Titulo:
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus)
.
Guardado en:
2665-2056
7
2024-12-16
1
16
Revista de Investigación e Innovación en Ciencias de la Salud - 2024
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
oai:ojs.pkp.sfu.ca:article-314 |
---|---|
record_format |
ojs |
institution |
FUNDACION UNIVERSITARIA MARIA CANO |
thumbnail |
https://nuevo.metarevistas.org/FUNDACIONUNIVERSITARIAMARIACANO/logo.png |
country_str |
Colombia |
collection |
Revista de Investigación e Innovación en Ciencias de la Salud |
title |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) |
spellingShingle |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) Rejeki, Purwo Sri Puspita, Dwi Indah Sari, Gadis Meinar Pranoto, Adi Halim, Shariff Muhammad Izzatunnisa, Nabilah Munir, Misbakhul receptores High-fructose corn syrup swimming training receptors adiponectin obesity Jarabe de maíz con alto contenido de fructosa entrenamiento de natación adiponectina obesidad |
title_short |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) |
title_full |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) |
title_fullStr |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) |
title_full_unstemmed |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) |
title_sort |
effect of difference training intensity on increased adiponectin levels in high-fructose-induced mice (mus musculus) |
author |
Rejeki, Purwo Sri Puspita, Dwi Indah Sari, Gadis Meinar Pranoto, Adi Halim, Shariff Muhammad Izzatunnisa, Nabilah Munir, Misbakhul |
author_facet |
Rejeki, Purwo Sri Puspita, Dwi Indah Sari, Gadis Meinar Pranoto, Adi Halim, Shariff Muhammad Izzatunnisa, Nabilah Munir, Misbakhul |
topic |
receptores High-fructose corn syrup swimming training receptors adiponectin obesity Jarabe de maíz con alto contenido de fructosa entrenamiento de natación adiponectina obesidad |
topic_facet |
receptores High-fructose corn syrup swimming training receptors adiponectin obesity Jarabe de maíz con alto contenido de fructosa entrenamiento de natación adiponectina obesidad |
citationvolume |
7 |
citationissue |
1 |
publisher |
Fundación Universitaria María Cano |
ispartofjournal |
Revista de Investigación e Innovación en Ciencias de la Salud |
source |
https://riics.info/index.php/RCMC/article/view/314 |
language |
|
format |
Article |
rights |
Revista de Investigación e Innovación en Ciencias de la Salud - 2024 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-12-16 |
date_accessioned |
2024-12-16 20:12:03 |
date_available |
2024-12-16 20:12:03 |
url |
https://riics.info/index.php/RCMC/article/view/314 |
url_doi |
https://doi.org/10.46634/riics.314 |
eissn |
2665-2056 |
doi |
10.46634/riics.314 |
citationstartpage |
1 |
citationendpage |
16 |
url2_str_mv |
https://riics.info/index.php/RCMC/article/download/314/1077 |
url3_str_mv |
https://riics.info/index.php/RCMC/article/download/314/1047 |
url4_str_mv |
https://riics.info/index.php/RCMC/article/download/314/1046 |
_version_ |
1818757294802862080 |
spelling |
The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus) Artículo de revista Rejeki, Purwo Sri Journal article 1 7 Puspita, Dwi Indah Sari, Gadis Meinar Fundación Universitaria María Cano Pranoto, Adi Halim, Shariff Muhammad Izzatunnisa, Nabilah Munir, Misbakhul Revista de Investigación e Innovación en Ciencias de la Salud Revista de Investigación e Innovación en Ciencias de la Salud - 2024 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 1 16 Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med [Internet]. 2017;5(7):1-12. doi: https://doi.org/10.21037/atm.2017.03.107 Mamdouh H, Hussain HY, Ibrahim GM, Alawadi F, Hassanein M, et al. Prevalence and associated risk factors of overweight and obesity among adult population in Dubai: a population-based cross-sectional survey in Dubai, the United Arab Emirates. BMJ Open [Internet]. 2023;13(1):e062053. doi: https://doi.org/10.1136/bmjopen-2022-062053 Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res [Internet]. 2017;122:1-7. doi: https://doi.org/10.1016/j.phrs.2017.05.013 World Obesity Federation [Internet]. England & Wales: The Federation; c2022. World Obesity Atlas 2022; [about 3 screens]. Available from: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022 Basic Health Research (Riskesdas). National Report on Basic Health Research. Jakarta: Kemenkes RI. 2018. Available at: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/1/Laporan%20Riskesdas%202018%20Nasional.pdf Ozcan Sinir G, Suna S, Inan S, Bagdas D, Tamer CE, Copur OU, et al. Effects of long-term consumption of high fructose corn syrup containing peach nectar on body weight gain in sprague dawley rats. Food Sci Technol (Campinas) [Internet]. 2017;37(2):337-43. doi: https://doi.org/10.1590/1678-457x.25416 Pereira RM, Botezelli JD, da Cruz Rodrigues KC, Mekari RA, Esper Cintra D, Pauli JR, et al. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients [Internet]. 2017;9(4):1-21. doi: https://doi.org/10.3390/nu9040405 Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol [Internet]. 2016;8(2):93-100. doi: https://doi.org/10.1093/jmcb/mjw011 Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism [Internet]. 2019;92:71-81. doi: https://doi.org/10.1016/j.metabol.2018.11.005 Nguyen TMD. Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med [Internet]. 2020;11(1):136. doi: https://doi.org/10.4103/ijpvm.IJPVM_193_20 Aleidi S, Issa A, Bustanji H, Khalil M, Bustanji Y. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm J [Internet]. 2015;23(3):250-6. doi: https://doi.org/10.1016/j.jsps.2014.11.011 Liu W, Zhou X, Li Y, Zhang S, Cai X, Zhang R, et al. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus. A population-based study. Medicine (Baltimore) [Internet]. 2020;99(6):e19052. doi: https://doi.org/10.1097/MD.0000000000019052 Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes [Internet]. 2015;6(15):1296-1308. doi: https://doi.org/10.4239/wjd.v6.i15.1296 Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol [Internet]. 2021;320(3):C375-C391. doi: https://doi.org/10.1152/ajpcell.00379.2020 Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int [Internet]. 2014;2014:658913. doi: https://doi.org/10.1155/2014/658913 Arena R, Sagner M, Byrne NM, Williams AD, McNeil A, Street SJ, et al. Novel approaches for the promotion of physical activity and exercise for prevention and management of type 2 diabetes. Eur J Clin Nutr [Internet]. 2017;71(7):858-64. doi: https://doi.org/10.1038/ejcn.2017.53 Pranoto A, Cahyono MBA, Yakobus R, Izzatunnisa N, Ramadhan RN, Rejeki PS, et al. Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel) [Internet]. 2023;11(3):1-12. doi: https://doi.org/10.3390/sports11030054 Rejeki PS, Pranoto A, Rahmanto I, Izzatunnisa N, Yosika GF, Hernaningsih Y, et al. The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel) [Internet]. 2023;11(4):1-13. doi: https://doi.org/10.3390/sports11040090 Zhang Y, Xu J, Zhou D, Ye, T, Zhou P, Liu Z, et al. Swimming exercise ameliorates insulin resistance and nonalcoholic fatty liver by negatively regulating PPARγ transcriptional network in mice fed high fat diet. Mol Med [Internet]. 2023;29(1):150. doi: https://doi.org/10.1186/s10020-023-00740-4 Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci [Internet]. 2019;20(7):1-17. doi: https://doi.org/10.3390/ijms20071528 Zelikovich AS, Quattrocelli M, Salamone IM, Kuntz NL, McNally EM. Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Sci Rep [Internet]. 2019;9(1):5770. doi: https://doi.org/10.1038/s41598-019-42203-z Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev [Internet]. 2012;26(3):271-81. doi: https://doi.org/10.1101/gad.177857.111 Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem [Internet]. 2011;286(40):34533-41. doi: https://doi.org/10.1074/jbc.M111.248591 Lin Z, Tian H, Lam KS, Lin S, Hoo RCL, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779-89. doi: https://doi.org/10.1016/j.cmet.2013.04.005 Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, et al. Rodent models of obesity. Minerva Endocrinol [Internet]. 2020;45(3):243-63. doi: https://doi.org/10.23736/S0391-1977.19.03058-X Yu L, Fu M, Yang L, Sun H. Fasting Blood Glucose-Based Novel Predictors in Detecting Metastases and Predicting Prognosis for Patients with PNENs. J Pers Med [Internet]. 2024;14(7):1-15. doi: https://doi.org/10.3390/jpm14070760 Beck AP, Meyerholz DK. Evolving challenges to model human diseases for translational research. Cell Tissue Res [Internet]. 2020;380(2):305-11. doi: https://doi.org/10.1007/s00441-019-03134-3 Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells [Internet]. 2021;10(10):1-29. doi: https://doi.org/10.3390/cells10102639 Yuliastrid D, Kusnanik NW, Purwanto B, Noordia A, Purwoto SP, Pranoto A. Single bout of a long-duration running treadmill increases myoglobin but not haemoglobin and interleukin 6 levels in mice (Mus musculus). Comp Exerc Physiol [Internet]. 2023;19(4):353-9. doi: https://doi.org/10.1163/17552559-20220075 Prasetya RE, Umijati S, Rejeki PS. Effect of Moderate Intensity Exercise on Body Weight and Blood Estrogen Level Ovariectomized Mice. Majalah Kedokteran Bandung [Internet]. 2018;50(3):147-51. doi: https://doi.org/10.15395/mkb.v50n3.1368 Sari DR, Ramadhan RN, Agustin D, Munir M, Izzatunnisa N, Susanto J, et al. The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose-Induced Mice. Retos [Internet]. 2024;51:1194-209. doi: https://doi.org/10.47197/retos.v51.101189 Wigati KW, Bintari MP, Rejeki PS, Wungu CDK, Pranoto A, Ramadhan RN, et al. The effect of 4 week-long swimming exercise intervention on increased serotonin levels in male mice (Mus musculus). Comp Exerc Physiol [Internet]. 2023;19(4):361-70. doi: https://doi.org/10.1163/17552559-20230005 Riahi F, Riyahi S . Effect of Moderate Swimming Exercise on Weight Gain in High Fat Diet Rats. Ann Mil Health Sci Res [Internet]. 2016;14(1):e13819. Available from: https://brieflands.com/articles/amhsr-13819 Acikel Elmas M, Cakıcı SE, Dur IR, Kozluca I, Arınc M, Binbuga B, et al. Protective effects of exercise on heart and aorta in high-fat diet-induced obese rats. Tissue Cell [Internet]. 2019;57:57-65. doi: https://doi.org/10.1016/j.tice.2019.01.005 Kolieb E, Maher SA, Shalaby MN, Alsuhaibani AM, Alharthi A, Hassan WA, et al. Vitamin D and Swimming Exercise Prevent Obesity in Rats under a High-Fat Diet via Targeting FATP4 and TLR4 in the Liver and Adipose Tissue. Int J Environ Res Public Health [Internet]. 2022;19(21):1-22. doi: https://doi.org/10.3390/ijerph192113740 Antoni MF, Rejeki PS, Sulistiawati, Pranoto A, Wigati KW, Sari GM, et al. Effect of nocturnal and diurnal moderate-intensity swimming exercise on increasing irisin level of female mice (Mus musculus). CMUJ Nat Sci [Internet]. 2022;21(2):e2022033. Available from: https://repository.unair.ac.id/116850/ Chen YM, Lian CF, Sun QW, Wang TT, Liu YY, Ye J, et al. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice. Antioxidants (Basel) [Internet]. 2022;11(5):1-19. doi: https://doi.org/10.3390/antiox11050905 Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. J Sport Health Sci [Internet]. 2020;9(1):53-73. doi: https://doi.org/10.1016/j.jshs.2019.07.004 Rahayu FK, Dwiningsih SR, Sa'adi A, Herawati L. Effects of different intensities of exercise on folliculogenesis in mice: Which is better?. Clin Exp Reprod Med [Internet]. 2021;48(1):43-9. doi: https://doi.org/10.5653/cerm.2020.03937 Rezaie P, Mazidi M, Nematy M. Ghrelin, food intake, and botanical extracts: A Review. Avicenna J Phytomed [Internet]. 2015;5(4):271-81. doi: https://doi.org/10.22038/ajp.2015.4196 Sholikhah AM, Ridwan M. Swimming training on moderate intensity significantly reduces total cholesterol and bodyweight on hypercholesterolemic rat model. Jurnal Keolahragaan [Internet]. 2021;9(1):51-8. doi: https://doi.org/10.21831/jk.v9i1.33362 Alfin R, Busjra B, Azzam R. [The Effect of Ramadan Fasting on Blood Sugar Levels in Type II Diabetes Mellitus Patients]. Journal of Telenursing (JOTING) [Internet]. 2019;1(1):191-204. doi: https://doi.org/https://doi.org/10.31539/joting.v1i1.499 Nakrani MN, Wineland RH, Anjum F. Physiology, Glucose Metabolism. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560599/ Geng L, Liao B, Jin L, Huang Z, Triggle C, Ding H, et al. Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep [Internet]. 2019;26(10):2738-52.e4. doi: https://doi.org/10.1016/j.celrep.2019.02.014 Jortay J, Senou M, Abou-Samra M, Noel L, Robert A, Many MC, et al. Adiponectin and skeletal muscle: pathophysiological implications in metabolic stress. Am J Pathol [Internet]. 2012;181(1):245-56. doi: https://doi.org/10.1016/j.ajpath.2012.03.035 Martinez-Huenchullan SF, Maharjan BR, Williams PF, Tam CS, Mclennan SV, Twigg SM. Differential metabolic effects of constant moderate versus high intensity interval training in high-fat fed mice: possible role of muscle adiponectin. Physiol Rep [Internet]. 2018;6(4):e13599. doi: https://doi.org/10.14814/phy2.13599 Xie Y, Li Z, Wang Y, Xue X, Ma W, Zhang Y, Wang J, et al. Effects of moderate- versus high- intensity swimming training on inflammatory and CD4+ T cell subset profiles in experimental autoimmune encephalomyelitis mice. J Neuroimmunol [Internet]. 2019;328:60-7. doi: https://doi.org/10.1016/j.jneuroim.2018.12.005 Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, et al. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener [Internet]. 2023;12(1):9. doi: https://doi.org/10.1186/s40035-023-00341-5 Achari AE, Jain SK. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci [Internet]. 2017;18(6):1-17. doi: https://doi.org/10.3390/ijms18061321 https://riics.info/index.php/RCMC/article/download/314/1077 https://riics.info/index.php/RCMC/article/download/314/1047 info:eu-repo/semantics/article https://riics.info/index.php/RCMC/article/download/314/1046 http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es text/html https://doi.org/10.46634/riics.314 receptores High-fructose corn syrup swimming training receptors adiponectin obesity Jarabe de maíz con alto contenido de fructosa entrenamiento de natación adiponectina 10.46634/riics.314 obesidad 2024-12-16 20:12:03 2024-12-16 20:12:03 2024-12-16 application/pdf text/xml 2665-2056 https://riics.info/index.php/RCMC/article/view/314 Publication |