVV, Fantatto RR, Gaínza YA, Bizzo HR, Barbi NS, Leitão SG, et al. In vitro activity of the essential oil from Hesperozygis myrtoides on Rhipicephalus (Boophilus) microplus and Haemonchus contortus. Rev Bras Farmacogn. 2017; 27(1):70–76. http://dx.doi.org/10.1016/j.bjp.2016.08.005
Katiki LM, Barbieri AME, Araujo RC, Veríssimo CJ, Louvandini H, Ferreira JFS. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro. Vet Parasitol. 2017; 243: 47–51. http://dx.doi.org/10.1016/j.vetpar.2017.06.008
López MD, Pascual-Villalobos MJ. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crop Prod. 2010; 31:284–288. https://doi.org/10.1016/j.indcrop.2009.11.005
Costes-Thiré M, Laurent P, Ginane C, Villalba JJ. Diet selection and trade-offs between condensed tannins and nutrients in parasitized sheep. Vet Parasitol. 2019; 271:14–21. https://doi.org/10.1016/j.vetpar.2019.05.013
Landau SY, Provenza FD. Of browse, goats, and men: Contribution to the debate on animal traditions and cultures. Appl Anim Behav Sci. 2020; 232:105127. https://doi.org/10.1016/j.applanim.2020.105127
Da Silva JJM, Campanharo SC, Paschoal JAR. Ethnoveterinary for food-producing animals and related food safety issues: A comprehensive overview about terpenes. Compr Rev Sci Food Saf. 2021; 20(1):1-43 https://doi.org/10.1111/1541-4337.12673
Zeineldin MM, Sabek AA, Barakat RA, Elghandour MMMY, Salem AZ, Jiménez RM. Potential contribution of plants bioactive in ruminant productive performance and their impact on gastrointestinal parasites elimination. Agroforest Syst. 2020; 94(4):1415-1432. https://doi.org/10.1007/s10457-018-0295-6
Hoste H, Torres-Acosta JFJ, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, et al. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol. 2015; 312(1-2):5–17. http://dx.doi.org/10.1016/j.vetpar.2015.06.026
Torres-Fajardo RA, González-Pech PG, Sandoval-Castro CA, Torres-Acosta JFJ. Small ruminant production based on rangelands to optimize animal nutrition and health: Building an interdisciplinary approach to evaluate nutraceutical plants. Animals. 2020; 10(10):1-32. https://doi.org/10.3390/ani10101799
https://revistamvz.unicordoba.edu.co/article/download/e2317/3141
https://revistamvz.unicordoba.edu.co/article/download/e2317/3142
https://revistamvz.unicordoba.edu.co/article/download/e2317/3564
https://revistamvz.unicordoba.edu.co/article/download/e2317/3566
https://revistamvz.unicordoba.edu.co/article/download/e2317/3565
https://revistamvz.unicordoba.edu.co/article/download/e2317/3567
https://revistamvz.unicordoba.edu.co/article/download/e2317/3140
https://revistamvz.unicordoba.edu.co/article/download/e2317/3145
https://revistamvz.unicordoba.edu.co/article/download/e2317/3143
https://revistamvz.unicordoba.edu.co/article/download/e2317/3144
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CORDOBA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECORDOBA/logo.png
country_str Colombia
collection Revista MVZ Córdoba
title Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
spellingShingle Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
Torres-Fajardo, Rafael Arturo
Higuera-Piedrahita, Rosa Isabel
Ethnoveterinary
gastrointestinal nematodes
goat
parasite egg count
parasitic diseases
plant secondary metabolites
sheep
Conteo de huevos de parásitos
enfermedades parasitarias
etnoveterinaria
nematodos gastrointestinales
cabras
metabolitos secundarios de plantas
ovejas
title_short Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
title_full Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
title_fullStr Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
title_full_unstemmed Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
title_sort actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes
author Torres-Fajardo, Rafael Arturo
Higuera-Piedrahita, Rosa Isabel
author_facet Torres-Fajardo, Rafael Arturo
Higuera-Piedrahita, Rosa Isabel
topic Ethnoveterinary
gastrointestinal nematodes
goat
parasite egg count
parasitic diseases
plant secondary metabolites
sheep
Conteo de huevos de parásitos
enfermedades parasitarias
etnoveterinaria
nematodos gastrointestinales
cabras
metabolitos secundarios de plantas
ovejas
topic_facet Ethnoveterinary
gastrointestinal nematodes
goat
parasite egg count
parasitic diseases
plant secondary metabolites
sheep
Conteo de huevos de parásitos
enfermedades parasitarias
etnoveterinaria
nematodos gastrointestinales
cabras
metabolitos secundarios de plantas
ovejas
citationvolume 26
citationissue 3
citationedition Núm. 3 , Año 2021 : Revista MVZ Córdoba Volumen 26(3) Septiembre-Diciembre 2021
publisher Universidad de Córdoba
ispartofjournal Revista MVZ Córdoba
source https://revistamvz.unicordoba.edu.co/article/view/e2317
language
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Rafael Arturo Torres-Fajardo, Rosa Isabel Higuera-Piedrahita - 2021
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-05-02
date_accessioned 2021-05-02T00:00:00Z
date_available 2021-05-02T00:00:00Z
url https://revistamvz.unicordoba.edu.co/article/view/e2317
url_doi https://doi.org/10.21897/rmvz.2317
issn 0122-0268
eissn 1909-0544
doi 10.21897/rmvz.2317
citationstartpage e2317
citationendpage e2317
url2_str_mv https://revistamvz.unicordoba.edu.co/article/download/e2317/3141
https://revistamvz.unicordoba.edu.co/article/download/e2317/3142
url4_str_mv https://revistamvz.unicordoba.edu.co/article/download/e2317/3565
https://revistamvz.unicordoba.edu.co/article/download/e2317/3567
url3_str_mv https://revistamvz.unicordoba.edu.co/article/download/e2317/3140
https://revistamvz.unicordoba.edu.co/article/download/e2317/3145
url7_str_mv https://revistamvz.unicordoba.edu.co/article/download/e2317/3143
https://revistamvz.unicordoba.edu.co/article/download/e2317/3144
_version_ 1811201136904896512