Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis
.
Haematococcus pluvialis es una microalga de agua dulce, productora principalmente de astaxantina. Este carotenoide es usado como pigmento y compuesto bioactivo en diferentes industrias como la alimenticia, nutracéutica, farmacéutica, cosmética, acuicultura y textil.  En este estudio se determinaron las variables relacionadas con la luz como las fuentes usadas, uso de fotobiorreactores, el fotoperiodo adecuado, el valor exacto de irradiancia y de color relacionándolos con la expresión de genes para la obtención de astaxantina en mayor cantidad. Este carotenoide presentó su mayor producción entre 81, 19 mg/L a 167,97 mg/L cuando se utilizaron lámparas fluorescentes blancas con irradiancias entre 150 y 400 μmol m-2 s-1. Con el uso... Ver más
2256-1498
14
2024-06-24
1
33
Revista Mutis - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_utadeo_revistamutis_66_article_2108 |
---|---|
record_format |
ojs |
spelling |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis Review: Effect of the Stress Factor, Color and Light Intensity on the Astaxanthin Production of Haematococcus pluvialis Haematococcus pluvialis es una microalga de agua dulce, productora principalmente de astaxantina. Este carotenoide es usado como pigmento y compuesto bioactivo en diferentes industrias como la alimenticia, nutracéutica, farmacéutica, cosmética, acuicultura y textil.  En este estudio se determinaron las variables relacionadas con la luz como las fuentes usadas, uso de fotobiorreactores, el fotoperiodo adecuado, el valor exacto de irradiancia y de color relacionándolos con la expresión de genes para la obtención de astaxantina en mayor cantidad. Este carotenoide presentó su mayor producción entre 81, 19 mg/L a 167,97 mg/L cuando se utilizaron lámparas fluorescentes blancas con irradiancias entre 150 y 400 μmol m-2 s-1. Con el uso de ledes de color rojo y azul con led blanca, usando irradiancias entre 135 y 400 μmol m-2 s-1 se obtuvieron concentraciones de 82,82 ± 3,29 mg/ L y de 151,8mg/L, de astaxantina, respectivamente. El uso de led de color azul y blanco incrementó la expresión de los genes psy y CrtO/bkt, importantes en la acumulación de astaxantina. Esta investigación aporta a la factibilidad tecnológica del uso de  ledes por las ventajas que presenta, la diversidad en tamaños desde el  pequeño, ligero, duradero y eficiente en términos de mayor vida útil, además de que la cantidad de luz que se desprende es mucho mayor en comparación con su consumo de energía, como aporte a los  avances tecnológicos y biotecnológicos en la producción de astaxantina para adaptarlos al uso de los fotobiorreactores y optimizar las condiciones de cultivo y producción de astaxantina en H. pluvialis.   Haematococcus pluvialis is a freshwater microalgae that primarily produces astaxanthin. This carotenoid is used as a pigment and as a bioactive compound in different industries such as food, nutraceutical, pharmaceutical, cosmetics, aquaculture and textiles. In this study, the variables related to light – such as the sources used, the use of photobioreactors, the appropriate photoperiod, the exact value of irradiance and color – were determined and then related to the expression of genes for obtaining astaxanthin in greater quantities. This carotenoid presented its highest production between 81.19 mg/L and 167.97 mg/L, when white fluorescent lamps with irradiances between 150 and 400 μmol m-2 s-1 were used. With the use of red and blue LEDs with white LED, using irradiances between 135 and 400 μmol m-2 s-1, astaxanthin concentrations of 82.82 ± 3.29 mg/L and 151.8mg/L were obtained, respectively. The use of blue and white LEDs increased the expression of the psy and CrtO/bkt genes, significant for accumulating astaxanthin. This research contributes to the technological feasibility of using LEDs due to the advantages they present, the diversity of their sizes (from small), their lightness, durability and efficiency in terms of longer useful life. Furthermore, the amount of light they give off is much greater compared to their energy consumption. Our contribution to technological and biotechnological advances related to the production of astaxanthin can be adapted to the use of photobioreactors, to optimize the cultivation conditions and production of astaxanthin in H. pluvialis.   Gamboa Herrera , Angie Daniela Guerrero Martínez , Ingrid Margarita Camacho Kurmen, Judith Elena microalga carotenoide genes estrés lumínico ledes ciencias naturales Microalgae Carotenoid Genes Light stress LEDs Natural sciences 14 2 Artículo de revista Journal article 2024-06-24T15:57:50Z 2024-06-24T15:57:50Z 2024-06-24 application/pdf Universidad de Bogotá Jorge Tadeo Lozano Revista Mutis 2256-1498 https://revistas.utadeo.edu.co/index.php/mutis/article/view/revision-efecto-factor-estres-haematococcus-pluvialis 10.21789/22561498.2108 https://doi.org/10.21789/22561498.2108 spa https://creativecommons.org/licenses/by-nc-sa/4.0 Revista Mutis - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. 1 33 Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... & Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. https://doi.org/10.1016/j.biortech.2021.125707 Angulo, L. D. M. y Mérida, L. G. R. (2017). Estado actual de las empresas productoras de microalgas destinadas a alimentos y suplementos alimenticios en América Latina. Revista Venezolana De Ciencia Y Tecnología De Alimentos, 8(2), 130-147. https://explore.openaire.eu/search/result?id=doajarticles::97ca7a36902ddf703224ae23c67c5bc4 Aslanbay Guler, B., Deniz, I., Demirel, Z. & Imamoglu, E. (2020). Computational fluid dynamics simulation in scaling-up of airlift photobioreactor for astaxanthin production. Journal of Bioscience and Bioengineering, 129(1), 86-92. https://doi.org/10.1016/j.jbiosc.2019.06.010 Bas, T. G., Contreras, A., Oliu, C. A., & Abarca, A. (2021). Determinants of astaxanthin industrial-scale production under stress caused by light photoperiod management of Haematococcus pluvialis cultivation. Latin american journal of aquatic research, 49(5), 725-738. https://doi.org/10.3856/vol49-issue5-fulltext-2752 Benavente-Valdés, J. R., Montañez, J. C., Aguilar, C. N., Méndez-Zavala, A., y Valdivia, B. (2012). Tecnología de cultivo de microalgas en fotobiorreactores. Acta Química Mexicana, 4(7), 1-12. Benner, P., Meier, L., Pfeffer, A., Krüger, K., Oropeza Vargas, J. E., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791-813. https://doi.org/10.1007/s00449-022-02711-1 Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340. https://doi.org/10.1016/j.algal.2013.09.004 Borowiak, D., Lenartowicz, P., Grzebyk, M., Wiśniewski, M., Lipok, J., & Kafarski, P. (2021). Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Research, 53, 102151. https://doi.org/10.1016/j.algal.2020.102151 Bruder, S., Reifenrath, M., Thomik, T., Boles, E., & Herzog, K. (2016). Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomycescerevisiae. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0526-3 Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids. Biology, 7(1), 2. https://doi.org/10.3390/biology7010002 Camacho Kurmen, J. E., González, G., & Klotz, B. (2013). Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Nova, 11(19), 94-104. https://doi.org/10.22490/24629448.1022 Christian, D., Zhang, J., Sawdon, A. J., & Peng, C. (2018). Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology, 256, 548-551. https://doi.org/10.1016/j.biortech.2018.02.074 Cheirsilp, B., Wantip, K., Chai-issarapap, N., Maneechote, W., Pekkoh, J., Duangjan, K., ... & Srinuanpan, S. (2022). Enhanced production of astaxanthin and co-bioproducts from microalga Haematococcus sp. integrated with valorization of industrial wastewater under two-stage ledlight illumination strategy. Environmental Technology & Innovation, 28, 102620. Dalia Yirasol Martinez Tapiero, Maria Anghela Martínez Rentería, & Judith Elena Camacho Kurmen. (2024). Uso de tecnologías CRISPR-CAS9en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial. Mutis, 14(1). https://doi.org/10.21789/22561498.2044 Deniz, I. (2020). Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology, 310, 123434. https://doi.org/10.1016/j.biortech.2020.123434 Du, F., Hu, C., Sun, X., Zhang, L., & Xu, N. (2021). Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture, 543, 736978. https://doi.org/10.1016/j.aquaculture.2021.736978 El-Baz, F. K., Salama, A., Ali, S. I., & Elgohary, R. (2021). Haematococcus pluvialis Carotenoids Enrich Fractions Ameliorate Liver Fibrosis Induced by Thioacetamide in Rats: Modulation of Metalloproteinase and Its Inhibitor. BioMed Research International, 2021, 6631415-16. https://doi.org/10.1155/2021/6631415 El-Baz, F. K., Ali, S. I., Elgohary, R., & Salama, A. (2023). Natural β-carotene prevents acute lung injury induced by cyclophosphamide in mice. PloS One, 18(4), e0283779. https://doi.org/10.1371/journal.pone.0283779 Factiva (2021). Análisis global de la industria de la astaxantina, tamaño, cuota de mercado, crecimiento, tendencia y previsión para 2027. https://global.factiva.com/en/du/article.asp?accessionno=ICROWDS020210316eh3g00002 Fernández-Lozano, J., Guillén-Oterino, A., Gutiérrez-Alonso, G., Abel-Flores, J., y Pérez-Turrado, J. (2015). Presencia de Haematococcus pluvialis (Flotow, 1844) en la provinciade Zamora (Haematococcaceae). Boletín De La Real Sociedad Española De Historia Natural. Sección Biológica. Gao, X., Wang, X., Li, H., Roje, S., Sablani, S. S., & Chen, S. (2017). Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red ledlights. Algal research, 23, 20-27. https://doi.org/10.1016/j.algal.2016.12.018 Gherabli, A., Grimi, N., Lemaire, J., Vorobiev, E., & Lebovka, N. (2023). Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules (Basel, Switzerland), 28(5), 2089. https://doi.org/10.3390/molecules28052089 Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., Rodríguez, J., y Camacho K., J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantina y expresión de genes en H. pluvialis. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532 Markets and Markets (2021). Astaxanthin Market by Source, Form, Method of Production, Application and Region - Global Forecast to 2026. Plus Company Updates. Meticulous Research (2023). Haematococcus pluvialis Markets: Product - Global Forecast to 2030. Plus Company Updates https://www.meticulousresearch.com/product/haematococcus-pluvialis-market-5142/toc Hawick, K. A., & Husselmann, A. V. (2013). Photo-penetration depth growth dependence in an agent-based photobioreactor model. In Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). Hernández Useche, L.D. y Otalora Celis, M.A. (2022). Obtención de astaxantina sintetizada por la microalga Haematococcus pluvialis para su aplicación industrial. [Tesis de pregrado]. Universidad Colegio Mayor de Cundinamarca. https://janium.unicolmayor.edu.co/janium-bin/sumario.pl?Id=20240613201453 He, B., Hou, L., Dong, M., Shi, J., Huang, X., Ding, Y., Cong, X., Zhang, F., Zhang, X., & Zang, X. (2018). Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2. International Journal of Molecular Sciences, 19(1), 175. https://doi.org/10.3390/ijms19010175 Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research (Amsterdam), 46. 101768. https://doi.org/10.1016/j.algal.2019.101768 Hu, J., Wang, D., Chen, H., & Wang, Q. (2023). Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. International Journal of Molecular Sciences, 24(3). 1898. https://doi.org/10.3390/ijms24031898 Hu, Q., Huang, D., Li, A., Hu, Z., Gao, Z., Yang, Y., & Wang, C. (2021). Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnology for Biofuels, 14(1). https://doi.org/10.1186/s13068-021-01933-x Hu, Q., Song, M., Huang, D., Hu, Z., Wu, Y., & Wang, C. (2021). Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. Frontiers in Plant Science, 12, 763742. https://doi.org/10.3389/fpls.2021.763742 Huang, L., Gao, B., Wu, M., Wang, F., & Zhang, C. (2019). Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35. Biotechnology for Biofuels, 12(1), 18. https://doi.org/10.1186/s13068-019-1355-5 Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering, 8(10), 789. https://doi.org/10.3390/jmse8100789 Jin, H., Lao, Y. M., Zhou, J., & Cai, Z. H. (2022). Identification of a RelA/SpoT Homolog and Its Possible Role in the Accumulation of Astaxanthin in Haematococcus pluvialis. Frontiers in Plant Science, 13, 796997. https://doi.org/10.3389/fpls.2022.796997 Koopmann, I. K., Möller, S., Elle, C., Hindersin, S., Kramer, A., & Labes, A. (2022). Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foods, 11(9), 1352. https://doi.org/10.3390/foods11091352 Lancheros-Díaz, A. G., Camacho-Kurmen, J. E., & Díaz Barrera, L. E. (2021). Producción de astaxantina bajo factores de estrés utilizando un biorreactor a escala de laboratorio de 5 L. Nova: Publicación Científica En Ciencias Biomédicas, 19(37), 99-119. https://doi.org/10.22490/24629448.5498 Lee, K. H., Chun, Y., Lee, J. H., Park, C., Yoo, H. Y., & Kwak, H. S. (2022). Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology . Marine Drugs, 20(4), 220. https://doi.org/10.3390/md20040220 Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831-3852. https://doi.org/10.1007/s10811-020-02231-z Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BioMed Research International, 2019, 8101762-7. https://doi.org/10.1155/2019/8101762 Li, F., Cai, M., Wu, Y., Lian, Q., Qian, Z., Luo, J., Zhang, Y., Zhang, N., Li, C., & Huang, X. (2022). Effects of Nitrogen and Light Intensity on the Astaxanthin Accumulation in Motile Cells of Haematococcus pluvialis. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.909237 Li, Q., Li, B., & Li, J. (2022). The Dynamic Behaviors of Photosynthesis during Non-Motile Cell Germination in Haematococcus pluvialis. Water (Basel), 14(8), 1280. https://doi.org/10.3390/w14081280 Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., Xiao, C., Agathos, S. N., Wang, G., & Li, J. (2020). Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 43, 107602. https://doi.org/10.1016/j.biotechadv.2020.107602 Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538. https://doi.org/10.1016/j.btre.2020.e00538 Lv, H., Xia, F., Liu, M., Cui, X., Wahid, F., & Jia, S. (2016). Metabolomic profiling of the astaxanthin accumulation process induced by high light in Haematococcus pluvialis. Algal Research, 20, 35-43. https://doi.org/10.1016/j.algal.2016.09.019 Luo, Q., Bian, C., Tao, M., Huang, Y., Zheng, Y., Lv, Y., Li, J., Wang, C., You, X., Jia, B., Xu, J., Li, J., Li, Z., Shi, Q., & Hu, Z. (2019). Genome and Transcriptome Sequencing of the Astaxanthin-Producing Green Microalga, Haematococcus pluvialis. Genome Biology and Evolution, 11(1), 166-173. https://doi.org/10.1093/gbe/evy263 Madhubalaji, C. K., Sarat Chandra, T., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2020). Chlorella vulgaris cultivation in airlift photobioreactor with transparent draft tube: effect of hydrodynamics, light and carbon dioxide on biochemical profile particularly ω-6/ω-3 fatty acid ratio. Journal of Food Science and Technology, 57(3), 866-876. https://doi.org/10.1007/s13197-019-04118-5 Ma, R., Thomas-Hall, S. R., Chua, E. T., Alsenani, F., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different ledlighting conditions. Bioresource Technology, 250, 591-602. https://doi.org/10.1016/j.biortech.2017.11.094 Ma, R., Thomas-Hall, S. R., Chua, E. T., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Research, 35, 215-222. https://doi.org/10.1016/j.algal.2018.08.023 Martínez Rodríguez, P. A., Peinado Cárdenas, M. J., & Camacho Kurmen, J. E. (2022). Efecto de los parámetros cinéticos de escalamiento del cultivo de Haematococcus pluvialis en fotobiorreactores para producir astaxantina. Mutis, 12(2). https://doi.org/10.21789/22561498.1739 Medina, E. y Camacho Kurmen, J. E. (2023). Efectos de luz led roja y azul sobre la producción de astaxantina en la biomasa de Haematococcus pluvialis. Miranda, A. M., Ossa, E. A., Vargas, G. J. y Sáez, A. A. (2019). Efecto de las bajas concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32. https://doi.org/10.4067/S0718-07642019000100023 Miyakawa, K. (2021). Commercial Production of Astaxanthin from the Green Alga Haematococcus pluvialis. Advances in experimental medicine and biology (pp. 3-10). Springer Singapore. https://doi.org/10.1007/978-981-15-7360-6_1 Morales-Carvajal, J., Villabona-Nuncira, R., Gonz lez-Delgado, D., Barajas-Ferreira, C., & Barajas-Solano, A. (2018). Technical-economic Prefeasibility Study of Astaxanthin Production System from H. pluvialis Microalgae in Colombia. Indian Journal of Science and Technology, 11(34), 1-8. https://doi.org/10.17485/ijst/2018/v11i34/122627 Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Marine Drugs, 18(9), 459. https://doi.org/10.3390/md18090459 Mussagy, C. U., Kot, A., Dufossé, L., Gonçalves, C. N. D. P., Pereira, J. F. B., Santos-Ebinuma, V. C., Raghavan, V., & Pessoa, A. (2023). Microbial astaxanthin: from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 107(13), 4199-4215. https://doi.org/10.1007/s00253-023-12586-1 Ooms, M. D., Dinh, C. T., Sargent, E. H., & Sinton, D. (2016). Photon management for augmented photosynthesis. Nature Communications, 7(1), 12699. https://doi.org/10.1038/ncomms12699 Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y., & Kawano, S. (2018). Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Scientific Reports, 8(1), 5617-10. https://doi.org/10.1038/s41598-018-23854-w Pang, N., Fu, X., Fernandez, J. S. M., & Chen, S. (2019). Multilevel heuristic ledregime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 288, 121525. https://doi.org/10.1016/j.biortech.2019.121525 Pattanaik, A., Sukla, L. B., & Pradhan, D. (2018). Effect of ledLights on the Growth of Microalgae. Inglomayor, 14, 17-24. Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027. https://doi.org/10.1016/j.algal.2020.102027 Santos, B., da Conceição, D. P., Corrêa, D. O., Passos, M. F., Campos, M. P., Adamoski, D., ... & Kava, V. M. (2022). Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. Journal of Applied Phycology, 34(2), 729-743. https://doi.org/10.1007/s10811-022-02696-0 Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531 Sun, J., Zan, J., & Zang, X. (2022). Research of Fluridone’s Effects on Growth and Pigment Accumulation of Haematococcus pluvialis Based on Transcriptome Sequencing. International Journal of Molecular Sciences, 23(6), 3122. https://doi.org/10.3390/ijms23063122 Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., & Guan, B. (2015). Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresource technology, 186, 67-73. https://doi.org/10.1016/j.biortech.2015.02.101 Tran, H. L., Lee, K. H., & Hong, C. H. (2015). Effects of ledirradiation on the growth and Astaxanthin Production of Haematococcus lacustris. Biosciences Biotechnology Research Asia, 12(2), 1167-1173. https://doi.org/10.13005/bbra/1769 Torres, T., & Kurmen, J. E. C. (2022). Modelos matemáticos y parámetros cinéticos relacionados con la producción de astaxantina en Haematococcus pluvialis. Revista Mutis, 12(1). https://doi.org/10.21789/22561498.1743 Viazau, Y. V., Goncharik, R. G., Kulikova, I. S., Kulikov, E. A., Vasilov, R. G., & Selishcheva, A. A. (2021). E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. Bioresources and Bioprocessing, 8(1), 1-13. https://doi.org/10.1186/s40643-021-00410-5 Villaró, S., Ciardi, M., Morillas-España, A., Sánchez-Zurano, A., Acién-Fernández, G., & Lafarga, T. (2021). Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods, 10(10), 2303. https://doi.org/10.3390/foods10102303 Waissman-Levy, N., Leu, S., Khozin-Goldberg, I., & Boussiba, S. (2019). Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Research (Amsterdam), 40, 101497. https://doi.org/10.1016/j.algal.2019.101497 Wang, C., Wang, K., Ning, J., Luo, Q., Yang, Y., Huang, D., & Li, H. (2021). Transcription Factors From Haematococcus pluvialis Involved in the Regulation of Astaxanthin Biosynthesis Under High Light-Sodium Acetate Stress. Frontiers in Bioengineering and Biotechnology, 9, 650178. https://doi.org/10.3389/fbioe.2021.650178 Wang, X., Song, Y., Liu, B., Hang, W., Li, R., Cui, H., Li, R., & Jia, X. (2020). Enhancement of astaxanthin biosynthesis in Haematococcus pluvialis via inhibition of autophagy by 3-methyladenine under high light. Algal Research, 50, 101991. https://doi.org/10.1016/j.algal.2020.101991 Wang, X., Meng, C., Zhang, H., Xing, W., Cao, K., Zhu, B., Zhang, C., Sun, F., & Gao, Z. (2021). Transcriptomic and Proteomic Characterizations of the Molecular Response to Blue Light and Salicylic Acid in Haematococcus pluvialis. Marine Drugs, 20(1), 1. https://doi.org/10.3390/md20010001 Wei, Z., Sun, F., Meng, C., Xing, W., Zhu, X., Wang, C., Cao, K., Zhang, C., Zhu, B., Yao, T., & Gao, Z. (2022). Transcriptome Analysis of the Accumulation of Astaxanthin in Haematococcus pluvialis Treated with White and Blue Lights as well as Salicylic Acid. BioMed Research International, 2022, 1-19. https://doi.org/10.1155/2022/4827595 Xi, T., Kim, D. G., Roh, S. W., Choi, J. S., & Choi, Y. E. (2016). Enhancement of astaxanthin production using Haematococcus pluvialis with novel ledwavelength shift strategy. Applied microbiology and biotechnology, 100, 6231-6238. https://doi.org/10.1007/s00253-016-7301-6 Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24(21), 1767-1771. https://doi.org/10.1023/A:1020648919331 Yan, H., Ma, H., Li, Y., Zhao, L., Lin, J., Jia, Q., Hu, Q., & Han, D. (2022). Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense. Biotechnology for Biofuels and Bioproducts, 15(1), 56. https://doi.org/10.1186/s13068-022-02140-y Zhang, W., Zhou, X., Zhang, Y., Cheng, P., Ma, R., Cheng, W., & Chu, H. (2018). Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupledlight intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28(12), 2019-2028. https://doi.org/10.4014/jmb.1807.07008 Zhao, K., Li, Y., Yan, H., Hu, Q., & Han, D. (2022). Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells (Basel, Switzerland), 11(12), 1956. https://doi.org/10.3390/cells11121956 https://revistas.utadeo.edu.co/index.php/mutis/article/download/revision-efecto-factor-estres-haematococcus-pluvialis/2144 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/redcol/resource_type/ARTREF info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD JORGE TADEO LOZANO |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADJORGETADEOLOZANO/logo.png |
country_str |
Colombia |
collection |
Revista Mutis |
title |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis |
spellingShingle |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis Gamboa Herrera , Angie Daniela Guerrero Martínez , Ingrid Margarita Camacho Kurmen, Judith Elena microalga carotenoide genes estrés lumínico ledes ciencias naturales Microalgae Carotenoid Genes Light stress LEDs Natural sciences |
title_short |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis |
title_full |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis |
title_fullStr |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis |
title_full_unstemmed |
Revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en Haematococcus pluvialis |
title_sort |
revisión: efecto del factor estrés, color e intensidad de luz sobre la producción de astaxantina en haematococcus pluvialis |
title_eng |
Review: Effect of the Stress Factor, Color and Light Intensity on the Astaxanthin Production of Haematococcus pluvialis |
description |
Haematococcus pluvialis es una microalga de agua dulce, productora principalmente de astaxantina. Este carotenoide es usado como pigmento y compuesto bioactivo en diferentes industrias como la alimenticia, nutracéutica, farmacéutica, cosmética, acuicultura y textil.  En este estudio se determinaron las variables relacionadas con la luz como las fuentes usadas, uso de fotobiorreactores, el fotoperiodo adecuado, el valor exacto de irradiancia y de color relacionándolos con la expresión de genes para la obtención de astaxantina en mayor cantidad. Este carotenoide presentó su mayor producción entre 81, 19 mg/L a 167,97 mg/L cuando se utilizaron lámparas fluorescentes blancas con irradiancias entre 150 y 400 μmol m-2 s-1. Con el uso de ledes de color rojo y azul con led blanca, usando irradiancias entre 135 y 400 μmol m-2 s-1 se obtuvieron concentraciones de 82,82 ± 3,29 mg/ L y de 151,8mg/L, de astaxantina, respectivamente. El uso de led de color azul y blanco incrementó la expresión de los genes psy y CrtO/bkt, importantes en la acumulación de astaxantina. Esta investigación aporta a la factibilidad tecnológica del uso de  ledes por las ventajas que presenta, la diversidad en tamaños desde el  pequeño, ligero, duradero y eficiente en términos de mayor vida útil, además de que la cantidad de luz que se desprende es mucho mayor en comparación con su consumo de energía, como aporte a los  avances tecnológicos y biotecnológicos en la producción de astaxantina para adaptarlos al uso de los fotobiorreactores y optimizar las condiciones de cultivo y producción de astaxantina en H. pluvialis.  
|
description_eng |
Haematococcus pluvialis is a freshwater microalgae that primarily produces astaxanthin. This carotenoid is used as a pigment and as a bioactive compound in different industries such as food, nutraceutical, pharmaceutical, cosmetics, aquaculture and textiles. In this study, the variables related to light – such as the sources used, the use of photobioreactors, the appropriate photoperiod, the exact value of irradiance and color – were determined and then related to the expression of genes for obtaining astaxanthin in greater quantities. This carotenoid presented its highest production between 81.19 mg/L and 167.97 mg/L, when white fluorescent lamps with irradiances between 150 and 400 μmol m-2 s-1 were used. With the use of red and blue LEDs with white LED, using irradiances between 135 and 400 μmol m-2 s-1, astaxanthin concentrations of 82.82 ± 3.29 mg/L and 151.8mg/L were obtained, respectively. The use of blue and white LEDs increased the expression of the psy and CrtO/bkt genes, significant for accumulating astaxanthin. This research contributes to the technological feasibility of using LEDs due to the advantages they present, the diversity of their sizes (from small), their lightness, durability and efficiency in terms of longer useful life. Furthermore, the amount of light they give off is much greater compared to their energy consumption. Our contribution to technological and biotechnological advances related to the production of astaxanthin can be adapted to the use of photobioreactors, to optimize the cultivation conditions and production of astaxanthin in H. pluvialis.  
|
author |
Gamboa Herrera , Angie Daniela Guerrero Martínez , Ingrid Margarita Camacho Kurmen, Judith Elena |
author_facet |
Gamboa Herrera , Angie Daniela Guerrero Martínez , Ingrid Margarita Camacho Kurmen, Judith Elena |
topicspa_str_mv |
microalga carotenoide genes estrés lumínico ledes ciencias naturales |
topic |
microalga carotenoide genes estrés lumínico ledes ciencias naturales Microalgae Carotenoid Genes Light stress LEDs Natural sciences |
topic_facet |
microalga carotenoide genes estrés lumínico ledes ciencias naturales Microalgae Carotenoid Genes Light stress LEDs Natural sciences |
citationvolume |
14 |
citationissue |
2 |
publisher |
Universidad de Bogotá Jorge Tadeo Lozano |
ispartofjournal |
Revista Mutis |
source |
https://revistas.utadeo.edu.co/index.php/mutis/article/view/revision-efecto-factor-estres-haematococcus-pluvialis |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0 Revista Mutis - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... & Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. https://doi.org/10.1016/j.biortech.2021.125707 Angulo, L. D. M. y Mérida, L. G. R. (2017). Estado actual de las empresas productoras de microalgas destinadas a alimentos y suplementos alimenticios en América Latina. Revista Venezolana De Ciencia Y Tecnología De Alimentos, 8(2), 130-147. https://explore.openaire.eu/search/result?id=doajarticles::97ca7a36902ddf703224ae23c67c5bc4 Aslanbay Guler, B., Deniz, I., Demirel, Z. & Imamoglu, E. (2020). Computational fluid dynamics simulation in scaling-up of airlift photobioreactor for astaxanthin production. Journal of Bioscience and Bioengineering, 129(1), 86-92. https://doi.org/10.1016/j.jbiosc.2019.06.010 Bas, T. G., Contreras, A., Oliu, C. A., & Abarca, A. (2021). Determinants of astaxanthin industrial-scale production under stress caused by light photoperiod management of Haematococcus pluvialis cultivation. Latin american journal of aquatic research, 49(5), 725-738. https://doi.org/10.3856/vol49-issue5-fulltext-2752 Benavente-Valdés, J. R., Montañez, J. C., Aguilar, C. N., Méndez-Zavala, A., y Valdivia, B. (2012). Tecnología de cultivo de microalgas en fotobiorreactores. Acta Química Mexicana, 4(7), 1-12. Benner, P., Meier, L., Pfeffer, A., Krüger, K., Oropeza Vargas, J. E., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791-813. https://doi.org/10.1007/s00449-022-02711-1 Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340. https://doi.org/10.1016/j.algal.2013.09.004 Borowiak, D., Lenartowicz, P., Grzebyk, M., Wiśniewski, M., Lipok, J., & Kafarski, P. (2021). Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Research, 53, 102151. https://doi.org/10.1016/j.algal.2020.102151 Bruder, S., Reifenrath, M., Thomik, T., Boles, E., & Herzog, K. (2016). Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomycescerevisiae. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0526-3 Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids. Biology, 7(1), 2. https://doi.org/10.3390/biology7010002 Camacho Kurmen, J. E., González, G., & Klotz, B. (2013). Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Nova, 11(19), 94-104. https://doi.org/10.22490/24629448.1022 Christian, D., Zhang, J., Sawdon, A. J., & Peng, C. (2018). Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination. Bioresource Technology, 256, 548-551. https://doi.org/10.1016/j.biortech.2018.02.074 Cheirsilp, B., Wantip, K., Chai-issarapap, N., Maneechote, W., Pekkoh, J., Duangjan, K., ... & Srinuanpan, S. (2022). Enhanced production of astaxanthin and co-bioproducts from microalga Haematococcus sp. integrated with valorization of industrial wastewater under two-stage ledlight illumination strategy. Environmental Technology & Innovation, 28, 102620. Dalia Yirasol Martinez Tapiero, Maria Anghela Martínez Rentería, & Judith Elena Camacho Kurmen. (2024). Uso de tecnologías CRISPR-CAS9en microalgas aplicado a la obtención de productos biotecnológicos de interés industrial. Mutis, 14(1). https://doi.org/10.21789/22561498.2044 Deniz, I. (2020). Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology, 310, 123434. https://doi.org/10.1016/j.biortech.2020.123434 Du, F., Hu, C., Sun, X., Zhang, L., & Xu, N. (2021). Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture, 543, 736978. https://doi.org/10.1016/j.aquaculture.2021.736978 El-Baz, F. K., Salama, A., Ali, S. I., & Elgohary, R. (2021). Haematococcus pluvialis Carotenoids Enrich Fractions Ameliorate Liver Fibrosis Induced by Thioacetamide in Rats: Modulation of Metalloproteinase and Its Inhibitor. BioMed Research International, 2021, 6631415-16. https://doi.org/10.1155/2021/6631415 El-Baz, F. K., Ali, S. I., Elgohary, R., & Salama, A. (2023). Natural β-carotene prevents acute lung injury induced by cyclophosphamide in mice. PloS One, 18(4), e0283779. https://doi.org/10.1371/journal.pone.0283779 Factiva (2021). Análisis global de la industria de la astaxantina, tamaño, cuota de mercado, crecimiento, tendencia y previsión para 2027. https://global.factiva.com/en/du/article.asp?accessionno=ICROWDS020210316eh3g00002 Fernández-Lozano, J., Guillén-Oterino, A., Gutiérrez-Alonso, G., Abel-Flores, J., y Pérez-Turrado, J. (2015). Presencia de Haematococcus pluvialis (Flotow, 1844) en la provinciade Zamora (Haematococcaceae). Boletín De La Real Sociedad Española De Historia Natural. Sección Biológica. Gao, X., Wang, X., Li, H., Roje, S., Sablani, S. S., & Chen, S. (2017). Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red ledlights. Algal research, 23, 20-27. https://doi.org/10.1016/j.algal.2016.12.018 Gherabli, A., Grimi, N., Lemaire, J., Vorobiev, E., & Lebovka, N. (2023). Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules (Basel, Switzerland), 28(5), 2089. https://doi.org/10.3390/molecules28052089 Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., Rodríguez, J., y Camacho K., J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia: Producción de astaxantina y expresión de genes en H. pluvialis. Mutis, 9(2), 7-24. https://doi.org/10.21789/22561498.1532 Markets and Markets (2021). Astaxanthin Market by Source, Form, Method of Production, Application and Region - Global Forecast to 2026. Plus Company Updates. Meticulous Research (2023). Haematococcus pluvialis Markets: Product - Global Forecast to 2030. Plus Company Updates https://www.meticulousresearch.com/product/haematococcus-pluvialis-market-5142/toc Hawick, K. A., & Husselmann, A. V. (2013). Photo-penetration depth growth dependence in an agent-based photobioreactor model. In Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). Hernández Useche, L.D. y Otalora Celis, M.A. (2022). Obtención de astaxantina sintetizada por la microalga Haematococcus pluvialis para su aplicación industrial. [Tesis de pregrado]. Universidad Colegio Mayor de Cundinamarca. https://janium.unicolmayor.edu.co/janium-bin/sumario.pl?Id=20240613201453 He, B., Hou, L., Dong, M., Shi, J., Huang, X., Ding, Y., Cong, X., Zhang, F., Zhang, X., & Zang, X. (2018). Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2. International Journal of Molecular Sciences, 19(1), 175. https://doi.org/10.3390/ijms19010175 Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research (Amsterdam), 46. 101768. https://doi.org/10.1016/j.algal.2019.101768 Hu, J., Wang, D., Chen, H., & Wang, Q. (2023). Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. International Journal of Molecular Sciences, 24(3). 1898. https://doi.org/10.3390/ijms24031898 Hu, Q., Huang, D., Li, A., Hu, Z., Gao, Z., Yang, Y., & Wang, C. (2021). Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnology for Biofuels, 14(1). https://doi.org/10.1186/s13068-021-01933-x Hu, Q., Song, M., Huang, D., Hu, Z., Wu, Y., & Wang, C. (2021). Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. Frontiers in Plant Science, 12, 763742. https://doi.org/10.3389/fpls.2021.763742 Huang, L., Gao, B., Wu, M., Wang, F., & Zhang, C. (2019). Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35. Biotechnology for Biofuels, 12(1), 18. https://doi.org/10.1186/s13068-019-1355-5 Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering, 8(10), 789. https://doi.org/10.3390/jmse8100789 Jin, H., Lao, Y. M., Zhou, J., & Cai, Z. H. (2022). Identification of a RelA/SpoT Homolog and Its Possible Role in the Accumulation of Astaxanthin in Haematococcus pluvialis. Frontiers in Plant Science, 13, 796997. https://doi.org/10.3389/fpls.2022.796997 Koopmann, I. K., Möller, S., Elle, C., Hindersin, S., Kramer, A., & Labes, A. (2022). Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foods, 11(9), 1352. https://doi.org/10.3390/foods11091352 Lancheros-Díaz, A. G., Camacho-Kurmen, J. E., & Díaz Barrera, L. E. (2021). Producción de astaxantina bajo factores de estrés utilizando un biorreactor a escala de laboratorio de 5 L. Nova: Publicación Científica En Ciencias Biomédicas, 19(37), 99-119. https://doi.org/10.22490/24629448.5498 Lee, K. H., Chun, Y., Lee, J. H., Park, C., Yoo, H. Y., & Kwak, H. S. (2022). Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology . Marine Drugs, 20(4), 220. https://doi.org/10.3390/md20040220 Le-Feuvre, R., Moraga-Suazo, P., Gonzalez, J., Martin, S. S., Henríquez, V., Donoso, A., & Agurto-Muñoz, C. (2020). Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, 3831-3852. https://doi.org/10.1007/s10811-020-02231-z Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BioMed Research International, 2019, 8101762-7. https://doi.org/10.1155/2019/8101762 Li, F., Cai, M., Wu, Y., Lian, Q., Qian, Z., Luo, J., Zhang, Y., Zhang, N., Li, C., & Huang, X. (2022). Effects of Nitrogen and Light Intensity on the Astaxanthin Accumulation in Motile Cells of Haematococcus pluvialis. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2022.909237 Li, Q., Li, B., & Li, J. (2022). The Dynamic Behaviors of Photosynthesis during Non-Motile Cell Germination in Haematococcus pluvialis. Water (Basel), 14(8), 1280. https://doi.org/10.3390/w14081280 Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., Xiao, C., Agathos, S. N., Wang, G., & Li, J. (2020). Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnology Advances, 43, 107602. https://doi.org/10.1016/j.biotechadv.2020.107602 Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538. https://doi.org/10.1016/j.btre.2020.e00538 Lv, H., Xia, F., Liu, M., Cui, X., Wahid, F., & Jia, S. (2016). Metabolomic profiling of the astaxanthin accumulation process induced by high light in Haematococcus pluvialis. Algal Research, 20, 35-43. https://doi.org/10.1016/j.algal.2016.09.019 Luo, Q., Bian, C., Tao, M., Huang, Y., Zheng, Y., Lv, Y., Li, J., Wang, C., You, X., Jia, B., Xu, J., Li, J., Li, Z., Shi, Q., & Hu, Z. (2019). Genome and Transcriptome Sequencing of the Astaxanthin-Producing Green Microalga, Haematococcus pluvialis. Genome Biology and Evolution, 11(1), 166-173. https://doi.org/10.1093/gbe/evy263 Madhubalaji, C. K., Sarat Chandra, T., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2020). Chlorella vulgaris cultivation in airlift photobioreactor with transparent draft tube: effect of hydrodynamics, light and carbon dioxide on biochemical profile particularly ω-6/ω-3 fatty acid ratio. Journal of Food Science and Technology, 57(3), 866-876. https://doi.org/10.1007/s13197-019-04118-5 Ma, R., Thomas-Hall, S. R., Chua, E. T., Alsenani, F., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different ledlighting conditions. Bioresource Technology, 250, 591-602. https://doi.org/10.1016/j.biortech.2017.11.094 Ma, R., Thomas-Hall, S. R., Chua, E. T., Eltanahy, E., Netzel, M. E., Netzel, G., Lu, Y., & Schenk, P. M. (2018). Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Research, 35, 215-222. https://doi.org/10.1016/j.algal.2018.08.023 Martínez Rodríguez, P. A., Peinado Cárdenas, M. J., & Camacho Kurmen, J. E. (2022). Efecto de los parámetros cinéticos de escalamiento del cultivo de Haematococcus pluvialis en fotobiorreactores para producir astaxantina. Mutis, 12(2). https://doi.org/10.21789/22561498.1739 Medina, E. y Camacho Kurmen, J. E. (2023). Efectos de luz led roja y azul sobre la producción de astaxantina en la biomasa de Haematococcus pluvialis. Miranda, A. M., Ossa, E. A., Vargas, G. J. y Sáez, A. A. (2019). Efecto de las bajas concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32. https://doi.org/10.4067/S0718-07642019000100023 Miyakawa, K. (2021). Commercial Production of Astaxanthin from the Green Alga Haematococcus pluvialis. Advances in experimental medicine and biology (pp. 3-10). Springer Singapore. https://doi.org/10.1007/978-981-15-7360-6_1 Morales-Carvajal, J., Villabona-Nuncira, R., Gonz lez-Delgado, D., Barajas-Ferreira, C., & Barajas-Solano, A. (2018). Technical-economic Prefeasibility Study of Astaxanthin Production System from H. pluvialis Microalgae in Colombia. Indian Journal of Science and Technology, 11(34), 1-8. https://doi.org/10.17485/ijst/2018/v11i34/122627 Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Marine Drugs, 18(9), 459. https://doi.org/10.3390/md18090459 Mussagy, C. U., Kot, A., Dufossé, L., Gonçalves, C. N. D. P., Pereira, J. F. B., Santos-Ebinuma, V. C., Raghavan, V., & Pessoa, A. (2023). Microbial astaxanthin: from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 107(13), 4199-4215. https://doi.org/10.1007/s00253-023-12586-1 Ooms, M. D., Dinh, C. T., Sargent, E. H., & Sinton, D. (2016). Photon management for augmented photosynthesis. Nature Communications, 7(1), 12699. https://doi.org/10.1038/ncomms12699 Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y., & Kawano, S. (2018). Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Scientific Reports, 8(1), 5617-10. https://doi.org/10.1038/s41598-018-23854-w Pang, N., Fu, X., Fernandez, J. S. M., & Chen, S. (2019). Multilevel heuristic ledregime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 288, 121525. https://doi.org/10.1016/j.biortech.2019.121525 Pattanaik, A., Sukla, L. B., & Pradhan, D. (2018). Effect of ledLights on the Growth of Microalgae. Inglomayor, 14, 17-24. Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027. https://doi.org/10.1016/j.algal.2020.102027 Santos, B., da Conceição, D. P., Corrêa, D. O., Passos, M. F., Campos, M. P., Adamoski, D., ... & Kava, V. M. (2022). Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. Journal of Applied Phycology, 34(2), 729-743. https://doi.org/10.1007/s10811-022-02696-0 Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531 Sun, J., Zan, J., & Zang, X. (2022). Research of Fluridone’s Effects on Growth and Pigment Accumulation of Haematococcus pluvialis Based on Transcriptome Sequencing. International Journal of Molecular Sciences, 23(6), 3122. https://doi.org/10.3390/ijms23063122 Sun, H., Kong, Q., Geng, Z., Duan, L., Yang, M., & Guan, B. (2015). Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. Bioresource technology, 186, 67-73. https://doi.org/10.1016/j.biortech.2015.02.101 Tran, H. L., Lee, K. H., & Hong, C. H. (2015). Effects of ledirradiation on the growth and Astaxanthin Production of Haematococcus lacustris. Biosciences Biotechnology Research Asia, 12(2), 1167-1173. https://doi.org/10.13005/bbra/1769 Torres, T., & Kurmen, J. E. C. (2022). Modelos matemáticos y parámetros cinéticos relacionados con la producción de astaxantina en Haematococcus pluvialis. Revista Mutis, 12(1). https://doi.org/10.21789/22561498.1743 Viazau, Y. V., Goncharik, R. G., Kulikova, I. S., Kulikov, E. A., Vasilov, R. G., & Selishcheva, A. A. (2021). E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. Bioresources and Bioprocessing, 8(1), 1-13. https://doi.org/10.1186/s40643-021-00410-5 Villaró, S., Ciardi, M., Morillas-España, A., Sánchez-Zurano, A., Acién-Fernández, G., & Lafarga, T. (2021). Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods, 10(10), 2303. https://doi.org/10.3390/foods10102303 Waissman-Levy, N., Leu, S., Khozin-Goldberg, I., & Boussiba, S. (2019). Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Research (Amsterdam), 40, 101497. https://doi.org/10.1016/j.algal.2019.101497 Wang, C., Wang, K., Ning, J., Luo, Q., Yang, Y., Huang, D., & Li, H. (2021). Transcription Factors From Haematococcus pluvialis Involved in the Regulation of Astaxanthin Biosynthesis Under High Light-Sodium Acetate Stress. Frontiers in Bioengineering and Biotechnology, 9, 650178. https://doi.org/10.3389/fbioe.2021.650178 Wang, X., Song, Y., Liu, B., Hang, W., Li, R., Cui, H., Li, R., & Jia, X. (2020). Enhancement of astaxanthin biosynthesis in Haematococcus pluvialis via inhibition of autophagy by 3-methyladenine under high light. Algal Research, 50, 101991. https://doi.org/10.1016/j.algal.2020.101991 Wang, X., Meng, C., Zhang, H., Xing, W., Cao, K., Zhu, B., Zhang, C., Sun, F., & Gao, Z. (2021). Transcriptomic and Proteomic Characterizations of the Molecular Response to Blue Light and Salicylic Acid in Haematococcus pluvialis. Marine Drugs, 20(1), 1. https://doi.org/10.3390/md20010001 Wei, Z., Sun, F., Meng, C., Xing, W., Zhu, X., Wang, C., Cao, K., Zhang, C., Zhu, B., Yao, T., & Gao, Z. (2022). Transcriptome Analysis of the Accumulation of Astaxanthin in Haematococcus pluvialis Treated with White and Blue Lights as well as Salicylic Acid. BioMed Research International, 2022, 1-19. https://doi.org/10.1155/2022/4827595 Xi, T., Kim, D. G., Roh, S. W., Choi, J. S., & Choi, Y. E. (2016). Enhancement of astaxanthin production using Haematococcus pluvialis with novel ledwavelength shift strategy. Applied microbiology and biotechnology, 100, 6231-6238. https://doi.org/10.1007/s00253-016-7301-6 Xu, Z., Baicheng, Z., Yiping, Z., Zhaoling, C., Wei, C., & Fan, O. (2002). A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnology Letters, 24(21), 1767-1771. https://doi.org/10.1023/A:1020648919331 Yan, H., Ma, H., Li, Y., Zhao, L., Lin, J., Jia, Q., Hu, Q., & Han, D. (2022). Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense. Biotechnology for Biofuels and Bioproducts, 15(1), 56. https://doi.org/10.1186/s13068-022-02140-y Zhang, W., Zhou, X., Zhang, Y., Cheng, P., Ma, R., Cheng, W., & Chu, H. (2018). Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupledlight intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28(12), 2019-2028. https://doi.org/10.4014/jmb.1807.07008 Zhao, K., Li, Y., Yan, H., Hu, Q., & Han, D. (2022). Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells (Basel, Switzerland), 11(12), 1956. https://doi.org/10.3390/cells11121956 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-06-24 |
date_accessioned |
2024-06-24T15:57:50Z |
date_available |
2024-06-24T15:57:50Z |
url |
https://revistas.utadeo.edu.co/index.php/mutis/article/view/revision-efecto-factor-estres-haematococcus-pluvialis |
url_doi |
https://doi.org/10.21789/22561498.2108 |
eissn |
2256-1498 |
doi |
10.21789/22561498.2108 |
citationstartpage |
1 |
citationendpage |
33 |
url2_str_mv |
https://revistas.utadeo.edu.co/index.php/mutis/article/download/revision-efecto-factor-estres-haematococcus-pluvialis/2144 |
_version_ |
1811200045154828288 |