Titulo:

Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
.

Sumario:

Los rumiantes son animales de pastoreo con la capacidad de utilizar fuentes de forraje para mantenimiento, crecimiento, reproducción y producción. Poseen el rumen, una cámara de fermentación compuesta por alta diversidad de microorganismos con capacidad para degradar alimentos ricos en fibra o almidón y otro tipo de carbohidratos no fibrosos, ya que contienen enzimas que actúan rompiendo enlaces entre moléculas, haciendo presente el sustrato. en la comida disponible. Este estudio se desarrolló con el objetivo de revisar la literatura sobre cómo las diferentes dietas afectan los parámetros ruminales, así como la ecología del rumen. Por lo tanto, la búsqueda de la comprensión de cómo las diferentes dietas pueden afectar las características ru... Ver más

Guardado en:

2027-4297

14

2022-05-14

e886

e886

Alberto Jefferson , Amanda Costa-Campos, Danielle Nascimento-Coutinho, Cássia Aparecida Soares-Freitas, Albert José dos-Anjos, Leilson Rocha-Bezerra - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisucre_revistacolombianadecienciaanimal_recia_86_article_886
record_format ojs
institution UNIVERSIDAD DE SUCRE
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESUCRE/logo.png
country_str Colombia
collection Revista Colombiana de Ciencia Animal - RECIA
title Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
spellingShingle Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
Alberto Jefferson
Costa-Campos, Amanda
Nascimento-Coutinho, Danielle
Soares-Freitas, Cássia Aparecida
dos-Anjos, Albert José
Rocha-Bezerra, Leilson
Ammonia
microorganisms
ruminal environment
volatile fatty acids
Amoníaco
microorganismos
ambiente ruminal
ácidos grasos volátiles
Amônia
microrganismos
ambiente ruminal
ácidos graxos voláteis
title_short Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
title_full Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
title_fullStr Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
title_full_unstemmed Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
title_sort efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
title_eng Effect of the diet on ruminal parameters and rumen microbiota: review
description Los rumiantes son animales de pastoreo con la capacidad de utilizar fuentes de forraje para mantenimiento, crecimiento, reproducción y producción. Poseen el rumen, una cámara de fermentación compuesta por alta diversidad de microorganismos con capacidad para degradar alimentos ricos en fibra o almidón y otro tipo de carbohidratos no fibrosos, ya que contienen enzimas que actúan rompiendo enlaces entre moléculas, haciendo presente el sustrato. en la comida disponible. Este estudio se desarrolló con el objetivo de revisar la literatura sobre cómo las diferentes dietas afectan los parámetros ruminales, así como la ecología del rumen. Por lo tanto, la búsqueda de la comprensión de cómo las diferentes dietas pueden afectar las características ruminales se considera importante, ya que permite manipular la dieta hasta un umbral, sin causar ninguna alteración metabólica a los animales y luego maximizar el rendimiento. Esta práctica puede contribuir a minimizar las pérdidas, maximizar el proceso de fermentación de los alimentos y la absorción de los productos de fermentación, que pueden convertirse en carne y leche. Los resultados de este estudio muestran que la población microbiana y los productos finales de la fermentación ruminal se ven directamente afectados por la dieta animal. La manipulación de las dietas puede permitir maximizar la eficiencia productiva, así como la optimización del uso de nutrientes, maximizar la producción animal.
description_eng Ruminants are grazing animals with the ability to utilize forage sources for maintenance, growth, reproduction and production. They possess the rumen, a fermentation chamber composed of high diversity of microorganisms with the ability for degrading fiber or starch rich food and other types of non-fibrous carbohydrates, since they contain enzymes that act by breaking up bonds between molecules, making the substrate present in the food available. This study was developed aiming at reviewing the literature on how different diets affect ruminal parameters as well as the rumen ecology. Thus, the seeking for the understanding on how different diets can affect ruminal characteristics is found to be important, since it makes possible manipulating the diet up to a threshold, without causing any metabolic disturbance to animals and then maximizing the performance. This practice may contribute to minimize losses, maximize the food fermentation process and the absorption of fermentation products, which can be converted into flesh and milk. Findings from this study show that the microbial population and the final rumen fermentation products are directly affected by the animal diet. Therefore, manipulating diets may make possible maximizing the animal productive efficiency, as well as the optimization of the use of nutrients, to maximize the animal production.
author Alberto Jefferson
Costa-Campos, Amanda
Nascimento-Coutinho, Danielle
Soares-Freitas, Cássia Aparecida
dos-Anjos, Albert José
Rocha-Bezerra, Leilson
author_facet Alberto Jefferson
Costa-Campos, Amanda
Nascimento-Coutinho, Danielle
Soares-Freitas, Cássia Aparecida
dos-Anjos, Albert José
Rocha-Bezerra, Leilson
topic Ammonia
microorganisms
ruminal environment
volatile fatty acids
Amoníaco
microorganismos
ambiente ruminal
ácidos grasos volátiles
Amônia
microrganismos
ambiente ruminal
ácidos graxos voláteis
topic_facet Ammonia
microorganisms
ruminal environment
volatile fatty acids
Amoníaco
microorganismos
ambiente ruminal
ácidos grasos volátiles
Amônia
microrganismos
ambiente ruminal
ácidos graxos voláteis
topicspa_str_mv Amoníaco
microorganismos
ambiente ruminal
ácidos grasos volátiles
Amônia
microrganismos
ambiente ruminal
ácidos graxos voláteis
citationvolume 14
citationissue 1
citationedition Núm. 1 , Año 2022 : RECIA 14(1):ENERO-JUNIO 2022
publisher Universidad de Sucre
ispartofjournal Revista Colombiana de Ciencia Animal - RECIA
source https://revistas.unisucre.edu.co/index.php/recia/article/view/886
language eng
format Article
rights https://creativecommons.org/licenses/by/4.0
Alberto Jefferson , Amanda Costa-Campos, Danielle Nascimento-Coutinho, Cássia Aparecida Soares-Freitas, Albert José dos-Anjos, Leilson Rocha-Bezerra - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. J Nutr. 2012 Sep 1;142(9):1684–92. https://doi.org/10.3945/jn.112.159574 2. Bento CBP, Azevedo AC, Gomes DI, Batista ED, Rufino LMA, Detmann E, et al. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages. Animal. 2016;10(1):44–54. https://doi.org/10.1017/S1751731115001512 3. Chen Y, Penner GB, Li M, Oba M, Guan LL. Changes in Bacterial Diversity Associated with Epithelial Tissue in the Beef Cow Rumen during the Transition to a High-Grain Diet. Appl Environ Microbiol. 2011 Aug 15;77(16):5770–81. https://doi.org/10.1128/AEM.00375-11 4. Köche JC. Fundamentos de metodologia científica [Internet]. 1st ed. Matos APS, Silva JM da, Peretti L, Oleniki ML, editors. Petrópolis: Editora Vozes; 2011. 185 p. Available from: http://www.adm.ufrpe.br/sites/ww4.deinfo.ufrpe.br/files/Fundamentos_de_Metodologia_Científica.pdf 5. Pereira AS, Shitsuka DM, Parreira FJ, Shitsuka R. Metodologia da Pesquisa Científica [Internet]. 1st ed. Educacional N de T, editor. Santa Maria: Universidade Federal de Santa Maria; 2018. 119 p. Available from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1 6. Khiaosa-ard R, Zebeli Q. Cattle’s variation in rumen ecology and metabolism and its contributions to feed efficiency. Livest Sci. 2014 Apr;162:66–75. https://doi.org/10.1016/j.livsci.2014.01.005 7. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015 Nov 26;5(1):14567. https://doi.org/10.1038/srep14567 8. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol. 2012;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11 9. Ding G, Chang Y, Zhao L, Zhou Z, Ren L, Meng Q. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J Anim Sci Biotechnol. 2014 Dec 1;5(1):24. https://doi.org/10.1186/2049-1891-5-24 10. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle. Appl Environ Microbiol. 2012 Feb 15;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11 11. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS One. 2013;8(2):e47879. https://doi.org/10.1371/journal.pone.0047879 12. Kim M, Yu Z. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J Anim Sci Biotechnol. 2012;3(1):2–7. https://doi.org/10.1186/2049-1891-3-28 13. Huws SA, Lee MRF, Muetzel SM, Scott MB, Wallace RJ, Scollan ND. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol Ecol. 2010 Apr 20;no-no. https://doi.org/10.1111/j.1574-6941.2010.00892.x 14. Lillis L, Boots B, Kenny DA, Petrie K, Boland TM, Clipson N, et al. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J Appl Microbiol. 2011 Dec;111(6):1426–35. https://doi.org/10.1111/j.1365-2672.2011.05154.x 15. Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: Leading the way in microbial ecology1,2. J Anim Sci. 2013 Jan 1;91(1):331–41. https://doi.org/10.2527/jas.2012-5567 16. Mateos I, Ranilla MJ, Saro C, Carro MD. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA). Animal. 2017;11(11):1939–48. https://doi.org/10.1017/S1751731117000878 17. Chen Y, Oba M, Guan LL. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet Microbiol. 2012 Oct;159(3–4):451–9. https://doi.org/10.1016/j.vetmic.2012.04.032 18. Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep. 2008 Jun 5;35(2):265–74. https://doi.org/10.1007/s11033-007-9079-1 19. Aikman PC, Henning PH, Humphries DJ, Horn CH. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. J Dairy Sci. 2011 Jun;94(6):2840–9. https://doi.org/10.3168/jds.2010-3783 20. Arelovich HM, Amela MI, Martínez MF, Bravo RD, Torrea MB. Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Rumin Res. 2014 Oct;121(2–3):175–82. https://doi.org/10.1016/j.smallrumres.2014.08.005 21. Ruiz‐Albarrán M, Balocchi OA, Noro M, Wittwer F, Pulido RG. Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass. Anim Sci J. 2016 Jul 30;87(7):878–84. https://doi.org/10.1111/asj.12513 22. Zhu W, Wei Z, Xu N, Yang F, Yoon I, Chung Y, et al. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J Anim Sci Biotechnol. 2017 Dec 28;8(1):36. https://doi.org/10.1186/s40104-017-0167-3 23. Sun P, Wang JQ, Deng LF. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal. 2013;7(2):216–22. https://doi.org/10.1017/S1751731112001188 24. Benchaar C, Romero-Pérez GA, Chouinard PY, Hassanat F, Eugene M, Petit H V., et al. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J Dairy Sci. 2012;95(8):4578–90. https://doi.org/10.3168/jds.2012-5455 25. Xie X, Wang J, Guan L, Liu J. Effect of changing forage on the dynamic variation in rumen fermentation in sheep. Anim Sci J. 2018 Jan 25;89(1):122–31. https://doi.org/10.1111/asj.12915 26. Kobayashi Y, Oh S, Myint H, Koike S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J Anim Sci Biotechnol. 2016 Dec 15;7(1):70. https://doi.org/10.1186/s40104-016-0126-4 27. Ueda K, Mitani T, Kondo S. Effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows grazed on perennial ryegrass pasture. Anim Sci J. 2016 Oct;87(10):1233–43. https://doi.org/10.1111/asj.12576 28. Foiklang S, Wanapat M, Norrapoke T. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Anim Sci J. 2016 Mar;87(3):370–7. https://doi.org/10.1111/asj.12428 29. Benchaar C, McAllister TA, Petit H V., Chouinard PY. Whole flax seed and flax oil supplementation of dairy cows fed high-forage or high-concentrate diets: Effects on digestion, ruminal fermentation characteristics, protozoal populations and milk fatty acid profile. Anim Feed Sci Technol. 2014;198:117–29. https://doi.org/10.1016/j.anifeedsci.2014.10.003 30. Commun L, Mialon MM, Martin C, Baumont R, Veissier I. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. J Anim Sci. 2009 Oct 1;87(10):3372–9. https://doi.org/10.2527/jas.2009-1968 31. Biswas AA, Lee S, Mamuad LL, Kim S, Choi Y, Lee C, et al. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J. 2018 Jan 27;89(1):114–21. https://doi.org/10.1111/asj.12913 32. Dijkstra J, Ellis JL, Kebreab E, Strathe AB, López S, France J, et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol. 2012 Feb;172(1–2):22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-05-14
date_accessioned 2022-05-14T06:14:52Z
date_available 2022-05-14T06:14:52Z
url https://revistas.unisucre.edu.co/index.php/recia/article/view/886
url_doi https://doi.org/10.24188/recia.v14.n1.2022.886
eissn 2027-4297
doi 10.24188/recia.v14.n1.2022.886
citationstartpage e886
citationendpage e886
url2_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/886/997
url5_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/886/998
url7_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/886/1000
_version_ 1811200769524760576
spelling Efecto de la dieta sobre los parámetros ruminales y la microbiota ruminal: revisión
Effect of the diet on ruminal parameters and rumen microbiota: review
Los rumiantes son animales de pastoreo con la capacidad de utilizar fuentes de forraje para mantenimiento, crecimiento, reproducción y producción. Poseen el rumen, una cámara de fermentación compuesta por alta diversidad de microorganismos con capacidad para degradar alimentos ricos en fibra o almidón y otro tipo de carbohidratos no fibrosos, ya que contienen enzimas que actúan rompiendo enlaces entre moléculas, haciendo presente el sustrato. en la comida disponible. Este estudio se desarrolló con el objetivo de revisar la literatura sobre cómo las diferentes dietas afectan los parámetros ruminales, así como la ecología del rumen. Por lo tanto, la búsqueda de la comprensión de cómo las diferentes dietas pueden afectar las características ruminales se considera importante, ya que permite manipular la dieta hasta un umbral, sin causar ninguna alteración metabólica a los animales y luego maximizar el rendimiento. Esta práctica puede contribuir a minimizar las pérdidas, maximizar el proceso de fermentación de los alimentos y la absorción de los productos de fermentación, que pueden convertirse en carne y leche. Los resultados de este estudio muestran que la población microbiana y los productos finales de la fermentación ruminal se ven directamente afectados por la dieta animal. La manipulación de las dietas puede permitir maximizar la eficiencia productiva, así como la optimización del uso de nutrientes, maximizar la producción animal.
Ruminants are grazing animals with the ability to utilize forage sources for maintenance, growth, reproduction and production. They possess the rumen, a fermentation chamber composed of high diversity of microorganisms with the ability for degrading fiber or starch rich food and other types of non-fibrous carbohydrates, since they contain enzymes that act by breaking up bonds between molecules, making the substrate present in the food available. This study was developed aiming at reviewing the literature on how different diets affect ruminal parameters as well as the rumen ecology. Thus, the seeking for the understanding on how different diets can affect ruminal characteristics is found to be important, since it makes possible manipulating the diet up to a threshold, without causing any metabolic disturbance to animals and then maximizing the performance. This practice may contribute to minimize losses, maximize the food fermentation process and the absorption of fermentation products, which can be converted into flesh and milk. Findings from this study show that the microbial population and the final rumen fermentation products are directly affected by the animal diet. Therefore, manipulating diets may make possible maximizing the animal productive efficiency, as well as the optimization of the use of nutrients, to maximize the animal production.
Alberto Jefferson
Costa-Campos, Amanda
Nascimento-Coutinho, Danielle
Soares-Freitas, Cássia Aparecida
dos-Anjos, Albert José
Rocha-Bezerra, Leilson
Ammonia
microorganisms
pH
ruminal environment
volatile fatty acids
Amoníaco
microorganismos
pH
ambiente ruminal
ácidos grasos volátiles
Amônia
microrganismos
pH
ambiente ruminal
ácidos graxos voláteis
14
1
Núm. 1 , Año 2022 : RECIA 14(1):ENERO-JUNIO 2022
Artículo de revista
Journal article
2022-05-14T06:14:52Z
2022-05-14T06:14:52Z
2022-05-14
application/pdf
application/epub+zip
audio/mpeg
Universidad de Sucre
Revista Colombiana de Ciencia Animal - RECIA
2027-4297
https://revistas.unisucre.edu.co/index.php/recia/article/view/886
10.24188/recia.v14.n1.2022.886
https://doi.org/10.24188/recia.v14.n1.2022.886
eng
https://creativecommons.org/licenses/by/4.0
Alberto Jefferson , Amanda Costa-Campos, Danielle Nascimento-Coutinho, Cássia Aparecida Soares-Freitas, Albert José dos-Anjos, Leilson Rocha-Bezerra - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
e886
e886
Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. J Nutr. 2012 Sep 1;142(9):1684–92. https://doi.org/10.3945/jn.112.159574 2. Bento CBP, Azevedo AC, Gomes DI, Batista ED, Rufino LMA, Detmann E, et al. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages. Animal. 2016;10(1):44–54. https://doi.org/10.1017/S1751731115001512 3. Chen Y, Penner GB, Li M, Oba M, Guan LL. Changes in Bacterial Diversity Associated with Epithelial Tissue in the Beef Cow Rumen during the Transition to a High-Grain Diet. Appl Environ Microbiol. 2011 Aug 15;77(16):5770–81. https://doi.org/10.1128/AEM.00375-11 4. Köche JC. Fundamentos de metodologia científica [Internet]. 1st ed. Matos APS, Silva JM da, Peretti L, Oleniki ML, editors. Petrópolis: Editora Vozes; 2011. 185 p. Available from: http://www.adm.ufrpe.br/sites/ww4.deinfo.ufrpe.br/files/Fundamentos_de_Metodologia_Científica.pdf 5. Pereira AS, Shitsuka DM, Parreira FJ, Shitsuka R. Metodologia da Pesquisa Científica [Internet]. 1st ed. Educacional N de T, editor. Santa Maria: Universidade Federal de Santa Maria; 2018. 119 p. Available from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1 6. Khiaosa-ard R, Zebeli Q. Cattle’s variation in rumen ecology and metabolism and its contributions to feed efficiency. Livest Sci. 2014 Apr;162:66–75. https://doi.org/10.1016/j.livsci.2014.01.005 7. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015 Nov 26;5(1):14567. https://doi.org/10.1038/srep14567 8. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl Environ Microbiol. 2012;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11 9. Ding G, Chang Y, Zhao L, Zhou Z, Ren L, Meng Q. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J Anim Sci Biotechnol. 2014 Dec 1;5(1):24. https://doi.org/10.1186/2049-1891-5-24 10. Hernandez-Sanabria E, Goonewardene LA, Wang Z, Durunna ON, Moore SS, Guan LL. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle. Appl Environ Microbiol. 2012 Feb 15;78(4):1203–14. https://doi.org/10.1128/AEM.05114-11 11. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous Amplicon Sequencing to Explore Co-Occurrence Patterns of Bacterial, Archaeal and Eukaryotic Microorganisms in Rumen Microbial Communities. PLoS One. 2013;8(2):e47879. https://doi.org/10.1371/journal.pone.0047879 12. Kim M, Yu Z. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J Anim Sci Biotechnol. 2012;3(1):2–7. https://doi.org/10.1186/2049-1891-3-28 13. Huws SA, Lee MRF, Muetzel SM, Scott MB, Wallace RJ, Scollan ND. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol Ecol. 2010 Apr 20;no-no. https://doi.org/10.1111/j.1574-6941.2010.00892.x 14. Lillis L, Boots B, Kenny DA, Petrie K, Boland TM, Clipson N, et al. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J Appl Microbiol. 2011 Dec;111(6):1426–35. https://doi.org/10.1111/j.1365-2672.2011.05154.x 15. Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: Leading the way in microbial ecology1,2. J Anim Sci. 2013 Jan 1;91(1):331–41. https://doi.org/10.2527/jas.2012-5567 16. Mateos I, Ranilla MJ, Saro C, Carro MD. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA). Animal. 2017;11(11):1939–48. https://doi.org/10.1017/S1751731117000878 17. Chen Y, Oba M, Guan LL. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet Microbiol. 2012 Oct;159(3–4):451–9. https://doi.org/10.1016/j.vetmic.2012.04.032 18. Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep. 2008 Jun 5;35(2):265–74. https://doi.org/10.1007/s11033-007-9079-1 19. Aikman PC, Henning PH, Humphries DJ, Horn CH. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. J Dairy Sci. 2011 Jun;94(6):2840–9. https://doi.org/10.3168/jds.2010-3783 20. Arelovich HM, Amela MI, Martínez MF, Bravo RD, Torrea MB. Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Rumin Res. 2014 Oct;121(2–3):175–82. https://doi.org/10.1016/j.smallrumres.2014.08.005 21. Ruiz‐Albarrán M, Balocchi OA, Noro M, Wittwer F, Pulido RG. Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass. Anim Sci J. 2016 Jul 30;87(7):878–84. https://doi.org/10.1111/asj.12513 22. Zhu W, Wei Z, Xu N, Yang F, Yoon I, Chung Y, et al. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J Anim Sci Biotechnol. 2017 Dec 28;8(1):36. https://doi.org/10.1186/s40104-017-0167-3 23. Sun P, Wang JQ, Deng LF. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal. 2013;7(2):216–22. https://doi.org/10.1017/S1751731112001188 24. Benchaar C, Romero-Pérez GA, Chouinard PY, Hassanat F, Eugene M, Petit H V., et al. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J Dairy Sci. 2012;95(8):4578–90. https://doi.org/10.3168/jds.2012-5455 25. Xie X, Wang J, Guan L, Liu J. Effect of changing forage on the dynamic variation in rumen fermentation in sheep. Anim Sci J. 2018 Jan 25;89(1):122–31. https://doi.org/10.1111/asj.12915 26. Kobayashi Y, Oh S, Myint H, Koike S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J Anim Sci Biotechnol. 2016 Dec 15;7(1):70. https://doi.org/10.1186/s40104-016-0126-4 27. Ueda K, Mitani T, Kondo S. Effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows grazed on perennial ryegrass pasture. Anim Sci J. 2016 Oct;87(10):1233–43. https://doi.org/10.1111/asj.12576 28. Foiklang S, Wanapat M, Norrapoke T. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Anim Sci J. 2016 Mar;87(3):370–7. https://doi.org/10.1111/asj.12428 29. Benchaar C, McAllister TA, Petit H V., Chouinard PY. Whole flax seed and flax oil supplementation of dairy cows fed high-forage or high-concentrate diets: Effects on digestion, ruminal fermentation characteristics, protozoal populations and milk fatty acid profile. Anim Feed Sci Technol. 2014;198:117–29. https://doi.org/10.1016/j.anifeedsci.2014.10.003 30. Commun L, Mialon MM, Martin C, Baumont R, Veissier I. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. J Anim Sci. 2009 Oct 1;87(10):3372–9. https://doi.org/10.2527/jas.2009-1968 31. Biswas AA, Lee S, Mamuad LL, Kim S, Choi Y, Lee C, et al. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J. 2018 Jan 27;89(1):114–21. https://doi.org/10.1111/asj.12913 32. Dijkstra J, Ellis JL, Kebreab E, Strathe AB, López S, France J, et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol. 2012 Feb;172(1–2):22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
https://revistas.unisucre.edu.co/index.php/recia/article/download/886/997
https://revistas.unisucre.edu.co/index.php/recia/article/download/886/998
https://revistas.unisucre.edu.co/index.php/recia/article/download/886/1000
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication