Titulo:

Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
.

Sumario:

Este artículo propone un método para calcular el indicador de oee (Eficacia General del Equipo). Esta propuesta se basa en utilizar el concepto de gemelo digital de un equipo para calcular el indicador oee, teniendo en cuenta aspectos relacionados con la transformación digital industrial que requieren las empresas actualmente.

Guardado en:

2256-1498

13

2023-03-03

1

27

Revista Mutis - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_utadeo_revistamutis_66_article_2019
record_format ojs
spelling Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
Calculation of the Overall Equipment Effectiveness (OEE) Based on the Digital Twin Concept under an Industrial Digital Transformation Environment
Este artículo propone un método para calcular el indicador de oee (Eficacia General del Equipo). Esta propuesta se basa en utilizar el concepto de gemelo digital de un equipo para calcular el indicador oee, teniendo en cuenta aspectos relacionados con la transformación digital industrial que requieren las empresas actualmente.
This article proposes a method to calculate the oee (Overall Equipment Effectiveness) indicator. This proposal is based on using the concept of a digital twin of a team to calculate the oee indicator, considering aspects related to the industrial digital transformation that are currently required by companies.
Rojas Alvarado , Oscar Amaury
Benavidez, Johan Felipe
Pascuas, Wilmer
Engineering
OEE (Overall Equipment Effectiveness)
Industrial digital transformation
Industry 4.0
Digital twin
OEE
transformación digital industrial
Industria 4.0
gemelo digital
13
2
Núm. 2 , Año 2023 : Dossier. XI congreso CIIMA
Artículo de revista
Journal article
2023-03-03T00:00:00Z
2023-03-03T00:00:00Z
2023-03-03
application/pdf
Universidad de Bogotá Jorge Tadeo Lozano
Revista Mutis
2256-1498
https://revistas.utadeo.edu.co/index.php/mutis/article/view/calculo-efectividad-global-equipo-OEE
10.21789/22561498.2019
https://doi.org/10.21789/22561498.2019
spa
https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Mutis - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1
27
Adamenko, D., Kunnen, S., Pluhnau, R., Loibl, A. & Nagarajah, A. (2020). Re-view and comparison of the methods of designing the digital twin. Procedia CIRP, 91, pp. 27 – 32. https://doi.org/10.1016/j.procir.2020.02.146
Ahuja, I. P. S. & Khamba, J. S. (2008). Assessment of contributions of success-ful tpm initiatives towards competitive manufacturing. Journal of Quality in Mainte-nance Engineering. https://doi.org/10.1108/13552510810909966
Andersson, C. & Bellgran, M. (2015). On the complexity of using perfor-mance measures: Enhancing sustained production improvement capability by com-bining oee and productivity. Journal of Manufacturing Systems, 35, pp. 144 – 154. https://doi.org/10.1016/j.jmsy.2014.12.003
Bai, C., Dallasega, P., Orzes, G. & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Econom-ics, 229, p. 107776. https://doi.org/10.1016/j.ijpe.2020.107776
Büchi, G., Cugno, M. & Castagnoli, R. (2020). Smart factory performance and industry 4.0. Technological Forecasting and Social Change, 150, p. 119790. https://doi.org/10.1016/j.techfore.2019.119790
Cercós, M. P., Calvo, L. M. & Domingo, R. (2019). An exploratory study on the relationship of overall equipment effectiveness (OEE) variables and co2 emis-sions. Procedia Manufacturing, 41, pp. 224–232. https://doi.org/10.1016/j.promfg.2019.07.050
Cheng, G., Liu, L., Qiang, X. & Liu, Y. (2016). Industry 4.0 development and application of intelligent manufacturing. in 2016 International Conference on Infor-mation System and Artificial Intelligence (ISAI), (pp. 407–410). https://doi.org/10.1109/ISAI.2016.0092
Eynard, B. & Cherfi, Z. (2020). Digital and organizational transformation of industrial systems. Computers & Industrial Engineering, 139, p. 106197. https://doi.org/10.1016/j.cie.2019.106197
Flores-Ruiz, E. Miranda-Novales, M. G. & Villasís-Keever, M. Á. (2017). El protocolo de investigación vi: cómo elegir la prueba estadística adecuada. Estadística inferencial. Revista Alergia México, 64(3), pp. 364–370. https://doi.org/10.29262/ram.v64i3.304
ISA (s.f.). Isa88, batch control. https://www.isa.org/standards-andpublications/isa-standards/isa-standards-committees/isa88
Jones, D., Snider, C., Nassehi, A., Yon, J. & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, pp. 36 – 52. https://doi.org/10.1016/j.cirpj.2020.02.002
Joppen, R., von Enzberg, S., Gundlach, J., Kühn, A. & Dumitrescu, R. (2019). Key performance indicators in the production of the future. Procedia CIRP, 81, pp. 759 – 764. https://doi.org/10.1016/j.procir.2019.03.190
Liao, Y., Deschamps, F., de Freitas, E. & Ramos, L. F. P. (2017). Past, present and future of industry 4.0 - a systematic literature review and research agenda pro-posal. International Journal of Production Research, 55(12), pp. 3609–3629. https://doi.org/10.1080/00207543.2017.1308576
Marco, C. (2016). Cómo poner en marcha el oee. https://excelencemanagement.wordpress.com/2016/08/02/comoponer-en-marcha-el-oee/
Martínez-Caro, E., Cegarra-Navarro, J. G. & Alfonso Ruiz, F. J. (2020). Digital technologies and firm performance: The role of digital organisational culture. Tech-nological Forecasting and Social Change, 154, p. 119962. https://doi.org/10.1016/j.techfore.2020.119962
Mecalux (s.f.). Miniloads mecalux. https://www.mecalux.com.co/
Muchiri, P. & Pintelon, L. (2008). Performance measurement using overall equipment effectiveness (oee): literature review and practica application discussion. International Journal of Production Research, 46(13), pp. 3517–3535. https://doi.org/10.1080/00207540601142645
Roda, I. & Macchi, M. (2019). Factory-level performance evaluation of buff-ered multi-state production systems. Journal of Manufacturing Systems, 50, pp. 226 – 235. https://doi.org/10.1016/j.jmsy.2018.12.008
Saarikko, T., Westergren, U. H. & Blomquist, T. (2020). Digital transformation: Five recommendations for the digitally conscious firm. Business Horizons. https://doi.org/10.1016/j.bushor.2020.07.005
Schiraldi, M. M. & Varisco, M. (2020). Overall equipment effectiveness: consistency of iso standard with literature. Computers & Industrial Engineering, 145, p. 106518. https://doi.org/10.1016/j.cie.2020.106518
Schleich, B., Answer, N., Mathieu, L. & Wartzack, S. (2017). Shaping the digi-tal twin for design and production engineering. CIRP Annals, 66(1), pp. 141 – 144. https://doi.org/10.1016/j.cirp.2017.04.040
Shahin, A. & Isfahani, N. G. (2015). Estimating overall equipment effective-ness for continuous production lines: with a case study in Esfahan steel company. International Journal of Services and Operations Management, 21(4), pp. 466–478. https://doi.org/10.1504/IJSOM.2015.070252
Sohal, A., Olhager, J., O’Neill, P. & Prajogo, D. (2010). Implementation ofoee–issues and challenges. Competitive and sustainable manufacturing products and services, pp. 1–8.
Vial, G. (2019). Understanding digital transformation: A review and a re-search agenda. The Journal of Strategic Information Systems, 28(2), pp. 118 – 144. https://doi.org/10.1016/j.jsis.2019.01.003
https://revistas.utadeo.edu.co/index.php/mutis/article/download/calculo-efectividad-global-equipo-OEE/2051
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD JORGE TADEO LOZANO
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADJORGETADEOLOZANO/logo.png
country_str Colombia
collection Revista Mutis
title Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
spellingShingle Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
Rojas Alvarado , Oscar Amaury
Benavidez, Johan Felipe
Pascuas, Wilmer
Engineering
OEE (Overall Equipment Effectiveness)
Industrial digital transformation
Industry 4.0
Digital twin
transformación digital industrial
Industria 4.0
gemelo digital
title_short Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
title_full Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
title_fullStr Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
title_full_unstemmed Cálculo de la Efectividad Global del Equipo (OEE) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
title_sort cálculo de la efectividad global del equipo (oee) basado en el concepto de gemelo digital bajo un entorno de transformación digital industrial
title_eng Calculation of the Overall Equipment Effectiveness (OEE) Based on the Digital Twin Concept under an Industrial Digital Transformation Environment
description Este artículo propone un método para calcular el indicador de oee (Eficacia General del Equipo). Esta propuesta se basa en utilizar el concepto de gemelo digital de un equipo para calcular el indicador oee, teniendo en cuenta aspectos relacionados con la transformación digital industrial que requieren las empresas actualmente.
description_eng This article proposes a method to calculate the oee (Overall Equipment Effectiveness) indicator. This proposal is based on using the concept of a digital twin of a team to calculate the oee indicator, considering aspects related to the industrial digital transformation that are currently required by companies.
author Rojas Alvarado , Oscar Amaury
Benavidez, Johan Felipe
Pascuas, Wilmer
author_facet Rojas Alvarado , Oscar Amaury
Benavidez, Johan Felipe
Pascuas, Wilmer
topic Engineering
OEE (Overall Equipment Effectiveness)
Industrial digital transformation
Industry 4.0
Digital twin
transformación digital industrial
Industria 4.0
gemelo digital
topic_facet Engineering
OEE (Overall Equipment Effectiveness)
Industrial digital transformation
Industry 4.0
Digital twin
transformación digital industrial
Industria 4.0
gemelo digital
topicspa_str_mv transformación digital industrial
Industria 4.0
gemelo digital
citationvolume 13
citationissue 2
citationedition Núm. 2 , Año 2023 : Dossier. XI congreso CIIMA
publisher Universidad de Bogotá Jorge Tadeo Lozano
ispartofjournal Revista Mutis
source https://revistas.utadeo.edu.co/index.php/mutis/article/view/calculo-efectividad-global-equipo-OEE
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Revista Mutis - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Adamenko, D., Kunnen, S., Pluhnau, R., Loibl, A. & Nagarajah, A. (2020). Re-view and comparison of the methods of designing the digital twin. Procedia CIRP, 91, pp. 27 – 32. https://doi.org/10.1016/j.procir.2020.02.146
Ahuja, I. P. S. & Khamba, J. S. (2008). Assessment of contributions of success-ful tpm initiatives towards competitive manufacturing. Journal of Quality in Mainte-nance Engineering. https://doi.org/10.1108/13552510810909966
Andersson, C. & Bellgran, M. (2015). On the complexity of using perfor-mance measures: Enhancing sustained production improvement capability by com-bining oee and productivity. Journal of Manufacturing Systems, 35, pp. 144 – 154. https://doi.org/10.1016/j.jmsy.2014.12.003
Bai, C., Dallasega, P., Orzes, G. & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Econom-ics, 229, p. 107776. https://doi.org/10.1016/j.ijpe.2020.107776
Büchi, G., Cugno, M. & Castagnoli, R. (2020). Smart factory performance and industry 4.0. Technological Forecasting and Social Change, 150, p. 119790. https://doi.org/10.1016/j.techfore.2019.119790
Cercós, M. P., Calvo, L. M. & Domingo, R. (2019). An exploratory study on the relationship of overall equipment effectiveness (OEE) variables and co2 emis-sions. Procedia Manufacturing, 41, pp. 224–232. https://doi.org/10.1016/j.promfg.2019.07.050
Cheng, G., Liu, L., Qiang, X. & Liu, Y. (2016). Industry 4.0 development and application of intelligent manufacturing. in 2016 International Conference on Infor-mation System and Artificial Intelligence (ISAI), (pp. 407–410). https://doi.org/10.1109/ISAI.2016.0092
Eynard, B. & Cherfi, Z. (2020). Digital and organizational transformation of industrial systems. Computers & Industrial Engineering, 139, p. 106197. https://doi.org/10.1016/j.cie.2019.106197
Flores-Ruiz, E. Miranda-Novales, M. G. & Villasís-Keever, M. Á. (2017). El protocolo de investigación vi: cómo elegir la prueba estadística adecuada. Estadística inferencial. Revista Alergia México, 64(3), pp. 364–370. https://doi.org/10.29262/ram.v64i3.304
ISA (s.f.). Isa88, batch control. https://www.isa.org/standards-andpublications/isa-standards/isa-standards-committees/isa88
Jones, D., Snider, C., Nassehi, A., Yon, J. & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, pp. 36 – 52. https://doi.org/10.1016/j.cirpj.2020.02.002
Joppen, R., von Enzberg, S., Gundlach, J., Kühn, A. & Dumitrescu, R. (2019). Key performance indicators in the production of the future. Procedia CIRP, 81, pp. 759 – 764. https://doi.org/10.1016/j.procir.2019.03.190
Liao, Y., Deschamps, F., de Freitas, E. & Ramos, L. F. P. (2017). Past, present and future of industry 4.0 - a systematic literature review and research agenda pro-posal. International Journal of Production Research, 55(12), pp. 3609–3629. https://doi.org/10.1080/00207543.2017.1308576
Marco, C. (2016). Cómo poner en marcha el oee. https://excelencemanagement.wordpress.com/2016/08/02/comoponer-en-marcha-el-oee/
Martínez-Caro, E., Cegarra-Navarro, J. G. & Alfonso Ruiz, F. J. (2020). Digital technologies and firm performance: The role of digital organisational culture. Tech-nological Forecasting and Social Change, 154, p. 119962. https://doi.org/10.1016/j.techfore.2020.119962
Mecalux (s.f.). Miniloads mecalux. https://www.mecalux.com.co/
Muchiri, P. & Pintelon, L. (2008). Performance measurement using overall equipment effectiveness (oee): literature review and practica application discussion. International Journal of Production Research, 46(13), pp. 3517–3535. https://doi.org/10.1080/00207540601142645
Roda, I. & Macchi, M. (2019). Factory-level performance evaluation of buff-ered multi-state production systems. Journal of Manufacturing Systems, 50, pp. 226 – 235. https://doi.org/10.1016/j.jmsy.2018.12.008
Saarikko, T., Westergren, U. H. & Blomquist, T. (2020). Digital transformation: Five recommendations for the digitally conscious firm. Business Horizons. https://doi.org/10.1016/j.bushor.2020.07.005
Schiraldi, M. M. & Varisco, M. (2020). Overall equipment effectiveness: consistency of iso standard with literature. Computers & Industrial Engineering, 145, p. 106518. https://doi.org/10.1016/j.cie.2020.106518
Schleich, B., Answer, N., Mathieu, L. & Wartzack, S. (2017). Shaping the digi-tal twin for design and production engineering. CIRP Annals, 66(1), pp. 141 – 144. https://doi.org/10.1016/j.cirp.2017.04.040
Shahin, A. & Isfahani, N. G. (2015). Estimating overall equipment effective-ness for continuous production lines: with a case study in Esfahan steel company. International Journal of Services and Operations Management, 21(4), pp. 466–478. https://doi.org/10.1504/IJSOM.2015.070252
Sohal, A., Olhager, J., O’Neill, P. & Prajogo, D. (2010). Implementation ofoee–issues and challenges. Competitive and sustainable manufacturing products and services, pp. 1–8.
Vial, G. (2019). Understanding digital transformation: A review and a re-search agenda. The Journal of Strategic Information Systems, 28(2), pp. 118 – 144. https://doi.org/10.1016/j.jsis.2019.01.003
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-03-03
date_accessioned 2023-03-03T00:00:00Z
date_available 2023-03-03T00:00:00Z
url https://revistas.utadeo.edu.co/index.php/mutis/article/view/calculo-efectividad-global-equipo-OEE
url_doi https://doi.org/10.21789/22561498.2019
eissn 2256-1498
doi 10.21789/22561498.2019
citationstartpage 1
citationendpage 27
url2_str_mv https://revistas.utadeo.edu.co/index.php/mutis/article/download/calculo-efectividad-global-equipo-OEE/2051
_version_ 1811200044066406401