Titulo:

Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
.

Sumario:

Hoy en día, el consumo de alcohol frecuentemente acompaña la socialización como una actividad rutinaria en varios grupos de la sociedad. El 84.0% de las personas mayores de 18 años en los Estados Unidos han consumido alcohol en algún momento de sus vidas (National Institute on Alcohol Abuse & US, 2023). De manera similar, el 81.7% de los noruegos en el grupo de edad de 16 a 79 años consumieron alcohol en 2021 (Bye, 2018). Conducir después del consumo de alcohol es un problema mundial que causa un gran número de muertes y lesiones cada año. Este trabajo propone los primeros pasos hacia el desarrollo de un detector de alcohol basado en electroencefalografía (EEG), concebido con la idea de prevenir que las personas conduzcan bajo l... Ver más

Guardado en:

2011-2084

2011-7922

17

2024-09-03

91

99

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisanbuenaventura_internationaljournalofpsychologicalresearch_21-article-7434
record_format ojs
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection International Journal of Psychological Research
title Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
spellingShingle Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
Vassbotn, Molly
Nordstrøm-Hauge, Iselin J.
Soler, Andres
Molinas, Marta
detección de alcohol
Prueba de Flanker
EEGNet
Red Neuronal Convolucional (CNN)
Electroencefalografía
Electroencefalografía (EEG)
alcohol detection
Flanker Test
EEGNet
Electroencephalography (EEG)
Convolutional Neural Network (CNN)
title_short Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
title_full Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
title_fullStr Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
title_full_unstemmed Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
title_sort sistema de detección de alcohol basado en eeg para la monitoreo de conductores
description Hoy en día, el consumo de alcohol frecuentemente acompaña la socialización como una actividad rutinaria en varios grupos de la sociedad. El 84.0% de las personas mayores de 18 años en los Estados Unidos han consumido alcohol en algún momento de sus vidas (National Institute on Alcohol Abuse & US, 2023). De manera similar, el 81.7% de los noruegos en el grupo de edad de 16 a 79 años consumieron alcohol en 2021 (Bye, 2018). Conducir después del consumo de alcohol es un problema mundial que causa un gran número de muertes y lesiones cada año. Este trabajo propone los primeros pasos hacia el desarrollo de un detector de alcohol basado en electroencefalografía (EEG), concebido con la idea de prevenir que las personas conduzcan bajo los efectos del alcohol. Esto incluye el diseño de un protocolo experimental para la recopilación de datos EEG, durante el cual los participantes realizaron la prueba de Flanker y se midió su concentración de alcohol en la sangre (BAC). El conjunto de datos resultante consta de dos sesiones por participante, tanto mientras estaban afectados como no afectados por el alcohol. El análisis estadístico de la prueba de Flanker indicó que los participantes estaban afectados por el alcohol y, por lo tanto, se esperaba que sus señales EEG también lo estuvieran. Las señales EEG recopiladas se utilizaron como entrada para modelos intra-participantes e inter-participantes, ambos basados en la arquitectura EEGNet. El modelo intra-participantes obtuvo una precisión media de clasificación del 90.7%, y el modelo inter-participantes una precisión media del 62.9%. Los resultados sugieren que el alcohol puede detectarse con alta precisión al desarrollar modelos individuales y con una precisión superior al azar al usar un modelo general. Por lo tanto, el trabajo presentado aquí podría servir como los primeros pasos hacia el desarrollo de un detector de alcohol basado en EEG para conductores. 
description_eng Today, alcohol drinking frequently accompanies socialising as a routine activity in various groups of society. 84.0% of individuals aged 18 and above in the United States have drunk alcohol at some point in their life (National Institute on Alcohol Abuse & US, 2023). Similarly, 81.7% of Norwegians in the age group 16 to 79 have drunk alcohol in 2021 (Bye, 2018). Driving after the consumption of alcohol is a worldwide problem, causing a large number of deaths and injuries a year. This work proposes the first steps towards developing an electroencephalography (EEG)-based alcohol detector conceived with the idea to prevent people from driving under the influence of alcohol. This includes the design of an experimental protocol for EEG data collection, during which participants performed the Flanker task, and their blood alcohol concentration (BAC) was measured. The resulting data set consists of two sessions per participant, both while they are affected and not-affected by alcohol. Statistical analysis of the Flanker task indicated that participants were affected by alcohol and, therefore, their EEG signals were expected to be affected as well. The collected EEG signals were used as input for intra-subject and inter-subject models, both based on the EEGNet architecture. The intra-subject model obtained a mean classification accuracy of 90.7% and the inter-subject model a mean classification accuracy of 62.9%. The result suggest that alcohol can be detected with high accuracy when developing individual models and above the change accuracy when using a general model. Therefore, the work presented here could be used as the first steps towards the development of an EEG-based alcohol detector for drivers.
author Vassbotn, Molly
Nordstrøm-Hauge, Iselin J.
Soler, Andres
Molinas, Marta
author_facet Vassbotn, Molly
Nordstrøm-Hauge, Iselin J.
Soler, Andres
Molinas, Marta
topicspa_str_mv detección de alcohol
Prueba de Flanker
EEGNet
Red Neuronal Convolucional (CNN)
Electroencefalografía
Electroencefalografía (EEG)
topic detección de alcohol
Prueba de Flanker
EEGNet
Red Neuronal Convolucional (CNN)
Electroencefalografía
Electroencefalografía (EEG)
alcohol detection
Flanker Test
EEGNet
Electroencephalography (EEG)
Convolutional Neural Network (CNN)
topic_facet detección de alcohol
Prueba de Flanker
EEGNet
Red Neuronal Convolucional (CNN)
Electroencefalografía
Electroencefalografía (EEG)
alcohol detection
Flanker Test
EEGNet
Electroencephalography (EEG)
Convolutional Neural Network (CNN)
citationvolume 17
citationissue 2
citationedition Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal International Journal of Psychological Research
source https://revistas.usb.edu.co/index.php/IJPR/article/view/7434
language Inglés
format Article
rights http://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Bavkar, S., Iyer, B., & Deosarkar, S. (2021). Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm. Biocybernetics and Biomedical Engineering, 41(1), 83–96. https://doi.org/10.1016/j.bbe.2020.11.001 Bye, E. K. (2018). Alkoholbruk i den voksne befolkningen. Norwegian Institute of Public Health, Webpublication, 9. Celaya-Padilla, J. M., Romero-González, J. S., Galvan-Tejada, C. E., Galvan-Tejada, J. I., Luna-Garc\’\ia, H., Arceo-Olague, J. G., Gamboa-Rosales, N. K., Sifuentes-Gallardo, C., Martinez-Torteya, A., la Rosa, J. I., & Gamboa-Rosales, H. (2021). In-vehicle alcohol detection using low-cost sensors and genetic algorithms to aid in the drinking and driving detection. Sensors, 21(22), 7752. https://doi.org/10.3390/s21227752 Cohen, H. L., Porjesz, B., & Begleiter, H. (1993). Ethanol-induced alterations in electroencephalographic activity in adult males. Neuropsychopharmacology, 8(4), 365–370. https://doi.org/10.1038/npp.1993.36 Ehlers, C. L., Wall, T. L., & Schuckit, M. A. (1989). EEG spectral characteristics following ethanol administration in young men. Electroencephalography and Clinical Neurophysiology, 73(3), 179–187. https://doi.org/10.1016/0013-4694(89)90118-1 Ek, Z., Akg, A., & Bozkurt, M. R. (2013). The classification of EEG signals recorded in drunk and non-drunk people. International Journal of Computer Applications, 68(10). https://doi.org/10.5120/11619-7018 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267 Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2020). Classification of alcoholic EEG signals using a deep learning method. IEEE Sensors Journal, 21(3), 3552–3560. Hu, L., & Zhang, Z. (2019). EEG signal processing and feature extraction. EEG Signal Processing and Feature Extraction, 1–437. https://doi.org/10.1007/978-981-13-9113-2/COVER Jones, A. W. (2008). Biochemical and physiological research on the disposition and fate of ethanol in the body. In Medicolegal Aspects of Alcohol (5th Edition, pp. 47–128), Lawyers and Judges Publishing Company. Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5), 56013. https://doi.org/10.1088/1741-2552/aace8c Mukhtar, H., Qaisar, S. M., & Zaguia, A. (2021). Deep convolutional neural network regularization for alcoholism detection using EEG signals. Sensors, 21(16), 5456. https://doi.org/10.3390/s21165456 Murata, K., Fujita, E., Kojima, S., Maeda, S., Ogura, Y., Kamei, T., Tsuji, T., Kaneko, S., Yoshizumi, M., & Suzuki, N. (2010). Noninvasive biological sensor system for detection of drunk driving. IEEE Transactions on Information Technology in Biomedicine, 15(1), 19–25. https://doi.org/10.1109/titb.2010.2091646 National Institute on Alcohol Abuse, & US, A. (2023). Alcohol Use in the United States: Age Groups and Demographic Characteristics. NIH. http://surl.li/plfnjr Nordstrøm-Hauge, I. J. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.36378.11205 Nordstrøm-Hauge, I. J., & Vassbotn, M. (2023). EEG-Based Alcohol Detection System with AI Techniques: Towards the Design of BCI Systems for Driver Monitoring. Norwegian University of Science and Technology. Singhal, V., Mathew, J., Behera, R. K., & others. (2021). Detection of alcoholism using EEG signals and a CNN-LSTM-ATTN network. Computers in Biology and Medicine, 138, 104940. https://doi.org/10.1016/j.compbiomed.2021.104940 Steele, C. M., & Josephs, R. A. (1990). Alcohol myopia: Its prized and dangerous effects. American Psychologist, 45(8), 921. Stenberg, G., Sano, M., Rosén, I., & Ingvar, D. H. (1994). EEG topography of acute ethanol effects in resting and activated normals. Journal of Studies on Alcohol, 55(6), 645–656. https://doi.org/10.15288/jsa.1994.55.645 Vassbotn, M. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.15013.37600 Vijayan, V., & Sherly, E. (2019). Real time detection system of driver drowsiness based on representation learning using deep neural networks. Journal of Intelligent & Fuzzy Systems, 36(3), 1977–1985. https://doi.org/10.3233/JIFS-169909 Vissers, L., Houwing, S., & Wegman, F. (2018). Alcohol-related road casualties in official crash statistics. International Transport Forum. https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf World Health Organization. (n.d.). Legal blood alcohol concentration (BAC) limits. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-09-03
date_accessioned 2024-09-03T00:00:00Z
date_available 2024-09-03T00:00:00Z
url https://revistas.usb.edu.co/index.php/IJPR/article/view/7434
url_doi https://doi.org/10.21500/20112084.7434
issn 2011-2084
eissn 2011-7922
doi 10.21500/20112084.7434
citationstartpage 91
citationendpage 99
url2_str_mv https://revistas.usb.edu.co/index.php/IJPR/article/download/7434/5500
_version_ 1832800479221907456
spelling Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
detección de alcohol
Hoy en día, el consumo de alcohol frecuentemente acompaña la socialización como una actividad rutinaria en varios grupos de la sociedad. El 84.0% de las personas mayores de 18 años en los Estados Unidos han consumido alcohol en algún momento de sus vidas (National Institute on Alcohol Abuse & US, 2023). De manera similar, el 81.7% de los noruegos en el grupo de edad de 16 a 79 años consumieron alcohol en 2021 (Bye, 2018). Conducir después del consumo de alcohol es un problema mundial que causa un gran número de muertes y lesiones cada año. Este trabajo propone los primeros pasos hacia el desarrollo de un detector de alcohol basado en electroencefalografía (EEG), concebido con la idea de prevenir que las personas conduzcan bajo los efectos del alcohol. Esto incluye el diseño de un protocolo experimental para la recopilación de datos EEG, durante el cual los participantes realizaron la prueba de Flanker y se midió su concentración de alcohol en la sangre (BAC). El conjunto de datos resultante consta de dos sesiones por participante, tanto mientras estaban afectados como no afectados por el alcohol. El análisis estadístico de la prueba de Flanker indicó que los participantes estaban afectados por el alcohol y, por lo tanto, se esperaba que sus señales EEG también lo estuvieran. Las señales EEG recopiladas se utilizaron como entrada para modelos intra-participantes e inter-participantes, ambos basados en la arquitectura EEGNet. El modelo intra-participantes obtuvo una precisión media de clasificación del 90.7%, y el modelo inter-participantes una precisión media del 62.9%. Los resultados sugieren que el alcohol puede detectarse con alta precisión al desarrollar modelos individuales y con una precisión superior al azar al usar un modelo general. Por lo tanto, el trabajo presentado aquí podría servir como los primeros pasos hacia el desarrollo de un detector de alcohol basado en EEG para conductores. 
Artículo de revista
Prueba de Flanker
EEGNet
Red Neuronal Convolucional (CNN)
Electroencefalografía
Sistema de Detección de Alcohol Basado en EEG para la Monitoreo de Conductores
Electroencefalografía (EEG)
Universidad San Buenaventura - USB (Colombia)
International Journal of Psychological Research
https://revistas.usb.edu.co/index.php/IJPR/article/view/7434
Inglés
http://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Bavkar, S., Iyer, B., & Deosarkar, S. (2021). Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm. Biocybernetics and Biomedical Engineering, 41(1), 83–96. https://doi.org/10.1016/j.bbe.2020.11.001 Bye, E. K. (2018). Alkoholbruk i den voksne befolkningen. Norwegian Institute of Public Health, Webpublication, 9. Celaya-Padilla, J. M., Romero-González, J. S., Galvan-Tejada, C. E., Galvan-Tejada, J. I., Luna-Garc\’\ia, H., Arceo-Olague, J. G., Gamboa-Rosales, N. K., Sifuentes-Gallardo, C., Martinez-Torteya, A., la Rosa, J. I., & Gamboa-Rosales, H. (2021). In-vehicle alcohol detection using low-cost sensors and genetic algorithms to aid in the drinking and driving detection. Sensors, 21(22), 7752. https://doi.org/10.3390/s21227752 Cohen, H. L., Porjesz, B., & Begleiter, H. (1993). Ethanol-induced alterations in electroencephalographic activity in adult males. Neuropsychopharmacology, 8(4), 365–370. https://doi.org/10.1038/npp.1993.36 Ehlers, C. L., Wall, T. L., & Schuckit, M. A. (1989). EEG spectral characteristics following ethanol administration in young men. Electroencephalography and Clinical Neurophysiology, 73(3), 179–187. https://doi.org/10.1016/0013-4694(89)90118-1 Ek, Z., Akg, A., & Bozkurt, M. R. (2013). The classification of EEG signals recorded in drunk and non-drunk people. International Journal of Computer Applications, 68(10). https://doi.org/10.5120/11619-7018 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267 Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2020). Classification of alcoholic EEG signals using a deep learning method. IEEE Sensors Journal, 21(3), 3552–3560. Hu, L., & Zhang, Z. (2019). EEG signal processing and feature extraction. EEG Signal Processing and Feature Extraction, 1–437. https://doi.org/10.1007/978-981-13-9113-2/COVER Jones, A. W. (2008). Biochemical and physiological research on the disposition and fate of ethanol in the body. In Medicolegal Aspects of Alcohol (5th Edition, pp. 47–128), Lawyers and Judges Publishing Company. Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5), 56013. https://doi.org/10.1088/1741-2552/aace8c Mukhtar, H., Qaisar, S. M., & Zaguia, A. (2021). Deep convolutional neural network regularization for alcoholism detection using EEG signals. Sensors, 21(16), 5456. https://doi.org/10.3390/s21165456 Murata, K., Fujita, E., Kojima, S., Maeda, S., Ogura, Y., Kamei, T., Tsuji, T., Kaneko, S., Yoshizumi, M., & Suzuki, N. (2010). Noninvasive biological sensor system for detection of drunk driving. IEEE Transactions on Information Technology in Biomedicine, 15(1), 19–25. https://doi.org/10.1109/titb.2010.2091646 National Institute on Alcohol Abuse, & US, A. (2023). Alcohol Use in the United States: Age Groups and Demographic Characteristics. NIH. http://surl.li/plfnjr Nordstrøm-Hauge, I. J. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.36378.11205 Nordstrøm-Hauge, I. J., & Vassbotn, M. (2023). EEG-Based Alcohol Detection System with AI Techniques: Towards the Design of BCI Systems for Driver Monitoring. Norwegian University of Science and Technology. Singhal, V., Mathew, J., Behera, R. K., & others. (2021). Detection of alcoholism using EEG signals and a CNN-LSTM-ATTN network. Computers in Biology and Medicine, 138, 104940. https://doi.org/10.1016/j.compbiomed.2021.104940 Steele, C. M., & Josephs, R. A. (1990). Alcohol myopia: Its prized and dangerous effects. American Psychologist, 45(8), 921. Stenberg, G., Sano, M., Rosén, I., & Ingvar, D. H. (1994). EEG topography of acute ethanol effects in resting and activated normals. Journal of Studies on Alcohol, 55(6), 645–656. https://doi.org/10.15288/jsa.1994.55.645 Vassbotn, M. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.15013.37600 Vijayan, V., & Sherly, E. (2019). Real time detection system of driver drowsiness based on representation learning using deep neural networks. Journal of Intelligent & Fuzzy Systems, 36(3), 1977–1985. https://doi.org/10.3233/JIFS-169909 Vissers, L., Houwing, S., & Wegman, F. (2018). Alcohol-related road casualties in official crash statistics. International Transport Forum. https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf World Health Organization. (n.d.). Legal blood alcohol concentration (BAC) limits. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
application/pdf
Publication
alcohol detection
Journal article
Núm. 2 , Año 2024 : Interdisciplinary Approaches for Human Cognition: Expanding Perspectives on the Mind
Today, alcohol drinking frequently accompanies socialising as a routine activity in various groups of society. 84.0% of individuals aged 18 and above in the United States have drunk alcohol at some point in their life (National Institute on Alcohol Abuse & US, 2023). Similarly, 81.7% of Norwegians in the age group 16 to 79 have drunk alcohol in 2021 (Bye, 2018). Driving after the consumption of alcohol is a worldwide problem, causing a large number of deaths and injuries a year. This work proposes the first steps towards developing an electroencephalography (EEG)-based alcohol detector conceived with the idea to prevent people from driving under the influence of alcohol. This includes the design of an experimental protocol for EEG data collection, during which participants performed the Flanker task, and their blood alcohol concentration (BAC) was measured. The resulting data set consists of two sessions per participant, both while they are affected and not-affected by alcohol. Statistical analysis of the Flanker task indicated that participants were affected by alcohol and, therefore, their EEG signals were expected to be affected as well. The collected EEG signals were used as input for intra-subject and inter-subject models, both based on the EEGNet architecture. The intra-subject model obtained a mean classification accuracy of 90.7% and the inter-subject model a mean classification accuracy of 62.9%. The result suggest that alcohol can be detected with high accuracy when developing individual models and above the change accuracy when using a general model. Therefore, the work presented here could be used as the first steps towards the development of an EEG-based alcohol detector for drivers.
Vassbotn, Molly
2
Nordstrøm-Hauge, Iselin J.
Soler, Andres
17
Flanker Test
EEGNet
Molinas, Marta
Electroencephalography (EEG)
Convolutional Neural Network (CNN)
2024-09-03
91
https://revistas.usb.edu.co/index.php/IJPR/article/download/7434/5500
99
2024-09-03T00:00:00Z
https://doi.org/10.21500/20112084.7434
10.21500/20112084.7434
2011-7922
2011-2084
2024-09-03T00:00:00Z