Titulo:

Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
.

Sumario:

Con el objeto de evaluar la calidad de la dieta consumida por bovinos en sistemas silvopastoriles (SSP), mediante su estimación a través del nitrógeno fecal (NF), se compararon cuatro arreglos que variaron en su composición vegetal, con especies arbustivas (L. leucocephala y C. cujete), arbóreas (A. saman, G. ulmifolia y C. grandis) y maderables (P. quinata y S. macrophylla), contra un tratamiento sin árboles (M. maximum). A cada tratamiento fueron asignadas 4 vacas Romosinuano x Holstein x Cebú (436±64,2 kg) a las cuales se les colectó heces vía rectal. Las muestras de heces fueron secadas y sometidas a análisis de nitrógeno (total, soluble e insoluble en FDN), FDN y materia orgánica (MO). Con el NF se estimó la cantidad de proteína fecal... Ver más

Guardado en:

2027-4297

11

2019-01-08

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisucre_revistacolombianadecienciaanimal_recia_86_article_691
record_format ojs
spelling Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
Estimation of the quality of the diet in silvopastoral systems through the quantification of fecal nitrogen
Con el objeto de evaluar la calidad de la dieta consumida por bovinos en sistemas silvopastoriles (SSP), mediante su estimación a través del nitrógeno fecal (NF), se compararon cuatro arreglos que variaron en su composición vegetal, con especies arbustivas (L. leucocephala y C. cujete), arbóreas (A. saman, G. ulmifolia y C. grandis) y maderables (P. quinata y S. macrophylla), contra un tratamiento sin árboles (M. maximum). A cada tratamiento fueron asignadas 4 vacas Romosinuano x Holstein x Cebú (436±64,2 kg) a las cuales se les colectó heces vía rectal. Las muestras de heces fueron secadas y sometidas a análisis de nitrógeno (total, soluble e insoluble en FDN), FDN y materia orgánica (MO). Con el NF se estimó la cantidad de proteína fecal (PCF), proteína cruda (PC) y la digestibilidad de la dieta consumida en cada SSP. Se observó efecto significativo (p<0.01) del tratamiento sobre la cantidad de NF, presentado como PCF. El tratamiento Pasto-Arbust-Arbor-Mad obtuvo un valor de 132.19 g.kg MO-1, con diferencia significativa de los tratamientos Pasto, Pasto-Arbus y Pasto-Arbor, con registros de 119.77, 116.77 y 118.91 g.kg MO-1 respectivamente. No se registró efecto del tratamiento en las fracciones de MO, FDN y el contenido de nitrógeno soluble e insoluble en FDN. La digestibilidad y la PC de la dieta consumida estimada a través del NF varió de 61.45% a 65.24% y de 10.28% a 12.02% respectivamente. La cuantificación del NF permitió revelar la calidad de la dieta que consumen los bovinos en ambientes SSP de estructura vegetal compleja.
In order to evaluate the quality of the diet consumed by bovines in multiestrata silvopastoral systems (SSP) through estimation fecal nitrogen´s (NF), were compared four silvopastoral arrangements with variation in their vegetal composition versus a treeless prairie (M. maximum). Each arrangement was composed by shrubs (L. leucocephala y C. cujete), trees (A. saman, G. ulmifolia y C. grandis) and timbers species (P. quinata y S. macrophylla). Four cow Romosinuano x Holstein x Cebu (436±64,2 kg) were assigned in each treatment. In each cow feces were collected directly from the rectum. The samples were dried and analyzed for nitrogen (total, soluble and insoluble in NDF), NDF and the organic matter. The information obtained in NF was used for estimated the fecal crude protein (FCP), crude protein (CP) and digestibility in intake of each SSP. The NF presented as FCP was affected by treatment (p<0.1). The treatment Pasto-Arbust-Arbor-Mad showed the higher value (132.19 g.kg MO-1) significantly different from treatment Pasto, Pasto-Arbust y Pasto-Arbor, with 119.77, 116.77 y 118.91 g.kg MO-1 respectively. MO, NDF and the soluble and insoluble nitrogen no showed statistical difference between treatments. The intake digestibility and CP estimated through NF ranged from 61.45% to 65.24% and from 10.28 to 12.02 respectively. NF quantification allowed to show the quality of intake in the complex plant structure of the silvopastoral systems.
Portilla-Pinzón, Danilo
Barragán-Hernández, Wilson
Carvajal-Bazurto, Christian
Cajas-Girón, Yasmin
Fecal organic matter
forage quality
protein
tree
shurbs
Árboles, arbustos
calidad de forraje
materia orgánica fecal
proteína
11
1
Núm. 1 , Año 2019 : RECIA 11(1):ENERO-JUNIO 2019
Artículo de revista
Journal article
2019-01-08T00:00:00Z
2019-01-08T00:00:00Z
2019-01-08
application/pdf
application/xml
application/zip
Universidad de Sucre
Revista Colombiana de Ciencia Animal - RECIA
2027-4297
https://revistas.unisucre.edu.co/index.php/recia/article/view/691
10.24188/recia.v0.n0.2019.691
https://doi.org/10.24188/recia.v0.n0.2019.691
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Braghieri A, Pacelli C, De Rosa G, Girolami A, De Palo P, Napolitano F. Podolian beef production on pasture and in confinement. Animal. 2011; 5(6):927–937. DOI: https://doi.org/10.1017/S1751731110002685 PMid:22440032
Coppa M, Farruggia A, Pradel P, Lombardi G, Martin B. An improved grazed class method to estimate species selection and dry matter intake by cows at pasture. Ital J Anim Sci. 2011; 10(1):58–65. DOI: https://doi.org/10.4081/ijas.2011.e13
Wang L, Wang D, Bai Y, Jiang G, Liu J, Huang Y, et al. Spatial distributions of multiple plant species affect herbivore foraging selectivity. Oikos. 2010; 119(2):401–408. DOI: https://doi.org/10.1111/j.1600-0706.2009.17774.x
Ramirez-lozano RG, Gonzalez-rodriguez H, Torres RAL-. Nutritional evaluation of Senegalia greggii and Prosopis juliflora as browse supplements for sheep. 2018; 52(85):1304–1308.
Stejskalová M, Hejcmanová P, Pavlů V, Hejcman M. Grazing behavior and performance of beef cattle as a function of sward structure and herbage quality under rotational and continuous stocking on species-rich upland pasture. Anim Sci J. 2013; 84(8):622-629. DOI: https://doi.org/10.1111/asj.12048 PMid:23607767
Agreil C, Meuret M. An improved method for quantifying intake rate and ingestive behaviour of ruminants in diverse and variable habitats using direct observation. Small Rumin Res. 2004; 54(1–2):99-113. DOI: https://doi.org/10.1016/j.smallrumres.2003.10.013
Schlecht E, Susenbeth A. Estimating the digestibility of Sahelian roughages from faecal crude protein concentration of cattle and small ruminants. J Anim Physiol Anim Nutr (Berl). 2006; 90(9–10):369-379. DOI: https://doi.org/10.1111/j.1439-0396.2005.00596.x PMid:16958793
Kozloski G V., Oliveira L, Poli CHEC, Azevedo EB, David DB, Ribeiro Filho HMN, et al. Faecal nitrogen excretion as an approach to estimate forage intake of wethers. J Anim Physiol Anim Nutr (Berl). 2014; 98(4):659–666. DOI: https://doi.org/10.1111/jpn.12118 PMid:23931613
Wehausen JD, Press A. in Wild and Domestic Fecal Measures of Diet Quality. Wild. 2011; 59(4):816–823.
Leslie DM, Bowyer RT, Jenks JA. Facts From Feces: Nitrogen Still Measures Up as a Nutritional Index for Mammalian Herbivores. J Wildl Manage [Internet]. 2008; 72(6):1420–1433. DOI: https://doi.org/10.2193/2007-404
Peripolli V, Prates ÊR, Barcellos JOJ, Neto JB. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim Feed Sci Technol [Internet]. 2011; 163(2–4):170–176. DOI: https://doi.org/10.1016/j.anifeedsci.2010.11.008
Wang CJ, Tas BM, Glindemann T, Rave G, Schmidt L, Weißbach F, et al. Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Anim Feed Sci Technol. 2009; 149(3–4):199–208. DOI: https://doi.org/10.1016/j.anifeedsci.2008.06.005
Waldrip HM, Todd RW, Cole NA. Prediction of nitrogen excretion by beef cattle: A meta-analysis. J Anim Sci. 2013; 91(9):4290–4302. DOI: https://doi.org/10.2527/jas.2012-5818 PMid:23825341
Holdridge LR (Leslie R. Forest environments in tropical life zones; a pilot study. 1st ed.]. Oxford,: Pergamon Press; 1971 [cited 2018 May 3]. https://searchworks.stanford.edu/view/609670
Cajas-Giron YS, Sinclair FL. Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst. 2001; 53(2):215–225. DOI: https://doi.org/10.1023/A:1013384706085
Hess HD, Díaz T, Florez hernando. Guia Para la Evaluacion de la Condicion Corporal de Vacas en Sistemas Doble Proposito. Bogotá: Corpoica; 1999.
AOAC. Official methods of Analysis. 18th edition. Associatio. Arlington, VA.; 2005.
Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583–97. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Lukas M, Sudekum KH, Rave G, Friedel K, Susenbeth A. Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle. J Anim Sci. 2005; 83:1332–1344. DOI: https://doi.org/10.2527/2005.8361332x PMid:15890810
Dintzis FR, Cavins JF, Graf E, Stahly T. Nitrogen-to-Protein Conversion Factors in Animal Feed and Fecal Samples. J Anim Sci. 1988; 66(1):5–11. DOI: https://doi.org/10.2527/jas1988.6615 PMid:3366716
Hakkila MD, Holechek JL, Wallace JD, Anderson DM, Cardenas M. Diet and forage intake of cattle on desert grassland range. J Range Manag. 1987; 40:339–42. DOI: https://doi.org/10.2307/3898733
Holechek JL, Vavra M, Arthun D. Relationships between Performance, Intake, Diet Nutritive Quality and Fecal Nutritive Quality of Cattle on Mountain Range. Journal of Range Management. 1982; 35(6):741–744. DOI: https://doi.org/10.2307/3898253
McCollum F. Relationships among fecal nitrogen, diet nitro- gen, and daily gain of steers grazing tallgrass prairie. Okla Agric Exp Stn. 1990; MP-129:232–5.
SAS Institute Inc. Introducción a la programación en SAS ® [Internet]. Cary, NC, USA; 2014. https://support.sas.com/documentation/cdl_alternate/es/webeditorgs/67431/PDF/default/webeditorgs.pdf
Schwarm A, Schweigert M, Ortmann S, Hummel J, Janssens GPJ, Streich WJ, et al. No easy solution for the fractionation of faecal nitrogen in captive wild herbivores: Results of a pilot study. J Anim Physiol Anim Nutr (Berl). 2009; 93(5):596–605. DOI: https://doi.org/10.1111/j.1439-0396.2008.00842.x PMid:19178609
Powell JM, Broderick GA, Grabber JH, Hymes-Fecht UC. Technical note: Effects of forage protein-binding polyphenols on chemistry of dairy excreta. J Dairy Sci. 2009; 92(4):1765–1769. DOI: https://doi.org/10.3168/jds.2008-1738 PMid:19307659
Dong RL, Zhao GY, Chai LL, Beauchemin KA. Prediction of urinary and fecal nitrogen excretion by beef cattle. J Anim Sci. 2014; 92(10):4669–4681. DOI: https://doi.org/10.2527/jas.2014-8000 PMid:25149338
Gaviria-Uribe X, Naranjo-Ramírez JF, Bolívar-Vergara DM, Barahona-Rosales R. Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo. Arch Zootec. 2015; 64(245):21–27. DOI: https://doi.org/10.21071/az.v64i245.370
Murgueitio E, Chará J, Barahona R, Cuartas C, Naranjo J. Los Sistemas Silvopastoriles Intensivos (Sspi), Herramienta De Mitigación y Adaptación Al Cambio Climático. Trop Subtrop Agroecosystems. 2014; 17(3):501–507.
Agudelo Carmona JC. Efecto de la utilización de arbóreas y arbustivas forrajeras sobre la dinámica digestiva en bovinos. Rev Lasallista Investigación. 2007; 4(1):40–50.
Molina IC, Donney`s G, Montoya S, Rivera JE, Villegas G, Chará J, et al. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livest Res Rural Dev. 2015; 27(5). https://www.lrrd.org/lrrd27/5/moli2705cit.htm
Cuartas CA, Naranjo JF, Tarazona A, Correa G, Barahona R. Dry Matter And Nutrient Intake And Diet Composition In Leucaena leucocephala – Based Intensive Silvopastoral Systems. Trop Subtrop Agroecosystems. 2015; 18:303–11.
Barragán Hernández W, Mahecha-Ledesma L, Cajas-Girón Y. Efecto de sistemas silvopastoriles en la producción y composición de la leche bajo condiciones del valle medio del río Sinú , Colombia. Rev Colomb Cienc Anim. 2016; 8(2):187–196. DOI: https://doi.org/10.24188/recia.v8.n2.2016.186
Wilson JR, Wild DMW. Improvement of nitrogen nutrition and grass growth under shading. Forages Plant Crop Proc32. 1991; 77–82.
Medinilla-Salinas L, Vargas-Mendoza MD la C, López-Ortiz S, Ávila-Reséndiz C, Campbell WB, Gutiérrez-Castorena M del C. Growth, productivity and quality of Megathyrsus maximus under cover from Gliricidia sepium. Agrofor Syst. 2013; 87(4):891–9. DOI: https://doi.org/10.1007/s10457-013-9605-1
Martínez J, Cajas YS, León JD, Osorio NW. Silvopastoral systems enhance soil quality in grasslands of Colombia. Appl Environ Soil Sci. 2014. DOI: https://doi.org/10.1155/2014/359736
Avenda-o-Yá-ez M de la L, López-Ortiz S, Perroni Y, Pérez-Elizalde S. Leguminous trees from tropical dry forest generate fertility islands in pastures. Arid L Res Manag. 2018; 32(1):57–70. DOI: https://doi.org/10.1080/15324982.2017.1377782
Pentón G, Blanco F. Influencia de la sombra de los arboles en la composicion quimica y el rendimiento de los pastos. Pastos Y Forrajes. 1997; 20(2):101–10. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1301&path%5B%5D=803
Treydte AC, Heitkönig IMA, Prins HHT, Ludwig F. Trees improve grass quality for herbivores in African savannas. Perspect Plant Ecol Evol Syst. 2007; 8(4):197–205. DOI: https://doi.org/10.1016/j.ppees.2007.03.001
https://revistas.unisucre.edu.co/index.php/recia/article/download/691/753
https://revistas.unisucre.edu.co/index.php/recia/article/download/691/752
https://revistas.unisucre.edu.co/index.php/recia/article/download/691/756
https://revistas.unisucre.edu.co/index.php/recia/article/download/691/755
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE SUCRE
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESUCRE/logo.png
country_str Colombia
collection Revista Colombiana de Ciencia Animal - RECIA
title Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
spellingShingle Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
Portilla-Pinzón, Danilo
Barragán-Hernández, Wilson
Carvajal-Bazurto, Christian
Cajas-Girón, Yasmin
Fecal organic matter
forage quality
protein
tree
shurbs
Árboles, arbustos
calidad de forraje
materia orgánica fecal
proteína
title_short Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
title_full Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
title_fullStr Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
title_full_unstemmed Estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
title_sort estimación de la calidad de la dieta en sistemas silvopastoriles mediante la cuantificación del nitrógeno fecal
title_eng Estimation of the quality of the diet in silvopastoral systems through the quantification of fecal nitrogen
description Con el objeto de evaluar la calidad de la dieta consumida por bovinos en sistemas silvopastoriles (SSP), mediante su estimación a través del nitrógeno fecal (NF), se compararon cuatro arreglos que variaron en su composición vegetal, con especies arbustivas (L. leucocephala y C. cujete), arbóreas (A. saman, G. ulmifolia y C. grandis) y maderables (P. quinata y S. macrophylla), contra un tratamiento sin árboles (M. maximum). A cada tratamiento fueron asignadas 4 vacas Romosinuano x Holstein x Cebú (436±64,2 kg) a las cuales se les colectó heces vía rectal. Las muestras de heces fueron secadas y sometidas a análisis de nitrógeno (total, soluble e insoluble en FDN), FDN y materia orgánica (MO). Con el NF se estimó la cantidad de proteína fecal (PCF), proteína cruda (PC) y la digestibilidad de la dieta consumida en cada SSP. Se observó efecto significativo (p<0.01) del tratamiento sobre la cantidad de NF, presentado como PCF. El tratamiento Pasto-Arbust-Arbor-Mad obtuvo un valor de 132.19 g.kg MO-1, con diferencia significativa de los tratamientos Pasto, Pasto-Arbus y Pasto-Arbor, con registros de 119.77, 116.77 y 118.91 g.kg MO-1 respectivamente. No se registró efecto del tratamiento en las fracciones de MO, FDN y el contenido de nitrógeno soluble e insoluble en FDN. La digestibilidad y la PC de la dieta consumida estimada a través del NF varió de 61.45% a 65.24% y de 10.28% a 12.02% respectivamente. La cuantificación del NF permitió revelar la calidad de la dieta que consumen los bovinos en ambientes SSP de estructura vegetal compleja.
description_eng In order to evaluate the quality of the diet consumed by bovines in multiestrata silvopastoral systems (SSP) through estimation fecal nitrogen´s (NF), were compared four silvopastoral arrangements with variation in their vegetal composition versus a treeless prairie (M. maximum). Each arrangement was composed by shrubs (L. leucocephala y C. cujete), trees (A. saman, G. ulmifolia y C. grandis) and timbers species (P. quinata y S. macrophylla). Four cow Romosinuano x Holstein x Cebu (436±64,2 kg) were assigned in each treatment. In each cow feces were collected directly from the rectum. The samples were dried and analyzed for nitrogen (total, soluble and insoluble in NDF), NDF and the organic matter. The information obtained in NF was used for estimated the fecal crude protein (FCP), crude protein (CP) and digestibility in intake of each SSP. The NF presented as FCP was affected by treatment (p<0.1). The treatment Pasto-Arbust-Arbor-Mad showed the higher value (132.19 g.kg MO-1) significantly different from treatment Pasto, Pasto-Arbust y Pasto-Arbor, with 119.77, 116.77 y 118.91 g.kg MO-1 respectively. MO, NDF and the soluble and insoluble nitrogen no showed statistical difference between treatments. The intake digestibility and CP estimated through NF ranged from 61.45% to 65.24% and from 10.28 to 12.02 respectively. NF quantification allowed to show the quality of intake in the complex plant structure of the silvopastoral systems.
author Portilla-Pinzón, Danilo
Barragán-Hernández, Wilson
Carvajal-Bazurto, Christian
Cajas-Girón, Yasmin
author_facet Portilla-Pinzón, Danilo
Barragán-Hernández, Wilson
Carvajal-Bazurto, Christian
Cajas-Girón, Yasmin
topic Fecal organic matter
forage quality
protein
tree
shurbs
Árboles, arbustos
calidad de forraje
materia orgánica fecal
proteína
topic_facet Fecal organic matter
forage quality
protein
tree
shurbs
Árboles, arbustos
calidad de forraje
materia orgánica fecal
proteína
topicspa_str_mv Árboles, arbustos
calidad de forraje
materia orgánica fecal
proteína
citationvolume 11
citationissue 1
citationedition Núm. 1 , Año 2019 : RECIA 11(1):ENERO-JUNIO 2019
publisher Universidad de Sucre
ispartofjournal Revista Colombiana de Ciencia Animal - RECIA
source https://revistas.unisucre.edu.co/index.php/recia/article/view/691
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Braghieri A, Pacelli C, De Rosa G, Girolami A, De Palo P, Napolitano F. Podolian beef production on pasture and in confinement. Animal. 2011; 5(6):927–937. DOI: https://doi.org/10.1017/S1751731110002685 PMid:22440032
Coppa M, Farruggia A, Pradel P, Lombardi G, Martin B. An improved grazed class method to estimate species selection and dry matter intake by cows at pasture. Ital J Anim Sci. 2011; 10(1):58–65. DOI: https://doi.org/10.4081/ijas.2011.e13
Wang L, Wang D, Bai Y, Jiang G, Liu J, Huang Y, et al. Spatial distributions of multiple plant species affect herbivore foraging selectivity. Oikos. 2010; 119(2):401–408. DOI: https://doi.org/10.1111/j.1600-0706.2009.17774.x
Ramirez-lozano RG, Gonzalez-rodriguez H, Torres RAL-. Nutritional evaluation of Senegalia greggii and Prosopis juliflora as browse supplements for sheep. 2018; 52(85):1304–1308.
Stejskalová M, Hejcmanová P, Pavlů V, Hejcman M. Grazing behavior and performance of beef cattle as a function of sward structure and herbage quality under rotational and continuous stocking on species-rich upland pasture. Anim Sci J. 2013; 84(8):622-629. DOI: https://doi.org/10.1111/asj.12048 PMid:23607767
Agreil C, Meuret M. An improved method for quantifying intake rate and ingestive behaviour of ruminants in diverse and variable habitats using direct observation. Small Rumin Res. 2004; 54(1–2):99-113. DOI: https://doi.org/10.1016/j.smallrumres.2003.10.013
Schlecht E, Susenbeth A. Estimating the digestibility of Sahelian roughages from faecal crude protein concentration of cattle and small ruminants. J Anim Physiol Anim Nutr (Berl). 2006; 90(9–10):369-379. DOI: https://doi.org/10.1111/j.1439-0396.2005.00596.x PMid:16958793
Kozloski G V., Oliveira L, Poli CHEC, Azevedo EB, David DB, Ribeiro Filho HMN, et al. Faecal nitrogen excretion as an approach to estimate forage intake of wethers. J Anim Physiol Anim Nutr (Berl). 2014; 98(4):659–666. DOI: https://doi.org/10.1111/jpn.12118 PMid:23931613
Wehausen JD, Press A. in Wild and Domestic Fecal Measures of Diet Quality. Wild. 2011; 59(4):816–823.
Leslie DM, Bowyer RT, Jenks JA. Facts From Feces: Nitrogen Still Measures Up as a Nutritional Index for Mammalian Herbivores. J Wildl Manage [Internet]. 2008; 72(6):1420–1433. DOI: https://doi.org/10.2193/2007-404
Peripolli V, Prates ÊR, Barcellos JOJ, Neto JB. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim Feed Sci Technol [Internet]. 2011; 163(2–4):170–176. DOI: https://doi.org/10.1016/j.anifeedsci.2010.11.008
Wang CJ, Tas BM, Glindemann T, Rave G, Schmidt L, Weißbach F, et al. Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Anim Feed Sci Technol. 2009; 149(3–4):199–208. DOI: https://doi.org/10.1016/j.anifeedsci.2008.06.005
Waldrip HM, Todd RW, Cole NA. Prediction of nitrogen excretion by beef cattle: A meta-analysis. J Anim Sci. 2013; 91(9):4290–4302. DOI: https://doi.org/10.2527/jas.2012-5818 PMid:23825341
Holdridge LR (Leslie R. Forest environments in tropical life zones; a pilot study. 1st ed.]. Oxford,: Pergamon Press; 1971 [cited 2018 May 3]. https://searchworks.stanford.edu/view/609670
Cajas-Giron YS, Sinclair FL. Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst. 2001; 53(2):215–225. DOI: https://doi.org/10.1023/A:1013384706085
Hess HD, Díaz T, Florez hernando. Guia Para la Evaluacion de la Condicion Corporal de Vacas en Sistemas Doble Proposito. Bogotá: Corpoica; 1999.
AOAC. Official methods of Analysis. 18th edition. Associatio. Arlington, VA.; 2005.
Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583–97. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Lukas M, Sudekum KH, Rave G, Friedel K, Susenbeth A. Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle. J Anim Sci. 2005; 83:1332–1344. DOI: https://doi.org/10.2527/2005.8361332x PMid:15890810
Dintzis FR, Cavins JF, Graf E, Stahly T. Nitrogen-to-Protein Conversion Factors in Animal Feed and Fecal Samples. J Anim Sci. 1988; 66(1):5–11. DOI: https://doi.org/10.2527/jas1988.6615 PMid:3366716
Hakkila MD, Holechek JL, Wallace JD, Anderson DM, Cardenas M. Diet and forage intake of cattle on desert grassland range. J Range Manag. 1987; 40:339–42. DOI: https://doi.org/10.2307/3898733
Holechek JL, Vavra M, Arthun D. Relationships between Performance, Intake, Diet Nutritive Quality and Fecal Nutritive Quality of Cattle on Mountain Range. Journal of Range Management. 1982; 35(6):741–744. DOI: https://doi.org/10.2307/3898253
McCollum F. Relationships among fecal nitrogen, diet nitro- gen, and daily gain of steers grazing tallgrass prairie. Okla Agric Exp Stn. 1990; MP-129:232–5.
SAS Institute Inc. Introducción a la programación en SAS ® [Internet]. Cary, NC, USA; 2014. https://support.sas.com/documentation/cdl_alternate/es/webeditorgs/67431/PDF/default/webeditorgs.pdf
Schwarm A, Schweigert M, Ortmann S, Hummel J, Janssens GPJ, Streich WJ, et al. No easy solution for the fractionation of faecal nitrogen in captive wild herbivores: Results of a pilot study. J Anim Physiol Anim Nutr (Berl). 2009; 93(5):596–605. DOI: https://doi.org/10.1111/j.1439-0396.2008.00842.x PMid:19178609
Powell JM, Broderick GA, Grabber JH, Hymes-Fecht UC. Technical note: Effects of forage protein-binding polyphenols on chemistry of dairy excreta. J Dairy Sci. 2009; 92(4):1765–1769. DOI: https://doi.org/10.3168/jds.2008-1738 PMid:19307659
Dong RL, Zhao GY, Chai LL, Beauchemin KA. Prediction of urinary and fecal nitrogen excretion by beef cattle. J Anim Sci. 2014; 92(10):4669–4681. DOI: https://doi.org/10.2527/jas.2014-8000 PMid:25149338
Gaviria-Uribe X, Naranjo-Ramírez JF, Bolívar-Vergara DM, Barahona-Rosales R. Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo. Arch Zootec. 2015; 64(245):21–27. DOI: https://doi.org/10.21071/az.v64i245.370
Murgueitio E, Chará J, Barahona R, Cuartas C, Naranjo J. Los Sistemas Silvopastoriles Intensivos (Sspi), Herramienta De Mitigación y Adaptación Al Cambio Climático. Trop Subtrop Agroecosystems. 2014; 17(3):501–507.
Agudelo Carmona JC. Efecto de la utilización de arbóreas y arbustivas forrajeras sobre la dinámica digestiva en bovinos. Rev Lasallista Investigación. 2007; 4(1):40–50.
Molina IC, Donney`s G, Montoya S, Rivera JE, Villegas G, Chará J, et al. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livest Res Rural Dev. 2015; 27(5). https://www.lrrd.org/lrrd27/5/moli2705cit.htm
Cuartas CA, Naranjo JF, Tarazona A, Correa G, Barahona R. Dry Matter And Nutrient Intake And Diet Composition In Leucaena leucocephala – Based Intensive Silvopastoral Systems. Trop Subtrop Agroecosystems. 2015; 18:303–11.
Barragán Hernández W, Mahecha-Ledesma L, Cajas-Girón Y. Efecto de sistemas silvopastoriles en la producción y composición de la leche bajo condiciones del valle medio del río Sinú , Colombia. Rev Colomb Cienc Anim. 2016; 8(2):187–196. DOI: https://doi.org/10.24188/recia.v8.n2.2016.186
Wilson JR, Wild DMW. Improvement of nitrogen nutrition and grass growth under shading. Forages Plant Crop Proc32. 1991; 77–82.
Medinilla-Salinas L, Vargas-Mendoza MD la C, López-Ortiz S, Ávila-Reséndiz C, Campbell WB, Gutiérrez-Castorena M del C. Growth, productivity and quality of Megathyrsus maximus under cover from Gliricidia sepium. Agrofor Syst. 2013; 87(4):891–9. DOI: https://doi.org/10.1007/s10457-013-9605-1
Martínez J, Cajas YS, León JD, Osorio NW. Silvopastoral systems enhance soil quality in grasslands of Colombia. Appl Environ Soil Sci. 2014. DOI: https://doi.org/10.1155/2014/359736
Avenda-o-Yá-ez M de la L, López-Ortiz S, Perroni Y, Pérez-Elizalde S. Leguminous trees from tropical dry forest generate fertility islands in pastures. Arid L Res Manag. 2018; 32(1):57–70. DOI: https://doi.org/10.1080/15324982.2017.1377782
Pentón G, Blanco F. Influencia de la sombra de los arboles en la composicion quimica y el rendimiento de los pastos. Pastos Y Forrajes. 1997; 20(2):101–10. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1301&path%5B%5D=803
Treydte AC, Heitkönig IMA, Prins HHT, Ludwig F. Trees improve grass quality for herbivores in African savannas. Perspect Plant Ecol Evol Syst. 2007; 8(4):197–205. DOI: https://doi.org/10.1016/j.ppees.2007.03.001
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-01-08
date_accessioned 2019-01-08T00:00:00Z
date_available 2019-01-08T00:00:00Z
url https://revistas.unisucre.edu.co/index.php/recia/article/view/691
url_doi https://doi.org/10.24188/recia.v0.n0.2019.691
eissn 2027-4297
doi 10.24188/recia.v0.n0.2019.691
url2_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/691/753
url4_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/691/752
url3_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/691/755
_version_ 1811200762477281280