Titulo:

Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
.

Guardado en:

0122-0268

1909-0544

27

2022-07-31

e2142

e2142

Elia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id oai:revistas.unicordoba.edu.co:article_2142
record_format ojs
spelling Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
27
2
Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022
Artículo de revista
Journal article
2022-07-31T22:38:42Z
2022-07-31T22:38:42Z
2022-07-31
application/pdf
application/pdf
application/zip
application/zip
text/xml
text/xml
audio/mpeg
audio/mpeg
Universidad de Córdoba
Revista MVZ Córdoba
0122-0268
1909-0544
https://revistamvz.unicordoba.edu.co/article/view/2142
10.21897/rmvz.2142
https://doi.org/10.21897/rmvz.2142
https://creativecommons.org/licenses/by-nc-sa/4.0
Elia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
e2142
e2142
Singh B, Todaria NP. Nutrients composition changes in leaves of Quercus semecarpifolia at different seasons and altitudes. Ann For Res. 2012; 55(2):189-196. http://afrjournal.org/index.php/afr/article/view/59
Pavarini D, Pavarini S, Niehues M, Lopes N. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol. 2012; 176:5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002
Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005; 123(124):403–419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
Knapp JR, Laur GL, Vadas PA, Weiss WP andTricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing. J Dairy Sci. 2014; 97:3231-3261. https://doi.org/10.3168/jds.2013-7234
Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso- Camacho R, Ramos-Gómez M, García-Gasca T. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009; 115:1320–1325. https://doi.org/10.1016/j.foodchem.2009.01.050
Abdel SE, Maes L, Mahmoud SM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and chagas disease. Phytother Res. 2010; 24:1322-1328. https://doi.org/10.1002/ptr.3108
Sytar O, Borankulova A, Shevchenko Y, Wendt A, Smetanska I. Antioxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci. 2016; 5(3):221-224. https://doi.org/10.15414/jmbfs.2015.16.5.3.221-224
Molina CM, Priego CF, de Luque CMD. Characterization of stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food Chem. 2017; 219(6):329-338. https://doi.org/10.1016/j.foodchem.2016.09.148
González N, Abdalla AL, Galindo J y Santos MR. Effect of five inclusión levels of mulberry (Morus alba cv. Cubana) on methanogens and some main cellulolytic populations within rumen liquor of water buffalos (Bubalus bubalis). Cuban J Agricul Sci. 2016; 50(3):393-402. https://www.cjascience.com/index.php/CJAS/article/view/633
Armijo-Nájera MG, Moreno-Reséndez A Blanco-Contreras E, Borroel-García VJ, Reyes-Carrillo JL. Vaina de mezquite (Prosopis spp.) alimento para el ganado caprino en el semidesierto. Rev Mex Cie Agric. 2019; 10(1):113-122. https://dx.doi.org/10.29312/remexca.v10i1.1728
AOAC International. Association of Official Analytical Chemists. Association of Official Methods of Analysis. AOAC, Arlington, Va, USA; 2005.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Menke KH and Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res and Develop. 1988; 28(1):7-55.
Heimler D, Isolani L, Vignolini P, Tombelli S, Romani A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem. 2007; 55:1724-1729. https://doi.org/10.1021/jf0628983
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic. 1965; 16:144-158. https://www.ajevonline.org/content/16/3/144
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994; 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
Murillo OM, Herrera TE, Corral LA, Pámanes CG. Effect of inclusion of graded level of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J Animal Res. 2018; 52(8):1298-1303. https://doi.org/10.18805/ijar.11417
Mills JA, Kebreab E, Yates CM, Cromton LA, Cammell SB, Dhanoa MS, Agnew RE, France J. Alternative approaches to predicting methane emissions form dairy cattle. J Anim Sci. 2003; 81:3141-3150. https://doi.org/10.2527/2003.81123141x
Galyean ML. Laboratory Procedures in Animal Nutrition Research. 13th ed. Lubbock: USA; 2010. https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf
Aberra M, Steingass H, Shollenberger M and Rodehutscord M. Screening of common tropical grass and megume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop Grasslands. 2017; 5(3):163-175. http://dx.doi.org/10.17138/TGFT(5)163-175
Fox DG, Tedeschi LO, Tylutki TP, Russell JB,Van Amburgh ME, Chase LE, Pell A N, Overton TR. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Technol. 2004; 112:29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006
Arenas FA, Noguera RR, Restrepo LF. Efecto de diferentes tipos de grasa en dietas para rumiantes sobre la cinética de degradación y fermentación de la materia seca in vitro. Rev Col Cien Pec. 2010; 23(1):55-64. https://revistas.udea.edu.co/index.php/rccp/article/view/324530
Li JT, Li DF, Zang JJ, Yan WJ, Zhang WJ and Zhang LY. Evaluation of energy digestibility and prediction of digestible and metabolizable energy from chemical composition of different cottonseed meal sources fed to growing pigs. 2012; 25(10):1430-1438. https://dx.doi.org/10.5713%2Fajas.2012.12201
Hurtado DI, Nocua S, Nárvaez-Solarte W y Vargas-Sánchez JE. Valor nutricional de la morera (Morus sp.), matarratón (Gliricidia sepium), pasto indio (Panicum máximum) y arboloco (Montanoa quadrangularis) en la alimentación de cuyes (Cavia porcellus). Vet Zootec. 2012; 6(1):56-65. http://vip.ucaldas.edu.co/vetzootec/downloads/v6n1a06.pdf
Ivan SK, Grant RJ, Weakley D, Beck J. Comparison of a corn silage hybrid with high cell wall content and digestibility with a hybrid of lower cell-wall content on performance of Holstein cows. J Dairy Sci. 2005; 88:244. https://doi.org/10.3168/jds.s0022-0302(05)72682-5
Han KJ, McCormick ME. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J Anim Sci and Biotechnol. 2014; 5(1):31. https://doi.org/10.1186/2049-1891-5-31
Akanmu AM, Hassen A and Adejoro FA. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals. 2020; 10:146. https://doi.org/10.3390/ani10010146
Sarnataro Ch, Spanghero M. In vitro rumen fermentation of feed susbtrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim Nutr. 2020; 6:54-60. https://doi.org/10.1016/j.aninu.2019.11.009
Qin WZ, Li CY, Kim JK, Ju JG, Song MK. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australas J Anim Sci. 2012; 25(10):1381-1388. https://doi.org/10.5713/ajas.2012.1224
Deutschmann K, Phatsara Ch, Sorachakula Ch,Vearasilp T, Phunphiphat W, Cherdthong A, Gerlach K, Karl-Heinz S. In vitro gas production and in vivo nutrient digestibility and growth performance of Thai indigenous cattle fed fresh and conserved pangola grass. Italian J Anim Sci. 2017; 16:1-9. https://doi.org/10.1080/1828051x.2017.1293478
Wang P and Zhiliang T. Ammonia assimilation in rumen bacteria: A review. Anim Biotechnol. 2013; 24(2):107-128. https://doi.org/10.1080/10495398.2012.756402
Cheeke PR. Applied Animal Nutrition, Feeds and Feeding. 3rd ed. new Jersey, Prentice Hall; 2004.
Lunsin R, Wanapat M, Rowlinson P. Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Asian-Australas J Anim Sci. 2012; 25:1364-1373. https://doi.org/10.5713/ajas.2012.12051
Pond WG, Church DC, Pond K, Schoknecht PA. Basic Animal Nutrition and Feeding. 5th ed. Wiley; 2005
Abdullah N, Ho YW, Mahyuddin M, Jalaludin S. Microbial colonization and digestion of feed materials in cattle and buffaloes ll. Rice straw and palm press fibre. Asian-Aust J Anim Sci. 1992; 5:329-335. http://www.ajas.info/Editor/manuscript/upload/5-47.pdf
Griswold KE, Apgar GA, Bouton J, Firkins JL. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous cultura. J Anim Sci. 2003; 81:329-336. https://doi.org/10.2527/2003.811329x
Williams BA. Cumulative gas-production techniques for forage evaluation. In: Givens D I, Owen E, Omed H M and Axford RF E (editors). Forage evaluation in ruminant nutrition. Wallingford (UK). CAB International; 2000.
Alves BG, Martins CMMR, Peti APF, Moraes LAB and Santos MV. In vitro evaluation of novel crude extracts produced by actinobacteria for modulation of ruminal fermentation. R Bras Zootec. 2019; 48: e20190066. https://doi.org/10.1590/rbz4820190066
Almaraz-Buendía I, García AM, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez. Análisis bromatológico y producción de gas in vitro de forrajes utilizados en el trópico seco mexicano. Arch Zootec. 2019; 68(262):260-266. https://doi.org/10.21071/az.v68i262.4145
https://revistamvz.unicordoba.edu.co/article/download/2142/4160
https://revistamvz.unicordoba.edu.co/article/download/2142/4161
https://revistamvz.unicordoba.edu.co/article/download/2142/4667
https://revistamvz.unicordoba.edu.co/article/download/2142/4668
https://revistamvz.unicordoba.edu.co/article/download/2142/4669
https://revistamvz.unicordoba.edu.co/article/download/2142/4670
https://revistamvz.unicordoba.edu.co/article/download/2142/4162
https://revistamvz.unicordoba.edu.co/article/download/2142/4163
https://revistamvz.unicordoba.edu.co/article/download/2142/4164
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CORDOBA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECORDOBA/logo.png
country_str Colombia
collection Revista MVZ Córdoba
title Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
spellingShingle Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
title_short Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_full Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_fullStr Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_full_unstemmed Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_sort caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
author Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
author_facet Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
topic Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
topic_facet Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
citationvolume 27
citationissue 2
citationedition Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022
publisher Universidad de Córdoba
ispartofjournal Revista MVZ Córdoba
source https://revistamvz.unicordoba.edu.co/article/view/2142
language
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Elia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-07-31
date_accessioned 2022-07-31T22:38:42Z
date_available 2022-07-31T22:38:42Z
url https://revistamvz.unicordoba.edu.co/article/view/2142
url_doi https://doi.org/10.21897/rmvz.2142
issn 0122-0268
eissn 1909-0544
doi 10.21897/rmvz.2142
citationstartpage e2142
citationendpage e2142
url2_str_mv https://revistamvz.unicordoba.edu.co/article/download/2142/4160
https://revistamvz.unicordoba.edu.co/article/download/2142/4161
url4_str_mv https://revistamvz.unicordoba.edu.co/article/download/2142/4669
https://revistamvz.unicordoba.edu.co/article/download/2142/4670
url7_str_mv https://revistamvz.unicordoba.edu.co/article/download/2142/4162
https://revistamvz.unicordoba.edu.co/article/download/2142/4163
url3_str_mv https://revistamvz.unicordoba.edu.co/article/download/2142/4164
_version_ 1811201134459617280