Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino
.
La carne bovina es una fuente de proteína, la cual posee propiedades fisicoquímicas como la terneza, jugosidad, marmóreo, sabor y retención de agua, que influyen sobre la calidad de la misma. En la actualidad, con ayuda técnicas moleculares como la reacción en cadena de la polimerasa, electroforesis y secuenciación, donde se pueden analizar y detectar marcadores moleculares, se ha descubierto en varias razas bovinas que cambios de algún nucleótido en genes como la calpaína y la calpastatina principalmente, pueden afectar las propiedades antes mencionadas generando una carne mucho mas llamativa para el consumidor, por esta razón el uso de marcadores moleculares como una herramienta de selección cada día toma mas fuerzas, debido a que se pued... Ver más
2027-4297
16
2024-03-26
e1071
e1071
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unisucre_revistacolombianadecienciaanimal_recia_86_article_1071 |
---|---|
record_format |
ojs |
spelling |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino Molecular markers and genes associated with meat quality in cattle La carne bovina es una fuente de proteína, la cual posee propiedades fisicoquímicas como la terneza, jugosidad, marmóreo, sabor y retención de agua, que influyen sobre la calidad de la misma. En la actualidad, con ayuda técnicas moleculares como la reacción en cadena de la polimerasa, electroforesis y secuenciación, donde se pueden analizar y detectar marcadores moleculares, se ha descubierto en varias razas bovinas que cambios de algún nucleótido en genes como la calpaína y la calpastatina principalmente, pueden afectar las propiedades antes mencionadas generando una carne mucho mas llamativa para el consumidor, por esta razón el uso de marcadores moleculares como una herramienta de selección cada día toma mas fuerzas, debido a que se puede obtener la información de que caracteristicas tendrá la carne de un individuo y de la descendencia, con el simple hecho de analizar una muestra biológica que contenga su ADN, en la presente revisión se describen algunos genes que tienen efecto sobre las propiedades de la carne y se mencionan polimorfismos de nucleótidos que pueden afectarlas, enfatizando en el gen calpaína y calpastatina, y su influencia en las distintas caracteristicas. Beef is a source of protein, which has physicochemical properties such as tenderness, juiciness, marbling, flavor and water retention, which influence its quality. Currently, with the help of molecular techniques such as polymerase chain reaction, electrophoresis and sequencing, where molecular markers can be analyzed and detected, it has been discovered in several bovine breeds that changes of some nucleotide in genes such as calpain and calpastatin. Mainly, they can affect the aforementioned properties, generating a much more attractive meat for the consumer, for this reason the use of molecular markers as a selection tool is gaining more strength every day, because information can be obtained about what characteristics the meat will have. meat of an individual and the offspring, with the simple act of analyzing a biological sample that contains its DNA, in this review we describe some genes that have an effect on the properties of meat and mention nucleotide polymorphisms that can affect them, emphasizing the calpain and calpastatin gene, and their influence on the different characteristics. Camargo Pitalua, Camilo A Montes-Vergara, Donicer E Pérez-Cordero, Alexander Calpain Calpastatin proteases organoleptic properties flavor tenderness Calpaina Calpastatina proteasas propiedades organolépticas sabor ternura 16 1 Núm. 1 , Año 2024 : RECIA 16(1):ENERO-JUNIO 2024 Artículo de revista Journal article 2024-03-26T06:54:31Z 2024-03-26T06:54:31Z 2024-03-26 application/pdf application/epub+zip audio/mpeg Universidad de Sucre Revista Colombiana de Ciencia Animal - RECIA 2027-4297 https://revistas.unisucre.edu.co/index.php/recia/article/view/1071 10.24188/recia.v16.n1.2024.1071 https://doi.org/10.24188/recia.v16.n1.2024.1071 spa https://creativecommons.org/licenses/by/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. e1071 e1071 Soria LA & Corva PM. Factores genéticos y ambientales que determinan la terneza de la carne bovina Genetic and environmental factors influencing beef tenderness. Arch. Latinoam. Prod. Anim. 2004; 12(2). https://ojs.alpa.uy/index.php/ojs_files/article/view/20 Mateescu,RG. Genetics of meat quality. In: The genetics of cattle. DJ Garrick and A. Ruvinsky (2 Ed.). CABI Publishing. New York. 2014. https://doi.org/10.1079/9781780642215.0544 Kappes SM. Utilization of gene mapping information in livestock animals. Theriogenology, 1999; 51:135. https://doi.org/10.1016/s0093-691x(98)00237-4 Doelle W, Rokem S, Berovic M. In: Methods in biotechnology, Vol. 2, Ed. Horst (Ed.). Horst W. Doelle, Stefan Rokem, Marin Berovic 2009. https://www.eolss.net/ebooklib/bookinfo/biotechnology.aspx FAO. La situación de los recursos zoogeneticos mundiales para la alimentación y la agricultura, 2010. https://www.fao.org/documents/card/en/c/1b5aaa26-cf58-44a9-83f7-8998d117fb70 6. Moreno N, Carabaño MJ, Venturini G, Rueda J, González C, Serrano M, et al,. Combinación de información de expresión diferencial y genotipado de genoma completo para redefinir regiones qtls asociados a caracteres de calidad de carne en bovino. Revista Complutense de Ciencias Veterinarias, 2012; 6(1):50-54. https://link.gale.com/apps/doc/A310150453/IFME?u=anon~cb55f2c2&sid=googleScholar&xid=fdcbfc7e Falomir Lockhart AH. El color de la carne bovina: Estudio de la influencia y asociación de polimorfismos en genes candidatos. 2020. https://notablesdelaciencia.conicet.gov.ar/handle/11336/144733 Dekkers JCM. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 2004; 82:E313-328. https://doi.org/10.2527/2004.8213_supple313x Weller J. Current and Future Developments in Patents for Quantitative Trait Loci in Dairy Cattle. Recent Pat. DNA Gene Seq. 2007; 1:69–76. https://doi.org/10.2174/187221507779814489 Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003; 83(3):731-801. https://doi.org/10.1152/physrev.00029.2002 Desgarennes-Alcalá CM, Moral Sd, Meza-Villalvazo VM, Peña-Castro JM, Zárate-Martínez JP, Abad-Zavaleta J. Estimación de las frecuencias alélicas y genotípicas de los genes CAPN1 Y CAST asociados a la calidad de la carne en bovinos de la Cuenca del Papaloapan. Nova Scientia 2017 ;9(19):211-228. https://doi.org/10.21640/ns.v9i19.996 Van den Maagdenberg K, Claeys E, Stinckens A, Buys N, De Smet S. Effect of age, muscle type, and insulin-like growth factor-II genotype on muscle proteolytic and lipolytic enzyme activities in boars1. J Anim Sci. 2007; 85(4):952-960. http://dx.doi.org/10.2527/jas.20063 Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis JJ, Cottin P. Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int. J Biochem Cell Biol. 2004; 36(4):728-743. https://doi.org/10.1016/s1357-2725(03)00265-6 Barnoy S, M Maki, NS Kosower. Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem Biophys Res, 2005; 332(3):697-701. https://doi.org/10.1016/j.bbrc.2005.05.010 Rodriguez SL, Southey BR, Heyen DW, Lewin HA. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci 2002; 85(11):3081–3091. https://doi.org/10.3168/jds.s0022-0302(02)74395-6 Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci. 2002; 80(12):3077–3085. https://doi.org/10.2527/2002.80123077x Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Levéziel H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys. 2005; 440(1):46–53. https://doi.org/10.1016/j.abb.2005.05.028 Barendse W. Assessing lipid metabolism. Int. Pat. Appl. PCT/ AU98/00882, Int Pat Publ WO 1999; 99/23248. https://patents.google.com/patent/US6383751 Thaller G, C Kuhn, A Winter, G Ewald, O Bellmann, J Wegner, H Zuhlke, R Fries. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet. 2003; 34:354-357. https://doi.org/10.1046/j.1365-2052.2003.01011.x Casas E, SN White, SD Shackelford, TL Wheeler, M Koohmaraie, GL Bennett, TP Smith. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle. J Anim Sci. 2007; 85:2807-2814. https://doi.org/10.2527/jas.2007-0179 Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, Yu J, Mandell IB, Wilton JW, Williams JL. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci. 2005; 83(9):2009-20. https://doi.org/10.2527/2005.8392009x Máčajová M, Lamošová D, Zeman M. Role of leptin in farm animals: a review. Journal of Veterinary Medicine Series A. 2004; 51(4):157-166. https://doi.org/10.1111/j.1439-0442.2004.00619.x Fernandes JS, Crispim BA, Seno LO, Aspilcueta RR, Barufatti A. Polymorphisms related to bovine leptin gene and association with productive and reproductive traits in Nellore heifers. Tropical Animal Science Journal. 2020; 43(1):18-24. https://doi.org/10.5398/tasj.2020.43.1.18 Santos-Alvarez J, Goberna R, Sánchez-Margalet V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999; 194(1):6-11. https://doi.org/10.1006/cimm.1999.1490 Kadokawa H, Blache D, Yamada Y, Martin GB. Relationships between changes in plasma concentrations of leptin before and after parturition and the timing of first post-partum ovulation in high-producing Holstein dairy cows. Reprod Fertil Dev. 2000; 12(7-8):405-411. https://doi.org/10.1071/rd01001 Block SS, Butler WR, Ehrhardt RA, Bell AW, Van Amburgh ME, Boisclair YR. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J Endocrinol. 2001; 171(2):339-348. https://doi.org/10.1677/joe.0.1710339 Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol. 2002; 34(1):105-116. https://doi.org/10.1186/1297-9686-34-1-105 Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci. 2005; 83(4):927-932. https://doi.org/10.2527/2005.834927x Kaikaus RM, Bass NM, Ockner RK. Functions of fatty acid binding proteins. Experientia. 1990; 46(6):617-630. https://doi.org/10.1007/bf01939701 Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim Genet. 2006; 37(4):400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x Li X, Ekerljung M, Lundström K, Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 2013; 94(2):153-158. https://doi.org/10.1016/j.meatsci.2013.01.010 Chriki S, Renand G, Picard B, Micol D, Journaux L, Hocquette J. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livest Sci 2013; 155:424-434. https://doi.org/10.1016/j.livsci.2013.04.009 Ba HV, Reddy BV, Hwang I. Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In Vitro Cell Dev Biol Anim. 2015; 51(5):447-454. https://doi.org/10.1007/s11626-014-9849-8 Sava çi M, Atasoy F. The investigation of calpastatin and thyroglobulin gene polymorphisms in some native cattle breeds. Ankara Üniv Vet Fak Derg. 2016; 63:53-59. http://dx.doi.org/10.1501/Vetfak_0000002709 Gagaoua M, Picard B, Soulat J, Monteils V. Clustering of sensory eating qualities of beef: Consistencies and differences within carcass, muscle, animal characteristics and rearing factors. Livest Sci. 2018; 214:245–258. https://doi.org/10.1016/j.livsci.2018.06.011 Renerre M, Anton M, Gatellier P. Autoxidation of purified myoglobin from two bovine muscles. Meat Sci. 1992; 32(3):331–342. https://doi.org/10.1016/0309-1740(92)90096-M Pinto LFB, Ferraz JBS, Meirelles FV, Eler JP, Rezende FM, Carvalho ME, et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res. 2010; 9(3):1431–1442. https://doi.org/10.4238/vol9-3gmr881 Smith T, Thomas MG, Bidner TD, Paschal JC, Franke DE. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet Mol Res. 2009; 8(1):39–46. https://doi.org/10.4238/vol8-1gmr537 Shin SC, Chung ER. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian Aaustral J Anim. 2006; 20(2):172–177. https://doi.org/10.5713/ajas.2007.172 Carvalho ME, Eler JP, Bonin MN, Rezende FM, Biase FH, Meirelles FV, Regitano LC, Coutinho LL, Balieiro JC, Ferraz JB. Genotypic and allelic frequencies of gene polymorphisms associated with meat tenderness in Nellore beef cattle. Genet Mol Res. 2017; 16(1). https://doi.org/10.4238/gmr16018957 Curi RA, Chardulo LAL, Mason MC, Arrigoni MDB, Silveira AC, De Oliveira HN. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet. 2009; 40:456–462. https://doi.org/10.1111/j.1365-2052.2009.01859.x Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evo. 2009; 41:36. https://doi.org/10.1186/1297-9686-41-36 Saucedo Uriarte JA, Cayo Colca IS, Diaz Quevedo C, López Lapa RM. Asociación de polimorfismos en los genes CAPN y CAST con propie-dades fisicoquímicas de la carne bovina: una revisión. CES Med Zootec. 2021; 16(1):8-28. https://doi.org/10.21615/cesmvz.16.1.1 Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010; 4(2):303–319. https://doi.org/10.1017/s1751731109991091 Dear TN, Meier NT, Hunn M, Boehm T. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics 2000; 68:152–160. https://doi.org/10.1006/geno.2000.6289 Pratiwi N, Maskur M, Priyanto R, Jakaria J. Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. J Indones Trop Anim Agric. 2016; 41(3):109–116. https://doi.org/10.14710/jitaa.41.3.109-116 Hou G, Huang M, Gao X, Li J, Gao H, Ren H, et al. Association of Calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr J Biotechnol 2011; 10(63):13714–13718. http://dx.doi.org/10.5897/AJB11.338 Lagonigro R, Wiener P, Pilla F, Woolliams JA, Williams JL. A new mutation in the coding region of the bovine leptin gene associated with feed intake. Animal Genetics. 2003; 34(5):371-374. https://doi.org/10.1046/j.1365-2052.2003.01028.x Park SJ, Beak SH, Da Jin Sol Jung SY, Kim IHJ, Piao MY, Kang HJ, et al. Genetic, management and nutritional factors affecting intramuscular fat deposition in beef cattle—a review. Asian Austral J Anim. 2018; 31(7):1043–1061. https://doi.org/10.5713/ajas.18.0310 Lee B, Yoon S, Lee Y, Oh E, Yun YK, Do Kim B, et al. Comparison of marbling fleck characteristics and objective tenderness parameters with different marbling coarseness within longissimus thoracis muscle of high-marbled Hanwoo steer. Korean J Food Sci An. 2018; 38(3):606–614. https://doi.org/10.5851%2Fkosfa.2018.38.3.606 Beak SH, Park SJ, Fassah DM, Kim HJ, Kim M, Jo C, et al. Relationships among carcass traits, auction price, and image analysis traits of marbling characteristics in Korean cattle beef. Meat Sci. 2021; 171:108268. https://doi.org/10.1016/j.meatsci.2020.108268 Wheeler TL, Cundiff LV, Koch RM. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J Anim Sci. 1994; 72(12):3145–3151. https://doi.org/10.2527/1994.72123145x Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J Anim Sci. 2006; 84(3):520–525. https://doi.org/10.2527/2006.843520x Bertram H, Andersen H, Karlsson A, Horn P, Hedegaard J, Nørgaard L, Engelsen S. Prediction of technological quality (cooking loss and Napole yield) of pork based on fresh meat characteristics. Meat Science. 2003; 65:707-712. https://doi.org/10.1016/s0309-1740(02)00272-3 Aaslyng, M. Trends in meat and consumption and the need for fresh meat and meat products of improved quality. En J. Kerry y D. Ledward (Eds), Improving the sensory and nutritional quality of fresh mead. Woodhead Publishing Lta; 2009. http://dx.doi.org/10.1533/9781845695439.1.3 Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – A review. Meat Science. 2011; 89(2):111- 124. https://doi.org/10.1016/j.meatsci.2011.04.007 Leal-Gutiérrez JD, Jiménez-Robayo LM, Ariza M, Manrique C, López J, Martínez C, et al. Polimorfismos de los genes CAPN1, CAST, DES, PRKAG3 y RYR1 asociados a la capacidad de retención de agua en crudo y cocinado en carne de bovino en cruces Bos indicus y Bos taurus en Colombia Archivos de Zootecnia. 2015; 64(245):29-35. https://doi.org/10.21071/az.v64i245.371 Reardon W, Mullen A, Sweeney T, Hamill R. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Science. 2010; 86:270-275. https://doi.org/10.1016/j.meatsci.2010.04.013 Song S, Zhang X, Hayat K, Liu P, Jia C, Xia S, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011; 124(1):203–209. http://dx.doi.org/10.1016/j.foodchem.2010.06.010 https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1128 https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1129 https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1130 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_dcae04bc http://purl.org/redcol/resource_type/ARTREV info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE SUCRE |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDESUCRE/logo.png |
country_str |
Colombia |
collection |
Revista Colombiana de Ciencia Animal - RECIA |
title |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
spellingShingle |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino Camargo Pitalua, Camilo A Montes-Vergara, Donicer E Pérez-Cordero, Alexander Calpain Calpastatin proteases organoleptic properties flavor tenderness Calpaina Calpastatina proteasas propiedades organolépticas sabor ternura |
title_short |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
title_full |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
title_fullStr |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
title_full_unstemmed |
Marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
title_sort |
marcadores moleculares y genes asociados a calidad de carne en el ganado bovino |
title_eng |
Molecular markers and genes associated with meat quality in cattle |
description |
La carne bovina es una fuente de proteína, la cual posee propiedades fisicoquímicas como la terneza, jugosidad, marmóreo, sabor y retención de agua, que influyen sobre la calidad de la misma. En la actualidad, con ayuda técnicas moleculares como la reacción en cadena de la polimerasa, electroforesis y secuenciación, donde se pueden analizar y detectar marcadores moleculares, se ha descubierto en varias razas bovinas que cambios de algún nucleótido en genes como la calpaína y la calpastatina principalmente, pueden afectar las propiedades antes mencionadas generando una carne mucho mas llamativa para el consumidor, por esta razón el uso de marcadores moleculares como una herramienta de selección cada día toma mas fuerzas, debido a que se puede obtener la información de que caracteristicas tendrá la carne de un individuo y de la descendencia, con el simple hecho de analizar una muestra biológica que contenga su ADN, en la presente revisión se describen algunos genes que tienen efecto sobre las propiedades de la carne y se mencionan polimorfismos de nucleótidos que pueden afectarlas, enfatizando en el gen calpaína y calpastatina, y su influencia en las distintas caracteristicas.
|
description_eng |
Beef is a source of protein, which has physicochemical properties such as tenderness, juiciness, marbling, flavor and water retention, which influence its quality. Currently, with the help of molecular techniques such as polymerase chain reaction, electrophoresis and sequencing, where molecular markers can be analyzed and detected, it has been discovered in several bovine breeds that changes of some nucleotide in genes such as calpain and calpastatin. Mainly, they can affect the aforementioned properties, generating a much more attractive meat for the consumer, for this reason the use of molecular markers as a selection tool is gaining more strength every day, because information can be obtained about what characteristics the meat will have. meat of an individual and the offspring, with the simple act of analyzing a biological sample that contains its DNA, in this review we describe some genes that have an effect on the properties of meat and mention nucleotide polymorphisms that can affect them, emphasizing the calpain and calpastatin gene, and their influence on the different characteristics.
|
author |
Camargo Pitalua, Camilo A Montes-Vergara, Donicer E Pérez-Cordero, Alexander |
author_facet |
Camargo Pitalua, Camilo A Montes-Vergara, Donicer E Pérez-Cordero, Alexander |
topic |
Calpain Calpastatin proteases organoleptic properties flavor tenderness Calpaina Calpastatina proteasas propiedades organolépticas sabor ternura |
topic_facet |
Calpain Calpastatin proteases organoleptic properties flavor tenderness Calpaina Calpastatina proteasas propiedades organolépticas sabor ternura |
topicspa_str_mv |
Calpaina Calpastatina proteasas propiedades organolépticas sabor ternura |
citationvolume |
16 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2024 : RECIA 16(1):ENERO-JUNIO 2024 |
publisher |
Universidad de Sucre |
ispartofjournal |
Revista Colombiana de Ciencia Animal - RECIA |
source |
https://revistas.unisucre.edu.co/index.php/recia/article/view/1071 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Soria LA & Corva PM. Factores genéticos y ambientales que determinan la terneza de la carne bovina Genetic and environmental factors influencing beef tenderness. Arch. Latinoam. Prod. Anim. 2004; 12(2). https://ojs.alpa.uy/index.php/ojs_files/article/view/20 Mateescu,RG. Genetics of meat quality. In: The genetics of cattle. DJ Garrick and A. Ruvinsky (2 Ed.). CABI Publishing. New York. 2014. https://doi.org/10.1079/9781780642215.0544 Kappes SM. Utilization of gene mapping information in livestock animals. Theriogenology, 1999; 51:135. https://doi.org/10.1016/s0093-691x(98)00237-4 Doelle W, Rokem S, Berovic M. In: Methods in biotechnology, Vol. 2, Ed. Horst (Ed.). Horst W. Doelle, Stefan Rokem, Marin Berovic 2009. https://www.eolss.net/ebooklib/bookinfo/biotechnology.aspx FAO. La situación de los recursos zoogeneticos mundiales para la alimentación y la agricultura, 2010. https://www.fao.org/documents/card/en/c/1b5aaa26-cf58-44a9-83f7-8998d117fb70 6. Moreno N, Carabaño MJ, Venturini G, Rueda J, González C, Serrano M, et al,. Combinación de información de expresión diferencial y genotipado de genoma completo para redefinir regiones qtls asociados a caracteres de calidad de carne en bovino. Revista Complutense de Ciencias Veterinarias, 2012; 6(1):50-54. https://link.gale.com/apps/doc/A310150453/IFME?u=anon~cb55f2c2&sid=googleScholar&xid=fdcbfc7e Falomir Lockhart AH. El color de la carne bovina: Estudio de la influencia y asociación de polimorfismos en genes candidatos. 2020. https://notablesdelaciencia.conicet.gov.ar/handle/11336/144733 Dekkers JCM. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 2004; 82:E313-328. https://doi.org/10.2527/2004.8213_supple313x Weller J. Current and Future Developments in Patents for Quantitative Trait Loci in Dairy Cattle. Recent Pat. DNA Gene Seq. 2007; 1:69–76. https://doi.org/10.2174/187221507779814489 Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003; 83(3):731-801. https://doi.org/10.1152/physrev.00029.2002 Desgarennes-Alcalá CM, Moral Sd, Meza-Villalvazo VM, Peña-Castro JM, Zárate-Martínez JP, Abad-Zavaleta J. Estimación de las frecuencias alélicas y genotípicas de los genes CAPN1 Y CAST asociados a la calidad de la carne en bovinos de la Cuenca del Papaloapan. Nova Scientia 2017 ;9(19):211-228. https://doi.org/10.21640/ns.v9i19.996 Van den Maagdenberg K, Claeys E, Stinckens A, Buys N, De Smet S. Effect of age, muscle type, and insulin-like growth factor-II genotype on muscle proteolytic and lipolytic enzyme activities in boars1. J Anim Sci. 2007; 85(4):952-960. http://dx.doi.org/10.2527/jas.20063 Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis JJ, Cottin P. Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int. J Biochem Cell Biol. 2004; 36(4):728-743. https://doi.org/10.1016/s1357-2725(03)00265-6 Barnoy S, M Maki, NS Kosower. Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem Biophys Res, 2005; 332(3):697-701. https://doi.org/10.1016/j.bbrc.2005.05.010 Rodriguez SL, Southey BR, Heyen DW, Lewin HA. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci 2002; 85(11):3081–3091. https://doi.org/10.3168/jds.s0022-0302(02)74395-6 Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci. 2002; 80(12):3077–3085. https://doi.org/10.2527/2002.80123077x Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Levéziel H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys. 2005; 440(1):46–53. https://doi.org/10.1016/j.abb.2005.05.028 Barendse W. Assessing lipid metabolism. Int. Pat. Appl. PCT/ AU98/00882, Int Pat Publ WO 1999; 99/23248. https://patents.google.com/patent/US6383751 Thaller G, C Kuhn, A Winter, G Ewald, O Bellmann, J Wegner, H Zuhlke, R Fries. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet. 2003; 34:354-357. https://doi.org/10.1046/j.1365-2052.2003.01011.x Casas E, SN White, SD Shackelford, TL Wheeler, M Koohmaraie, GL Bennett, TP Smith. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle. J Anim Sci. 2007; 85:2807-2814. https://doi.org/10.2527/jas.2007-0179 Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, Yu J, Mandell IB, Wilton JW, Williams JL. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci. 2005; 83(9):2009-20. https://doi.org/10.2527/2005.8392009x Máčajová M, Lamošová D, Zeman M. Role of leptin in farm animals: a review. Journal of Veterinary Medicine Series A. 2004; 51(4):157-166. https://doi.org/10.1111/j.1439-0442.2004.00619.x Fernandes JS, Crispim BA, Seno LO, Aspilcueta RR, Barufatti A. Polymorphisms related to bovine leptin gene and association with productive and reproductive traits in Nellore heifers. Tropical Animal Science Journal. 2020; 43(1):18-24. https://doi.org/10.5398/tasj.2020.43.1.18 Santos-Alvarez J, Goberna R, Sánchez-Margalet V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999; 194(1):6-11. https://doi.org/10.1006/cimm.1999.1490 Kadokawa H, Blache D, Yamada Y, Martin GB. Relationships between changes in plasma concentrations of leptin before and after parturition and the timing of first post-partum ovulation in high-producing Holstein dairy cows. Reprod Fertil Dev. 2000; 12(7-8):405-411. https://doi.org/10.1071/rd01001 Block SS, Butler WR, Ehrhardt RA, Bell AW, Van Amburgh ME, Boisclair YR. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J Endocrinol. 2001; 171(2):339-348. https://doi.org/10.1677/joe.0.1710339 Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Sel Evol. 2002; 34(1):105-116. https://doi.org/10.1186/1297-9686-34-1-105 Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci. 2005; 83(4):927-932. https://doi.org/10.2527/2005.834927x Kaikaus RM, Bass NM, Ockner RK. Functions of fatty acid binding proteins. Experientia. 1990; 46(6):617-630. https://doi.org/10.1007/bf01939701 Michal JJ, Zhang ZW, Gaskins CT, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim Genet. 2006; 37(4):400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x Li X, Ekerljung M, Lundström K, Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 2013; 94(2):153-158. https://doi.org/10.1016/j.meatsci.2013.01.010 Chriki S, Renand G, Picard B, Micol D, Journaux L, Hocquette J. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livest Sci 2013; 155:424-434. https://doi.org/10.1016/j.livsci.2013.04.009 Ba HV, Reddy BV, Hwang I. Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In Vitro Cell Dev Biol Anim. 2015; 51(5):447-454. https://doi.org/10.1007/s11626-014-9849-8 Sava çi M, Atasoy F. The investigation of calpastatin and thyroglobulin gene polymorphisms in some native cattle breeds. Ankara Üniv Vet Fak Derg. 2016; 63:53-59. http://dx.doi.org/10.1501/Vetfak_0000002709 Gagaoua M, Picard B, Soulat J, Monteils V. Clustering of sensory eating qualities of beef: Consistencies and differences within carcass, muscle, animal characteristics and rearing factors. Livest Sci. 2018; 214:245–258. https://doi.org/10.1016/j.livsci.2018.06.011 Renerre M, Anton M, Gatellier P. Autoxidation of purified myoglobin from two bovine muscles. Meat Sci. 1992; 32(3):331–342. https://doi.org/10.1016/0309-1740(92)90096-M Pinto LFB, Ferraz JBS, Meirelles FV, Eler JP, Rezende FM, Carvalho ME, et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res. 2010; 9(3):1431–1442. https://doi.org/10.4238/vol9-3gmr881 Smith T, Thomas MG, Bidner TD, Paschal JC, Franke DE. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet Mol Res. 2009; 8(1):39–46. https://doi.org/10.4238/vol8-1gmr537 Shin SC, Chung ER. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian Aaustral J Anim. 2006; 20(2):172–177. https://doi.org/10.5713/ajas.2007.172 Carvalho ME, Eler JP, Bonin MN, Rezende FM, Biase FH, Meirelles FV, Regitano LC, Coutinho LL, Balieiro JC, Ferraz JB. Genotypic and allelic frequencies of gene polymorphisms associated with meat tenderness in Nellore beef cattle. Genet Mol Res. 2017; 16(1). https://doi.org/10.4238/gmr16018957 Curi RA, Chardulo LAL, Mason MC, Arrigoni MDB, Silveira AC, De Oliveira HN. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet. 2009; 40:456–462. https://doi.org/10.1111/j.1365-2052.2009.01859.x Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evo. 2009; 41:36. https://doi.org/10.1186/1297-9686-41-36 Saucedo Uriarte JA, Cayo Colca IS, Diaz Quevedo C, López Lapa RM. Asociación de polimorfismos en los genes CAPN y CAST con propie-dades fisicoquímicas de la carne bovina: una revisión. CES Med Zootec. 2021; 16(1):8-28. https://doi.org/10.21615/cesmvz.16.1.1 Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010; 4(2):303–319. https://doi.org/10.1017/s1751731109991091 Dear TN, Meier NT, Hunn M, Boehm T. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics 2000; 68:152–160. https://doi.org/10.1006/geno.2000.6289 Pratiwi N, Maskur M, Priyanto R, Jakaria J. Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. J Indones Trop Anim Agric. 2016; 41(3):109–116. https://doi.org/10.14710/jitaa.41.3.109-116 Hou G, Huang M, Gao X, Li J, Gao H, Ren H, et al. Association of Calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr J Biotechnol 2011; 10(63):13714–13718. http://dx.doi.org/10.5897/AJB11.338 Lagonigro R, Wiener P, Pilla F, Woolliams JA, Williams JL. A new mutation in the coding region of the bovine leptin gene associated with feed intake. Animal Genetics. 2003; 34(5):371-374. https://doi.org/10.1046/j.1365-2052.2003.01028.x Park SJ, Beak SH, Da Jin Sol Jung SY, Kim IHJ, Piao MY, Kang HJ, et al. Genetic, management and nutritional factors affecting intramuscular fat deposition in beef cattle—a review. Asian Austral J Anim. 2018; 31(7):1043–1061. https://doi.org/10.5713/ajas.18.0310 Lee B, Yoon S, Lee Y, Oh E, Yun YK, Do Kim B, et al. Comparison of marbling fleck characteristics and objective tenderness parameters with different marbling coarseness within longissimus thoracis muscle of high-marbled Hanwoo steer. Korean J Food Sci An. 2018; 38(3):606–614. https://doi.org/10.5851%2Fkosfa.2018.38.3.606 Beak SH, Park SJ, Fassah DM, Kim HJ, Kim M, Jo C, et al. Relationships among carcass traits, auction price, and image analysis traits of marbling characteristics in Korean cattle beef. Meat Sci. 2021; 171:108268. https://doi.org/10.1016/j.meatsci.2020.108268 Wheeler TL, Cundiff LV, Koch RM. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J Anim Sci. 1994; 72(12):3145–3151. https://doi.org/10.2527/1994.72123145x Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J Anim Sci. 2006; 84(3):520–525. https://doi.org/10.2527/2006.843520x Bertram H, Andersen H, Karlsson A, Horn P, Hedegaard J, Nørgaard L, Engelsen S. Prediction of technological quality (cooking loss and Napole yield) of pork based on fresh meat characteristics. Meat Science. 2003; 65:707-712. https://doi.org/10.1016/s0309-1740(02)00272-3 Aaslyng, M. Trends in meat and consumption and the need for fresh meat and meat products of improved quality. En J. Kerry y D. Ledward (Eds), Improving the sensory and nutritional quality of fresh mead. Woodhead Publishing Lta; 2009. http://dx.doi.org/10.1533/9781845695439.1.3 Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – A review. Meat Science. 2011; 89(2):111- 124. https://doi.org/10.1016/j.meatsci.2011.04.007 Leal-Gutiérrez JD, Jiménez-Robayo LM, Ariza M, Manrique C, López J, Martínez C, et al. Polimorfismos de los genes CAPN1, CAST, DES, PRKAG3 y RYR1 asociados a la capacidad de retención de agua en crudo y cocinado en carne de bovino en cruces Bos indicus y Bos taurus en Colombia Archivos de Zootecnia. 2015; 64(245):29-35. https://doi.org/10.21071/az.v64i245.371 Reardon W, Mullen A, Sweeney T, Hamill R. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Science. 2010; 86:270-275. https://doi.org/10.1016/j.meatsci.2010.04.013 Song S, Zhang X, Hayat K, Liu P, Jia C, Xia S, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011; 124(1):203–209. http://dx.doi.org/10.1016/j.foodchem.2010.06.010 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-03-26 |
date_accessioned |
2024-03-26T06:54:31Z |
date_available |
2024-03-26T06:54:31Z |
url |
https://revistas.unisucre.edu.co/index.php/recia/article/view/1071 |
url_doi |
https://doi.org/10.24188/recia.v16.n1.2024.1071 |
eissn |
2027-4297 |
doi |
10.24188/recia.v16.n1.2024.1071 |
citationstartpage |
e1071 |
citationendpage |
e1071 |
url2_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1128 |
url5_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1129 |
url7_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/download/1071/1130 |
_version_ |
1811200772878106624 |