Percepción biestable: bases neurales y utilidad en la investigación psicológica
.
Las imágenes biestables tienen la posibilidad de ser interpretadas de dos maneras diferentes. Dadas sus características físicas, ellas admiten dos percepciones diferentes, asociadas a procesos moduladores de tipo top-down y bottom-up. A partir de una revisión narrativa exhaustiva tendiente a recabar los modelos teóricos y los fundamentos propios de la biestabilidad implicada en la observación de estas imágenes, el presente artículo teórico compila no sólo nociones que se entrecruzan en el entendimiento de este fenómeno, sino también las diversas clasificaciones y usos de este tipo de imágenes en la investigación psicológica, junto a una explicación detallada de diversos correlatos neurales implicados en la reversibilidad perceptual. Se conc... Ver más
2011-2084
2011-7922
11
2018-09-01
63
76
International Journal of Psychological Research - 2018
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unisanbuenaventura_internationaljournalofpsychologicalresearch_21_article_3375 |
---|---|
record_format |
ojs |
spelling |
Percepción biestable: bases neurales y utilidad en la investigación psicológica Percepción biestable: bases neurales y utilidad en la investigación psicológica Las imágenes biestables tienen la posibilidad de ser interpretadas de dos maneras diferentes. Dadas sus características físicas, ellas admiten dos percepciones diferentes, asociadas a procesos moduladores de tipo top-down y bottom-up. A partir de una revisión narrativa exhaustiva tendiente a recabar los modelos teóricos y los fundamentos propios de la biestabilidad implicada en la observación de estas imágenes, el presente artículo teórico compila no sólo nociones que se entrecruzan en el entendimiento de este fenómeno, sino también las diversas clasificaciones y usos de este tipo de imágenes en la investigación psicológica, junto a una explicación detallada de diversos correlatos neurales implicados en la reversibilidad perceptual. Se concluye cuan extenso puede ser el uso de las imágenes biestables como recurso paradigmático, y que, por sus características, ellas tienen ricas posibilidades de ser utilizadas en tareas experimentales tendientes a desentrañar diversas inquietudes circunscritas esencialmente a procesos atencionales, sensoriales, perceptuales y de memoria. Bistable images have the possibility of being perceived in two different ways. Due to their physical characteristics, these visual stimuli allow two different perceptions, associated with top-down and bottom-up modulating processes. Based on an extensive literature review, the present article aims to gather the conceptual models and the foundations of perceptual bistability. This theoretical article compiles not only notions that are intertwined with the understanding of this perceptual phenomenon, but also the diverse classification and uses of bistable images in psychological research, along with a detailed explanation of the neural correlates that are involved in perceptual reversibility. We conclude that the use of bistable images as a paradigmatic resource in psychological research might be extensive. In addition, due to their characteristics, visual bistable stimuli have the potential to be implemented as a resource in experimental tasks that seek to understand diverse concerns linked essentially to attention, sensory, perceptual and memory processes. Rodríguez Martínez, Guillermo Andrés Castillo Parra, Henry bistable perception visual perception bistable images psychological research. Bistable perception percepción biestable percepción visual imágenes biestables investigación psicológica. Percepción Bistable 11 2 Artículo de revista Journal article 2018-09-01T00:00:00Z 2018-09-01T00:00:00Z 2018-09-01 application/pdf image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg Universidad San Buenaventura - USB (Colombia) International Journal of Psychological Research 2011-2084 2011-7922 https://revistas.usb.edu.co/index.php/IJPR/article/view/3375 10.21500/20112084.3375 https://doi.org/10.21500/20112084.3375 eng https://creativecommons.org/licenses/by-nc-sa/4.0/ International Journal of Psychological Research - 2018 63 76 Aydin, S., Strang, N. C., & Manahilov, V. (2013). Agerelated deficits in attentional control of perceptual rivalry. Vision Research, 77 , 32–40. doi: https://doi.org/10.1016/j.visres.2012.11.010 Baker, D. H., & Graf, E. W. (2010). Extrinsic factors in the perception of bistable motion stimuli. Vision Research, 50(13), 1257–1265. doi: https://doi.org/10.1016/j.visres.2010.04.016 Baker, D. H., Karapanagiotidis, T., Coggan, D. D., Wailes-Newson, K., & Smallwood, J. (2015). Brain networks underlying bistable perception. NeuroImage, 119, 229–234. doi: https://doi.org/10.1016/j.neuroimage.2015.06.053 Balcetis, E., & Dale, R. (2007). Conceptual set as a top—down constraint on visual object identification. Perception, 36(4), 581–595. doi: https://doi.org/10.1068/p5678 Barrera, M., & Calderón, L. (2013). Notes for supporting an epistemological neuropsychology: contributions from three perspectives. International Journal of Psychological Research, 6(2), 107–118. Basar-Eroglu, C., Mathes, B., Khalaidovski, K., Brand, A., & Schmiedt-Fehr, C. (2016). Altered alpha brain oscillations during multistable perception in schizophrenia. International Journal of Psychophysiology,103, 118–128. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002 Bialystok, E., & Shapero, D. (2005). Ambiguous benefits: The effect of bilingualism on reversing ambiguous figures. Developmental Science, 8(6), 595–604. doi: https://doi.org/10.1111/j.1467-7687.2005.00451.x Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: synchronization based neural models. Biological Cybernetics, 100(6), 491–504. doi: 10.1007/s00422-009-0301-1 Borisyuk, R., & Hoppensteadt, F. (2004). A theory of epineuronal memory. Neural Networks, 17 (10), 1427–1436. doi: https://doi.org/10.1016/j.neunet.2004.07.006 Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The “laws” of binocular rivalry: 50 years of Levelt’s propositions. Vision Research, 109, 20–37. doi: https://doi.org/10.1016/j.visres.2015.02.019 Brouwer, G. J., & van Ee, R. (2006). Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics. Vision Research, 46(20), 3393–3402. doi: https://doi.org/10.1016/j.visres.2006.03.016 Carroll, S. R., & Bressloff, P. C. (2014). Binocular rivalry waves in a directionally selective neural field model. Physica D: Nonlinear Phenomena, 285, 8–17. doi: https://doi.org/10.1016/j.physd.2014.07.002 Castelo-Branco, M., & Castelhano, J. (2015). Perceptual decision making. In A. W. Toga (Ed.), Brain Mapping (p. 401 - 408). Waltham: Academic Press. doi: https://doi.org/10.1016/B978-0-12-397025-1.00261-X Chung-Fat-Yim, A., Sorge, G. B., & Bialystok, E. (2017). The relationship between bilingualism and selective attention in young adults: evidence from an ambiguous figures task. The Quarterly Journal of Experimental Psychology, 70(3), 366–372. doi: https://doi.org/10.1080/17470218.2016.1221435 Clément, G., & Demel, M. (2012). Perceptual reversal of bi-stable figures in microgravity and hypergravity during parabolic flight. Neuroscience Letters, 507 (2), 143–146. doi: https://doi.org/10.1016/j.neulet.2011.12.006 Clément, G., & Eckardt, J. (2005). Influence of the gravitational vertical on geometric visual illusions. Acta Astronautica, 56(9-12), 911–917. doi: https://doi.org/10.1016/j.actaastro.2005.01.017 Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280. doi: 10.1038/38487 Denham, S., Bendixen, A., Mill, R., Tóth, D., Wennekers, T., Coath, M., … Winkler, I. (2012). Characterising switching behaviour in perceptual multi-stability. Journal of Neuroscience Methods, 210(1), 79 - 92. doi: https://doi.org/10.1016/j.jneumeth.2012.04.004 de Weert, C. M. M., Snoeren, P. R., & Koning, A. (2005). Interactions between binocular rivalry and Gestalt formation. Vision Research, 45(19), 2571–2579. doi: https://doi.org/10.1016/j.visres.2005.04.005 Fagard, J., Sacco, S., Yvenou, C., Domellöf, E., Kieffer, V., Tordjman, S., … Mamassian, P. (2008). The role of the corpus callosum in the perception of reversible figures in children. Vision Research, 48(23-24), 2451–2455. doi: https://doi.org/10.1016/j.visres.2008.08.007 Feist, M. I., & Gentner, D. (2007). Spatial language influences memory for spatial scenes. Memory & Cognition, 35(2), 283–296. doi: 10.3758/BF03193449 Fukuda, H., & Blake, R. (1992). Spatial interactions in binocular rivalry. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 362. doi: http://dx.doi.org/10.1037/0096-1523.18.2.362 Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. Eye movements and psychological functions: International views, 145–168. García-Pérez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Attention, Perception, & Psychophysics, 46(4), 397–400. doi: https://link.springer.com/content/pdf/10.3758/BF03204995.pdf García-Pérez, M. A. (1992). The role of eye movements in perceptual processes. In E. Chekaluk & K. Llewellyn (Eds.), (Vol. 88, pp. 73–109). Amsterdam- London - New York - Tokyo: North-Holland: Elsevier. doi: https://doi.org/10.1016/S0166-4115(08)61743-4 Goolkasian, P., & Woodberry, C. (2010). Priming effects with ambiguous figures. Attention, Perception, & Psychophysics, 72(1), 168–178. doi: https://link.springer.com/article/10.3758/APP.72.1.168 Gori, S., Giora, E., & Pedersini, R. (2008). Perceptual multistability in figure-ground segregation using motion stimuli. Acta Psychologica, 129(3), 399–409. doi: https://doi.org/10.1016/j.actpsy.2008.09.004 Grossmann, J. K., & Dobbins, A. C. (2006). Competition in bistable vision is attribute-specific. Vision Research, 46(3), 285–292. doi: https://doi.org/10.1016/j.visres.2005.06.002 Hancock, S., & Andrews, T. J. (2007). The role of voluntary and involuntary attention in selecting perceptual dominance during binocular rivalry. Perception, 36(2), 288–298. doi: https://doi.org/10.1068/p5494 Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426. doi: 10.1037/0894-4105.12.3.426 Hsiao, J.-Y., Chen, Y.-C., Spence, C., & Yeh, S.-L. (2012). Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure. Consciousness and Cognition, 21(2), 775–787. doi: https://doi.org/10.1016/j.concog.2012.02.001 Intaitė, M., Koivisto, M., & Castelo-Branco, M. (2014). Event-related potential responses to perceptual reversals are modulated by working memory load. Neuropsychologia, 56, 428–438. doi: https://doi.org/10.1016/j.neuropsychologia.2014.02.016 Intaitė, M., Koivisto, M., Rukšėnas, O., & Revonsuo, A. (2010). Reversal negativity and bistable stimuli: Attention, awareness, or something else? Brain and Cognition, 74(1), 24–34. doi: https://doi.org/10.1016/j.bandc.2010.06.002 Intaitė, M., Noreika, V., Šoliūnas, A., & Falter, C. M. (2013). Interaction of bottom-up and top-down processes in the perception of ambiguous figures. Vision Research, 89, 24–31. doi: https://doi.org/10.1016/j.visres.2013.06.011 Jackson, S., Cummins, F., & Brady, N. (2008). Rapid perceptual switching of a reversible biological figure. PloS one, 3(12), 1–15. doi: https://doi.org/10.1371/journal.pone.0003982 Kanai, R., Carmel, D., Bahrami, B., & Rees, G. (2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 21(3), R106–R107. doi: https://doi.org/10.1016/j.cub.2010.12.009 Kleinschmidt, A., Büchel, C., Zeki, S., & Frackowiak,R. S. J. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265(1413), 2427–2433. doi: 10.1098/rspb.1998.0594 Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure–ground perception. Vision Research, 106, 7–19. doi: https://doi.org/10.1016/j.visres.2014.10.029 Kornmeier, J., & Bach, M. (2005). The Necker cube—an ambiguous figure disambiguated in early visual processing. Vision Research, 45(8), 955–960. doi: https://doi.org/10.1016/j.visres.2004.10.006 Kornmeier, J., & Bach, M. (2006). Bistable perception—along the processing chain from ambiguous visual input to a stable percept. International Journal of Psychophysiology, 62(2), 345–349. doi: https://doi.org/10.1016/j.ijpsycho.2006.04.007 Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: when bottom-up and top-down coincide. Brain and Cognition, 69(1), 138–147. doi: https://doi.org/10.1016/j.bandc.2008.06.005 Krug, K., Brunskill, E., Scarna, A., Goodwin, G. M., & Parker, A. J. (2008). Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proceedings of the Royal Society of London B: Biological Sciences, 275(1645), 1839–1848. doi: 10.1098/rspb.2008.0043 Lalanne, C., & Lorenceau, J. (2004). Crossmodal integration for perception and action. Journal of Physiology-Paris, 98(1-3), 265–279. doi: https://doi.org/10.1016/j.jphysparis.2004.06.001 Laukkonen, R. E., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48, 198–211. doi: https://doi.org/10.1016/j.concog.2016.11.011 Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in cognitive sciences, 3(7), 254–264. doi: https://doi.org/10.1016/S1364-6613(99)01332-7 Liu, C.-H., Tzeng, O. J. L., Hung, D. L., Tseng, P., & Juan, C.-H. (2012). Investigation of bistable perception with the “silhouette spinner”: Sit still, spin the dancer with your will. Vision Research,60, 34–39. doi: https://doi.org/10.1016/j.visres.2012.03.005 Long, G. M., & Batterman, J. M. (2012). Dissecting perceptual processes with a new tri-stable reversible figure. Perception, 41(10), 1163–1185. doi: https://doi.org/10.1068/p7313 Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10(2), 231–234. doi: https://doi.org/10.1068/p100231 Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychological bulletin, 130(5), 748. doi: 10.1037/0033-2909.130.5.748 Matsumoto, Y., Takahashi, H., Murai, T., & Takahashi, H. (2015). Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy. Neuroscience research, 90, 95–100. doi: https://doi.org/10.1016/j.neures.2014.10.011 McBain, R., Norton, D. J., Kim, J., & Chen, Y. (2011). Reduced cognitive control of a visually bistable image in schizophrenia. Journal of the International Neuropsychological Society, 17 (3), 551–556. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002 Meenan, J. P., & Miller, L. A. (1994). Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 32(9), 1145–1149. doi: https://doi.org/10.1016/0028-3932(94)90159-7 Megumi, F., Bahrami, B., Kanai, R., & Rees, G. (2015). Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage, 107 , 190–197. doi: https://doi.org/10.1016/j.neuroimage.2014.12.018 Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 2–2. doi: 10.1167/4.7.2 Meso, A. I., & Masson, G. S. (2015). Dynamic resolution of ambiguity during tri-stable motion perception. Vision research, 107 , 113–123. doi: https://doi.org/10.1016/j.visres.2014.12.015 Mishra, J., & Hillyard, S. A. (2009). Endogenous attention selection during binocular rivalry at early stages of visual processing. Vision research, 49(10), 1073–1080. doi: https://doi.org/10.1016/j.visres.2008.02.018 Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noiseinduced alternations in an attractor network model of perceptual bistability. Journal of neurophysiology,98(3), 1125–1139. doi: https://doi.org/10.1152/jn.00116.2007 Mudrik, L., Deouell, L. Y., & Lamy, D. (2011). Scene congruency biases binocular rivalry. Consciousness and cognition, 20(3), 756–767. doi: https://doi.org/10.1016/j.concog.2011.01.001 Munar, E., Rosselló, J., Maiche, A., Travieso, D., & Nadal, M. (2008). Manual de neuropsicología. In V. Editores (Ed.), (pp. 59–96). Barcelona. doi: https://dialnet.unirioja.es/servlet/articulo?codigo=3423906 Munhall, K. G., Ten Hove, M. W., Brammer, M., & Paré, M. (2009). Audiovisual integration of speech in a bistable illusion. Current Biology, 19(9), 735–739. doi: 10.1016/j.cub.2009.03.019 Naber, M., Gruenhage, G., & Einhäuser, W. (2010). Tristable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 50(8), 818–828. doi: https://doi.org/10.1016/j.visres.2010.02.004 Ngo, T. T., Liu, G. B., Tilley, A. J., Pettigrew, J. D., & Miller, S. M. (2008). The changing face of perceptual rivalry. Brain Research Bulletin, 75(5), 610–618. doi: https://doi.org/10.1016/j.brainresbull.2007.10.006 Okazaki, M., Kaneko, Y., Yumoto, M., & Arima, K. (2008). Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities. Neuroscience Research, 61(3), 319–328. doi: 10.1016/j.neures.2008.03.010 Piantoni, G., Romeijn, N., Gomez-Herrero, G., Werf, Y. D., & Someren, E. J. W. (2017). Alpha power predicts persistence of bistable perception. Scientific Reports, 7 (1), 5208. doi: 10.1038/s41598-017-05610-8 Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current biology, 16(13), 1351–1357. doi: https://doi.org/10.1016/j.cub.2006.05.054 Qiu, J., Wei, D., Li, H., Yu, C., Wang, T., & Zhang, Q. (2009). The vase–face illusion seen by the brain: An event-related brain potentials study. International Journal of Psychophysiology, 74(1), 69–73. doi: https://doi.org/10.1016/j.ijpsycho.2009.07.006 Ricci, C., & Blundo, C. (1990). Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 28(11), 1163–1173. doi: https://doi.org/10.1016/0028-3932(90)90052-P Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87 (1), 33–59. doi: https://www.ncbi.nlm.nih.gov/pubmed/7985524 Sandberg, K., Barnes, G. R., Bahrami, B., Kanai, R., Overgaard, M., & Rees, G. (2014). Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage, 100, 161–175. doi: https://doi.org/10.1016/j.neuroimage.2014.06.023 Sandberg, K., Blicher, J. U., Del Pin, S. H., Andersen, L. M., Rees, G., & Kanai, R. (2016). Improved estimates for the role of grey matter volume and GABA in bistable perception. Cortex, 83, 292–305. doi: https://doi.org/10.1016/j.cortex.2016.08.006 Schauer, G., Kanai, R., & Brascamp, J. W. (2016). Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks. Consciousness and cognition, 40, 105–115. doi: https://doi.org/10.1016/j.concog.2016.01.002 Smith, E. L., Grabowecky, M., & Suzuki, S. (2007). Auditory-visual crossmodal integration in perception of face gender. Current Biology, 17 (19), 1680–1685. doi: https://doi.org/10.1016/j.cub.2007.08.043 Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. doi: 10.1016/j.tics.2009.04.006 Sterzer, P., & Rees, G. (2009). Bistable perception and consciousness. Encyclopedia of Consciousness, 93–106. doi: https://doi.org/10.1016/B978-012373873-8.00011-6 Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15(4), 908–916. doi: https://doi.org/10.1006/nimg.2001.1030 Takase, S., Yukumatsu, S., & Bingushi, K. (2013). Perceptual dominance during binocular rivalry is prolonged by a dynamic surround. Vision research, 92, 33–38. doi: https://doi.org/10.1016/j.visres.2013.09.002 Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychological Bulletin, 131(4), 618. doi: 10.1037/0033-2909.131.4.618 van Dam, L. C. J., & van Ee, R. (2006). The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision research, 46(6-7), 787–799. doi: https://doi.org/10.1016/j.visres.2005.10.011 van Loon, A. M., Knapen, T., Scholte, H. S., John-Saaltink, E. S., Donner, T. H., & Lamme, V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 23(9), 823–827. doi: https://doi.org/10.1016/j.cub.2013.03.067 Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Perception & Psychophysics, 69(5), 744–756. doi: https://doi.org/10.3758/BF03193776 Vernet, M., Brem, A.-K., Farzan, F., & Pascual-Leone, A. (2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS–EEG study. Cortex, 64, 78–88. doi: https://doi.org/10.1016/j.cortex.2014.09.021 Weilnhammer, V., Ludwig, K., Hesselmann, G., & Sterzer, P. (2013). Frontoparietal cortex mediates perceptual transitions in bistable perception. Journal of Neuroscience, 33(40), 16009–16015. doi: https://doi.org/10.1523/JNEUROSCI.1418-13.2013 Weilnhammer, V., Ludwig, K., Sterzer, P., & Hesselmann, G. (2014). Revisiting the Lissajous figure as a tool to study bistable perception. Vision Research, 98, 107–112. doi: https://doi.org/10.1016/j.visres.2014.03.013 Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P., & Schmack, K. (2017). A predictive coding account of bistable perception-a model-based fMRI study. PLoS Computational Biology, 13(5), e1005536. doi: https://doi.org/10.1371/journal.pcbi.1005536 Xiaogang, W., Na, S., Lei, H., Yong, Z., Taiyong, B., & Jiang, Q. (2017). Category selectivity of human visual cortex in perception of rubin face–vase illusion. Frontiers in Psychology. doi: https://doi.org/10.3389/fpsyg.2017.01543 Yamamoto, S., & Yamamoto, M. (2006). Effects of the gravitational vertical on the visual perception of reversible figures. Neuroscience Research, 55(2), 218–221. doi: https://doi.org/10.1016/j.neures.2006.02.014 Yeh, S.-L., Hsiao, J.-Y., Chen, Y.-C., & Spence, C. (2011). Interplay of multisensory processing, attention, and consciousness as revealed by bistable figures. i-Perception, 2(8), 910–910. doi: https://doi.org/10.1068/ic910 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/2931 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/3144 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/3145 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/3146 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/3147 https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/3148 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE SAN BUENAVENTURA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png |
country_str |
Colombia |
collection |
International Journal of Psychological Research |
title |
Percepción biestable: bases neurales y utilidad en la investigación psicológica |
spellingShingle |
Percepción biestable: bases neurales y utilidad en la investigación psicológica Rodríguez Martínez, Guillermo Andrés Castillo Parra, Henry bistable perception visual perception bistable images psychological research. Bistable perception percepción biestable percepción visual imágenes biestables investigación psicológica. Percepción Bistable |
title_short |
Percepción biestable: bases neurales y utilidad en la investigación psicológica |
title_full |
Percepción biestable: bases neurales y utilidad en la investigación psicológica |
title_fullStr |
Percepción biestable: bases neurales y utilidad en la investigación psicológica |
title_full_unstemmed |
Percepción biestable: bases neurales y utilidad en la investigación psicológica |
title_sort |
percepción biestable: bases neurales y utilidad en la investigación psicológica |
description |
Las imágenes biestables tienen la posibilidad de ser interpretadas de dos maneras diferentes. Dadas sus características físicas, ellas admiten dos percepciones diferentes, asociadas a procesos moduladores de tipo top-down y bottom-up. A partir de una revisión narrativa exhaustiva tendiente a recabar los modelos teóricos y los fundamentos propios de la biestabilidad implicada en la observación de estas imágenes, el presente artículo teórico compila no sólo nociones que se entrecruzan en el entendimiento de este fenómeno, sino también las diversas clasificaciones y usos de este tipo de imágenes en la investigación psicológica, junto a una explicación detallada de diversos correlatos neurales implicados en la reversibilidad perceptual. Se concluye cuan extenso puede ser el uso de las imágenes biestables como recurso paradigmático, y que, por sus características, ellas tienen ricas posibilidades de ser utilizadas en tareas experimentales tendientes a desentrañar diversas inquietudes circunscritas esencialmente a procesos atencionales, sensoriales, perceptuales y de memoria.
|
description_eng |
Bistable images have the possibility of being perceived in two different ways. Due to their physical characteristics, these visual stimuli allow two different perceptions, associated with top-down and bottom-up modulating processes. Based on an extensive literature review, the present article aims to gather the conceptual models and the foundations of perceptual bistability. This theoretical article compiles not only notions that are intertwined with the understanding of this perceptual phenomenon, but also the diverse classification and uses of bistable images in psychological research, along with a detailed explanation of the neural correlates that are involved in perceptual reversibility. We conclude that the use of bistable images as a paradigmatic resource in psychological research might be extensive. In addition, due to their characteristics, visual bistable stimuli have the potential to be implemented as a resource in experimental tasks that seek to understand diverse concerns linked essentially to attention, sensory, perceptual and memory processes.
|
author |
Rodríguez Martínez, Guillermo Andrés Castillo Parra, Henry |
author_facet |
Rodríguez Martínez, Guillermo Andrés Castillo Parra, Henry |
topic |
bistable perception visual perception bistable images psychological research. Bistable perception percepción biestable percepción visual imágenes biestables investigación psicológica. Percepción Bistable |
topic_facet |
bistable perception visual perception bistable images psychological research. Bistable perception percepción biestable percepción visual imágenes biestables investigación psicológica. Percepción Bistable |
topicspa_str_mv |
percepción biestable percepción visual imágenes biestables investigación psicológica. Percepción Bistable |
citationvolume |
11 |
citationissue |
2 |
publisher |
Universidad San Buenaventura - USB (Colombia) |
ispartofjournal |
International Journal of Psychological Research |
source |
https://revistas.usb.edu.co/index.php/IJPR/article/view/3375 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ International Journal of Psychological Research - 2018 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Aydin, S., Strang, N. C., & Manahilov, V. (2013). Agerelated deficits in attentional control of perceptual rivalry. Vision Research, 77 , 32–40. doi: https://doi.org/10.1016/j.visres.2012.11.010 Baker, D. H., & Graf, E. W. (2010). Extrinsic factors in the perception of bistable motion stimuli. Vision Research, 50(13), 1257–1265. doi: https://doi.org/10.1016/j.visres.2010.04.016 Baker, D. H., Karapanagiotidis, T., Coggan, D. D., Wailes-Newson, K., & Smallwood, J. (2015). Brain networks underlying bistable perception. NeuroImage, 119, 229–234. doi: https://doi.org/10.1016/j.neuroimage.2015.06.053 Balcetis, E., & Dale, R. (2007). Conceptual set as a top—down constraint on visual object identification. Perception, 36(4), 581–595. doi: https://doi.org/10.1068/p5678 Barrera, M., & Calderón, L. (2013). Notes for supporting an epistemological neuropsychology: contributions from three perspectives. International Journal of Psychological Research, 6(2), 107–118. Basar-Eroglu, C., Mathes, B., Khalaidovski, K., Brand, A., & Schmiedt-Fehr, C. (2016). Altered alpha brain oscillations during multistable perception in schizophrenia. International Journal of Psychophysiology,103, 118–128. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002 Bialystok, E., & Shapero, D. (2005). Ambiguous benefits: The effect of bilingualism on reversing ambiguous figures. Developmental Science, 8(6), 595–604. doi: https://doi.org/10.1111/j.1467-7687.2005.00451.x Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: synchronization based neural models. Biological Cybernetics, 100(6), 491–504. doi: 10.1007/s00422-009-0301-1 Borisyuk, R., & Hoppensteadt, F. (2004). A theory of epineuronal memory. Neural Networks, 17 (10), 1427–1436. doi: https://doi.org/10.1016/j.neunet.2004.07.006 Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The “laws” of binocular rivalry: 50 years of Levelt’s propositions. Vision Research, 109, 20–37. doi: https://doi.org/10.1016/j.visres.2015.02.019 Brouwer, G. J., & van Ee, R. (2006). Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics. Vision Research, 46(20), 3393–3402. doi: https://doi.org/10.1016/j.visres.2006.03.016 Carroll, S. R., & Bressloff, P. C. (2014). Binocular rivalry waves in a directionally selective neural field model. Physica D: Nonlinear Phenomena, 285, 8–17. doi: https://doi.org/10.1016/j.physd.2014.07.002 Castelo-Branco, M., & Castelhano, J. (2015). Perceptual decision making. In A. W. Toga (Ed.), Brain Mapping (p. 401 - 408). Waltham: Academic Press. doi: https://doi.org/10.1016/B978-0-12-397025-1.00261-X Chung-Fat-Yim, A., Sorge, G. B., & Bialystok, E. (2017). The relationship between bilingualism and selective attention in young adults: evidence from an ambiguous figures task. The Quarterly Journal of Experimental Psychology, 70(3), 366–372. doi: https://doi.org/10.1080/17470218.2016.1221435 Clément, G., & Demel, M. (2012). Perceptual reversal of bi-stable figures in microgravity and hypergravity during parabolic flight. Neuroscience Letters, 507 (2), 143–146. doi: https://doi.org/10.1016/j.neulet.2011.12.006 Clément, G., & Eckardt, J. (2005). Influence of the gravitational vertical on geometric visual illusions. Acta Astronautica, 56(9-12), 911–917. doi: https://doi.org/10.1016/j.actaastro.2005.01.017 Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280. doi: 10.1038/38487 Denham, S., Bendixen, A., Mill, R., Tóth, D., Wennekers, T., Coath, M., … Winkler, I. (2012). Characterising switching behaviour in perceptual multi-stability. Journal of Neuroscience Methods, 210(1), 79 - 92. doi: https://doi.org/10.1016/j.jneumeth.2012.04.004 de Weert, C. M. M., Snoeren, P. R., & Koning, A. (2005). Interactions between binocular rivalry and Gestalt formation. Vision Research, 45(19), 2571–2579. doi: https://doi.org/10.1016/j.visres.2005.04.005 Fagard, J., Sacco, S., Yvenou, C., Domellöf, E., Kieffer, V., Tordjman, S., … Mamassian, P. (2008). The role of the corpus callosum in the perception of reversible figures in children. Vision Research, 48(23-24), 2451–2455. doi: https://doi.org/10.1016/j.visres.2008.08.007 Feist, M. I., & Gentner, D. (2007). Spatial language influences memory for spatial scenes. Memory & Cognition, 35(2), 283–296. doi: 10.3758/BF03193449 Fukuda, H., & Blake, R. (1992). Spatial interactions in binocular rivalry. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 362. doi: http://dx.doi.org/10.1037/0096-1523.18.2.362 Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. Eye movements and psychological functions: International views, 145–168. García-Pérez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Attention, Perception, & Psychophysics, 46(4), 397–400. doi: https://link.springer.com/content/pdf/10.3758/BF03204995.pdf García-Pérez, M. A. (1992). The role of eye movements in perceptual processes. In E. Chekaluk & K. Llewellyn (Eds.), (Vol. 88, pp. 73–109). Amsterdam- London - New York - Tokyo: North-Holland: Elsevier. doi: https://doi.org/10.1016/S0166-4115(08)61743-4 Goolkasian, P., & Woodberry, C. (2010). Priming effects with ambiguous figures. Attention, Perception, & Psychophysics, 72(1), 168–178. doi: https://link.springer.com/article/10.3758/APP.72.1.168 Gori, S., Giora, E., & Pedersini, R. (2008). Perceptual multistability in figure-ground segregation using motion stimuli. Acta Psychologica, 129(3), 399–409. doi: https://doi.org/10.1016/j.actpsy.2008.09.004 Grossmann, J. K., & Dobbins, A. C. (2006). Competition in bistable vision is attribute-specific. Vision Research, 46(3), 285–292. doi: https://doi.org/10.1016/j.visres.2005.06.002 Hancock, S., & Andrews, T. J. (2007). The role of voluntary and involuntary attention in selecting perceptual dominance during binocular rivalry. Perception, 36(2), 288–298. doi: https://doi.org/10.1068/p5494 Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426. doi: 10.1037/0894-4105.12.3.426 Hsiao, J.-Y., Chen, Y.-C., Spence, C., & Yeh, S.-L. (2012). Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure. Consciousness and Cognition, 21(2), 775–787. doi: https://doi.org/10.1016/j.concog.2012.02.001 Intaitė, M., Koivisto, M., & Castelo-Branco, M. (2014). Event-related potential responses to perceptual reversals are modulated by working memory load. Neuropsychologia, 56, 428–438. doi: https://doi.org/10.1016/j.neuropsychologia.2014.02.016 Intaitė, M., Koivisto, M., Rukšėnas, O., & Revonsuo, A. (2010). Reversal negativity and bistable stimuli: Attention, awareness, or something else? Brain and Cognition, 74(1), 24–34. doi: https://doi.org/10.1016/j.bandc.2010.06.002 Intaitė, M., Noreika, V., Šoliūnas, A., & Falter, C. M. (2013). Interaction of bottom-up and top-down processes in the perception of ambiguous figures. Vision Research, 89, 24–31. doi: https://doi.org/10.1016/j.visres.2013.06.011 Jackson, S., Cummins, F., & Brady, N. (2008). Rapid perceptual switching of a reversible biological figure. PloS one, 3(12), 1–15. doi: https://doi.org/10.1371/journal.pone.0003982 Kanai, R., Carmel, D., Bahrami, B., & Rees, G. (2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 21(3), R106–R107. doi: https://doi.org/10.1016/j.cub.2010.12.009 Kleinschmidt, A., Büchel, C., Zeki, S., & Frackowiak,R. S. J. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265(1413), 2427–2433. doi: 10.1098/rspb.1998.0594 Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure–ground perception. Vision Research, 106, 7–19. doi: https://doi.org/10.1016/j.visres.2014.10.029 Kornmeier, J., & Bach, M. (2005). The Necker cube—an ambiguous figure disambiguated in early visual processing. Vision Research, 45(8), 955–960. doi: https://doi.org/10.1016/j.visres.2004.10.006 Kornmeier, J., & Bach, M. (2006). Bistable perception—along the processing chain from ambiguous visual input to a stable percept. International Journal of Psychophysiology, 62(2), 345–349. doi: https://doi.org/10.1016/j.ijpsycho.2006.04.007 Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: when bottom-up and top-down coincide. Brain and Cognition, 69(1), 138–147. doi: https://doi.org/10.1016/j.bandc.2008.06.005 Krug, K., Brunskill, E., Scarna, A., Goodwin, G. M., & Parker, A. J. (2008). Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proceedings of the Royal Society of London B: Biological Sciences, 275(1645), 1839–1848. doi: 10.1098/rspb.2008.0043 Lalanne, C., & Lorenceau, J. (2004). Crossmodal integration for perception and action. Journal of Physiology-Paris, 98(1-3), 265–279. doi: https://doi.org/10.1016/j.jphysparis.2004.06.001 Laukkonen, R. E., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48, 198–211. doi: https://doi.org/10.1016/j.concog.2016.11.011 Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in cognitive sciences, 3(7), 254–264. doi: https://doi.org/10.1016/S1364-6613(99)01332-7 Liu, C.-H., Tzeng, O. J. L., Hung, D. L., Tseng, P., & Juan, C.-H. (2012). Investigation of bistable perception with the “silhouette spinner”: Sit still, spin the dancer with your will. Vision Research,60, 34–39. doi: https://doi.org/10.1016/j.visres.2012.03.005 Long, G. M., & Batterman, J. M. (2012). Dissecting perceptual processes with a new tri-stable reversible figure. Perception, 41(10), 1163–1185. doi: https://doi.org/10.1068/p7313 Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10(2), 231–234. doi: https://doi.org/10.1068/p100231 Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychological bulletin, 130(5), 748. doi: 10.1037/0033-2909.130.5.748 Matsumoto, Y., Takahashi, H., Murai, T., & Takahashi, H. (2015). Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy. Neuroscience research, 90, 95–100. doi: https://doi.org/10.1016/j.neures.2014.10.011 McBain, R., Norton, D. J., Kim, J., & Chen, Y. (2011). Reduced cognitive control of a visually bistable image in schizophrenia. Journal of the International Neuropsychological Society, 17 (3), 551–556. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002 Meenan, J. P., & Miller, L. A. (1994). Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 32(9), 1145–1149. doi: https://doi.org/10.1016/0028-3932(94)90159-7 Megumi, F., Bahrami, B., Kanai, R., & Rees, G. (2015). Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage, 107 , 190–197. doi: https://doi.org/10.1016/j.neuroimage.2014.12.018 Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 2–2. doi: 10.1167/4.7.2 Meso, A. I., & Masson, G. S. (2015). Dynamic resolution of ambiguity during tri-stable motion perception. Vision research, 107 , 113–123. doi: https://doi.org/10.1016/j.visres.2014.12.015 Mishra, J., & Hillyard, S. A. (2009). Endogenous attention selection during binocular rivalry at early stages of visual processing. Vision research, 49(10), 1073–1080. doi: https://doi.org/10.1016/j.visres.2008.02.018 Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noiseinduced alternations in an attractor network model of perceptual bistability. Journal of neurophysiology,98(3), 1125–1139. doi: https://doi.org/10.1152/jn.00116.2007 Mudrik, L., Deouell, L. Y., & Lamy, D. (2011). Scene congruency biases binocular rivalry. Consciousness and cognition, 20(3), 756–767. doi: https://doi.org/10.1016/j.concog.2011.01.001 Munar, E., Rosselló, J., Maiche, A., Travieso, D., & Nadal, M. (2008). Manual de neuropsicología. In V. Editores (Ed.), (pp. 59–96). Barcelona. doi: https://dialnet.unirioja.es/servlet/articulo?codigo=3423906 Munhall, K. G., Ten Hove, M. W., Brammer, M., & Paré, M. (2009). Audiovisual integration of speech in a bistable illusion. Current Biology, 19(9), 735–739. doi: 10.1016/j.cub.2009.03.019 Naber, M., Gruenhage, G., & Einhäuser, W. (2010). Tristable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 50(8), 818–828. doi: https://doi.org/10.1016/j.visres.2010.02.004 Ngo, T. T., Liu, G. B., Tilley, A. J., Pettigrew, J. D., & Miller, S. M. (2008). The changing face of perceptual rivalry. Brain Research Bulletin, 75(5), 610–618. doi: https://doi.org/10.1016/j.brainresbull.2007.10.006 Okazaki, M., Kaneko, Y., Yumoto, M., & Arima, K. (2008). Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities. Neuroscience Research, 61(3), 319–328. doi: 10.1016/j.neures.2008.03.010 Piantoni, G., Romeijn, N., Gomez-Herrero, G., Werf, Y. D., & Someren, E. J. W. (2017). Alpha power predicts persistence of bistable perception. Scientific Reports, 7 (1), 5208. doi: 10.1038/s41598-017-05610-8 Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current biology, 16(13), 1351–1357. doi: https://doi.org/10.1016/j.cub.2006.05.054 Qiu, J., Wei, D., Li, H., Yu, C., Wang, T., & Zhang, Q. (2009). The vase–face illusion seen by the brain: An event-related brain potentials study. International Journal of Psychophysiology, 74(1), 69–73. doi: https://doi.org/10.1016/j.ijpsycho.2009.07.006 Ricci, C., & Blundo, C. (1990). Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 28(11), 1163–1173. doi: https://doi.org/10.1016/0028-3932(90)90052-P Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87 (1), 33–59. doi: https://www.ncbi.nlm.nih.gov/pubmed/7985524 Sandberg, K., Barnes, G. R., Bahrami, B., Kanai, R., Overgaard, M., & Rees, G. (2014). Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage, 100, 161–175. doi: https://doi.org/10.1016/j.neuroimage.2014.06.023 Sandberg, K., Blicher, J. U., Del Pin, S. H., Andersen, L. M., Rees, G., & Kanai, R. (2016). Improved estimates for the role of grey matter volume and GABA in bistable perception. Cortex, 83, 292–305. doi: https://doi.org/10.1016/j.cortex.2016.08.006 Schauer, G., Kanai, R., & Brascamp, J. W. (2016). Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks. Consciousness and cognition, 40, 105–115. doi: https://doi.org/10.1016/j.concog.2016.01.002 Smith, E. L., Grabowecky, M., & Suzuki, S. (2007). Auditory-visual crossmodal integration in perception of face gender. Current Biology, 17 (19), 1680–1685. doi: https://doi.org/10.1016/j.cub.2007.08.043 Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. doi: 10.1016/j.tics.2009.04.006 Sterzer, P., & Rees, G. (2009). Bistable perception and consciousness. Encyclopedia of Consciousness, 93–106. doi: https://doi.org/10.1016/B978-012373873-8.00011-6 Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15(4), 908–916. doi: https://doi.org/10.1006/nimg.2001.1030 Takase, S., Yukumatsu, S., & Bingushi, K. (2013). Perceptual dominance during binocular rivalry is prolonged by a dynamic surround. Vision research, 92, 33–38. doi: https://doi.org/10.1016/j.visres.2013.09.002 Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychological Bulletin, 131(4), 618. doi: 10.1037/0033-2909.131.4.618 van Dam, L. C. J., & van Ee, R. (2006). The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision research, 46(6-7), 787–799. doi: https://doi.org/10.1016/j.visres.2005.10.011 van Loon, A. M., Knapen, T., Scholte, H. S., John-Saaltink, E. S., Donner, T. H., & Lamme, V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 23(9), 823–827. doi: https://doi.org/10.1016/j.cub.2013.03.067 Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Perception & Psychophysics, 69(5), 744–756. doi: https://doi.org/10.3758/BF03193776 Vernet, M., Brem, A.-K., Farzan, F., & Pascual-Leone, A. (2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS–EEG study. Cortex, 64, 78–88. doi: https://doi.org/10.1016/j.cortex.2014.09.021 Weilnhammer, V., Ludwig, K., Hesselmann, G., & Sterzer, P. (2013). Frontoparietal cortex mediates perceptual transitions in bistable perception. Journal of Neuroscience, 33(40), 16009–16015. doi: https://doi.org/10.1523/JNEUROSCI.1418-13.2013 Weilnhammer, V., Ludwig, K., Sterzer, P., & Hesselmann, G. (2014). Revisiting the Lissajous figure as a tool to study bistable perception. Vision Research, 98, 107–112. doi: https://doi.org/10.1016/j.visres.2014.03.013 Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P., & Schmack, K. (2017). A predictive coding account of bistable perception-a model-based fMRI study. PLoS Computational Biology, 13(5), e1005536. doi: https://doi.org/10.1371/journal.pcbi.1005536 Xiaogang, W., Na, S., Lei, H., Yong, Z., Taiyong, B., & Jiang, Q. (2017). Category selectivity of human visual cortex in perception of rubin face–vase illusion. Frontiers in Psychology. doi: https://doi.org/10.3389/fpsyg.2017.01543 Yamamoto, S., & Yamamoto, M. (2006). Effects of the gravitational vertical on the visual perception of reversible figures. Neuroscience Research, 55(2), 218–221. doi: https://doi.org/10.1016/j.neures.2006.02.014 Yeh, S.-L., Hsiao, J.-Y., Chen, Y.-C., & Spence, C. (2011). Interplay of multisensory processing, attention, and consciousness as revealed by bistable figures. i-Perception, 2(8), 910–910. doi: https://doi.org/10.1068/ic910 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2018-09-01 |
date_accessioned |
2018-09-01T00:00:00Z |
date_available |
2018-09-01T00:00:00Z |
url |
https://revistas.usb.edu.co/index.php/IJPR/article/view/3375 |
url_doi |
https://doi.org/10.21500/20112084.3375 |
issn |
2011-2084 |
eissn |
2011-7922 |
doi |
10.21500/20112084.3375 |
citationstartpage |
63 |
citationendpage |
76 |
url2_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/3375/2931 |
_version_ |
1811200844249432064 |