Titulo:
Dissociation of Procedural and Working Memory in Pigeons (Columba livia)
.
Guardado en:
2011-2084
2011-7922
9
2016-07-01
40
51
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
International Journal of Psychological Research - 2016
id |
metarevistapublica_unisanbuenaventura_internationaljournalofpsychologicalresearch_21-article-2326 |
---|---|
record_format |
ojs |
spelling |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) Artículo de revista Dissociation of Procedural and Working Memory in Pigeons (Columba livia) Herbranson, W.T., Xi, P.M. & Trinh, Y.T. (2014). Spatial variability in serial response learning and performance by pigeons (Columba livia). International Journal of Comparative Psychology, 27(2), 280-294. Herbranson, W.T. & Stanton,G.L. (2011). Flexible Serial Response Learning by Pigeons (Columba livia) and Humans (Homo sapiens). Journal of Comparative Psychology, 125(3), 328-340. Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130, 658–680. Locurto, C., Gagne, M., & Levesque, K. (2009). Implicit chaining in cotton-top tamarins (Saguinus oedipus). Journal of Experimental Psychology: Animal Behavior Processes, 35, 116–122. Jones, C., McGhee, R., & Wilkie, D. (1990). Hamsters (Mesocricetus auratus) use spatial memory in foraging for food to hoard. Behavioral Processes, 21, 179–187. doi:10.1016/0376-6357(90)90023-9 Kay, C., Harper, D. N., & Hunt, M. (2010). Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiology of learning and memory, 93(2), 151-156. Procyk, E., Dominey, P. F., Amiez, C., & Joseph, J.-P. (2000). The effects of sequence structure and reward schedule on serial reaction time learning in the monkey. Cognitive Brain Research, 9, 239–248. Macpherson, K., & Roberts, W. A. (2010). Spatial memory in dogs (Canis familiaris) on a radial maze. Journal of comparative psychology, 124(1), 47. Mennenga, S.E., Baxter, L.C., Grunfeld, I.S., Brewer, G.A., Aiken, L.S., Engler-Chiurazzi, E.B., Camp, B.W., Acosta, J.I., Braden, B.B., Schaefer, K.R. and Gerson, J.E. (2014). Navigating to new frontiers in behavioral neuroscience: traditional neuropsychological tests predict human performance on a rodent-inspired radial-arm maze. Frontiers in Behavioral Neuroscience, 8. Froehlich, A. L., Herbranson, W.T., Loper, J.D., Wood, D.M. & Shimp, C.P. (2004). Anticipating by pigeons depends on local statistical information in a serial response time task. Journal of Experimental Psychology: General, 133(1), 31-45. Murdock, B. (1962). Serial Position Effect of Free Recall. Journal of Experimental Psychology, 64(2), 482–488. doi:10.1037/h0045106. Nissen, M.J. & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1-32. Olton, D.S. & Samuelson, R.J. (1976). Remembrances of places past: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes. 2, 97-116. Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. The Journal of neuroscience, 9(5), 1465-1472. Poling, A., Nickel, M. & Alling, K. (1990). Free birds aren’t fat: Weight gain in captured wild pigeons maintained under laboratory conditions. Journal of the Experimental Analysis of Behavior, 53, 423-424. Laughlin, K., & Mendl, M. (2000). Pigs shift too: Foraging strategies and spatial memory in the domestic pig. Animal Behavior, 60, 403–410. doi:10.1006/anbe.2000.1468 Roberts, W. A., & Van Veldhuizen, N. (1985). Spatial memory in pigeons on the radial maze. Journal of Experimental Psychology: Animal Behavior Processes, 11(2), 241. Roberts, W.A., Strang, C., & Macpherson, K. (2015). Memory systems interaction in the pigeon: Working and reference memory. Journal of Experimental Psychology: Animal Learning and Cognition, 41(2), 152-162. info:eu-repo/semantics/article Text http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 Zentall, T. R. (2013), Comparative cognition: An approach whose time has come. Journal of the Experimental Analysis of Behavior, 100: 257–268. doi: 10.1002/jeab.35 Roitblat, H. L., Tham, W., & Golub, L. (1982). Performance of Betta splendens in a radial arm maze. Animal Learning & Behavior, 10(1), 108-114. Wilkinson, A., Chan, H. M., & Hall, G. (2007). Spatial learning and memory in the tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 121(4), 412. Wilkie, D. M., & Slobin, P. (1983). Gerbils in space: Performance in the 17-arm radial maze. Journal of the experimental Analysis of Behavior, 40(3), 301-312. Willingham, D.B., & Goedert-Eschmann, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531-534. White, K.G. (1985). Characteristics of forgetting functions in delayed matching to sample. Journal of the Experimental Analysis of Behavior, 44, 15-34. Tulving, E. (1985). How many memory systems are there?. American psychologist, 40(4), 385. Shimp, C.P. & Moffitt, M. (1974). Short-term memory in the pigeon: Stimulus-response associations. Journal of the Experimental Analysis of Behavior, 22(3), 507-512. Diekamp, B., Kalt, T. & Gunturkun, O. (2002). Working memory neurons in pigeons. Journal of Neuroscience, 22, 1-5. DeCoteau, W. E., & Kesner, R. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behavioral neuroscience, 114(6), 1096. Curran, T. & Keele, S.W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory & Cognition, 19, 189-202. International Journal of Psychological Research A new method was developed to concurrently investigate procedural memory and working memory in pigeons. Pigeons performed a sequence of keypecks across 3 response keys in a serial response task, with periodic choice probes for the location of a recently produced response. Procedural memory was operationally defined as decreasing response times to predictable cues in the sequence. Working memory was reflected by accurate responses to the choice probes. Changing the sequence of required keypecks to a random sequence interfered with procedural memory in the form of slowed response times, but did not prevent pigeons from effectively using working memory to remember specific cue locations. Conversely, changing exposure duration of to a cue location influenced working memory but had no effect on procedural memory. Double dissociations such as this have supported the multiple systems approach to the study of memory in cognitive psychology and neuroscience, and they encourage a similar approach in comparative psychology. Herbranson, Walter T. pigeon response time serial learning procedural memory working memory 9 2 Núm. 2 , Año 2016 : Special Issue of Comparative Psychology Journal article application/pdf Colwill, R., Raymond, M., Ferreira, L., & Escudero, H. (2005). Visual discrimination learning in zebrafish. Behavioral Processes, 70, 19–31. doi:10.1016/j.beproc.2005.03.001 Universidad San Buenaventura - USB (Colombia) Publication https://creativecommons.org/licenses/by-nc-sa/4.0/ Christie,M.A., & Dalrymple-Alford, J. C. (2004).A new rat model of the human serial reaction time task: Contrasting effects of caudate and hippocampal lesions. Journal of Neuroscience, 24, 1034–1039. Brown, P. L., & Jenkins, H. J. (1968). Autoshaping of the pigeon’s keypeck. Journal of the Experimental Analysis of Behavior, 11, 1–8. Bolhuis, J. J., & Van Kampen, H. S. (1988). Serial position curves in spatial memory of rats: Primacy and recency effects. The Quarterly Journal of Experimental Psychology, 40(2), 135-149. Baddeley, A .D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press. Atkinson, R. C., & Shiffrin, R. M. (1968). Chapter: Human memory: A proposed system and its control processes. In Spence, K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic Press. pp. 89–195. International Journal of Psychological Research - 2016 https://revistas.usb.edu.co/index.php/IJPR/article/view/2326 Inglés https://doi.org/10.21500/20112084.2326 2011-7922 https://revistas.usb.edu.co/index.php/IJPR/article/download/2326/2378 40 51 2016-07-01T00:00:00Z 2016-07-01T00:00:00Z 2016-07-01 10.21500/20112084.2326 2011-2084 |
institution |
UNIVERSIDAD DE SAN BUENAVENTURA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png |
country_str |
Colombia |
collection |
International Journal of Psychological Research |
title |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) |
spellingShingle |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) Herbranson, Walter T. pigeon response time serial learning procedural memory working memory |
title_short |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) |
title_full |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) |
title_fullStr |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) |
title_full_unstemmed |
Dissociation of Procedural and Working Memory in Pigeons (Columba livia) |
title_sort |
dissociation of procedural and working memory in pigeons (columba livia) |
description_eng |
A new method was developed to concurrently investigate procedural memory and working memory in pigeons. Pigeons performed a sequence of keypecks across 3 response keys in a serial response task, with periodic choice probes for the location of a recently produced response. Procedural memory was operationally defined as decreasing response times to predictable cues in the sequence. Working memory was reflected by accurate responses to the choice probes. Changing the sequence of required keypecks to a random sequence interfered with procedural memory in the form of slowed response times, but did not prevent pigeons from effectively using working memory to remember specific cue locations. Conversely, changing exposure duration of to a cue location influenced working memory but had no effect on procedural memory. Double dissociations such as this have supported the multiple systems approach to the study of memory in cognitive psychology and neuroscience, and they encourage a similar approach in comparative psychology.
|
author |
Herbranson, Walter T. |
author_facet |
Herbranson, Walter T. |
topic |
pigeon response time serial learning procedural memory working memory |
topic_facet |
pigeon response time serial learning procedural memory working memory |
citationvolume |
9 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2016 : Special Issue of Comparative Psychology |
publisher |
Universidad San Buenaventura - USB (Colombia) |
ispartofjournal |
International Journal of Psychological Research |
source |
https://revistas.usb.edu.co/index.php/IJPR/article/view/2326 |
language |
Inglés |
format |
Article |
rights |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ International Journal of Psychological Research - 2016 |
references_eng |
Herbranson, W.T., Xi, P.M. & Trinh, Y.T. (2014). Spatial variability in serial response learning and performance by pigeons (Columba livia). International Journal of Comparative Psychology, 27(2), 280-294. Herbranson, W.T. & Stanton,G.L. (2011). Flexible Serial Response Learning by Pigeons (Columba livia) and Humans (Homo sapiens). Journal of Comparative Psychology, 125(3), 328-340. Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130, 658–680. Locurto, C., Gagne, M., & Levesque, K. (2009). Implicit chaining in cotton-top tamarins (Saguinus oedipus). Journal of Experimental Psychology: Animal Behavior Processes, 35, 116–122. Jones, C., McGhee, R., & Wilkie, D. (1990). Hamsters (Mesocricetus auratus) use spatial memory in foraging for food to hoard. Behavioral Processes, 21, 179–187. doi:10.1016/0376-6357(90)90023-9 Kay, C., Harper, D. N., & Hunt, M. (2010). Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiology of learning and memory, 93(2), 151-156. Procyk, E., Dominey, P. F., Amiez, C., & Joseph, J.-P. (2000). The effects of sequence structure and reward schedule on serial reaction time learning in the monkey. Cognitive Brain Research, 9, 239–248. Macpherson, K., & Roberts, W. A. (2010). Spatial memory in dogs (Canis familiaris) on a radial maze. Journal of comparative psychology, 124(1), 47. Mennenga, S.E., Baxter, L.C., Grunfeld, I.S., Brewer, G.A., Aiken, L.S., Engler-Chiurazzi, E.B., Camp, B.W., Acosta, J.I., Braden, B.B., Schaefer, K.R. and Gerson, J.E. (2014). Navigating to new frontiers in behavioral neuroscience: traditional neuropsychological tests predict human performance on a rodent-inspired radial-arm maze. Frontiers in Behavioral Neuroscience, 8. Froehlich, A. L., Herbranson, W.T., Loper, J.D., Wood, D.M. & Shimp, C.P. (2004). Anticipating by pigeons depends on local statistical information in a serial response time task. Journal of Experimental Psychology: General, 133(1), 31-45. Murdock, B. (1962). Serial Position Effect of Free Recall. Journal of Experimental Psychology, 64(2), 482–488. doi:10.1037/h0045106. Nissen, M.J. & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1-32. Olton, D.S. & Samuelson, R.J. (1976). Remembrances of places past: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes. 2, 97-116. Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. The Journal of neuroscience, 9(5), 1465-1472. Poling, A., Nickel, M. & Alling, K. (1990). Free birds aren’t fat: Weight gain in captured wild pigeons maintained under laboratory conditions. Journal of the Experimental Analysis of Behavior, 53, 423-424. Laughlin, K., & Mendl, M. (2000). Pigs shift too: Foraging strategies and spatial memory in the domestic pig. Animal Behavior, 60, 403–410. doi:10.1006/anbe.2000.1468 Roberts, W. A., & Van Veldhuizen, N. (1985). Spatial memory in pigeons on the radial maze. Journal of Experimental Psychology: Animal Behavior Processes, 11(2), 241. Roberts, W.A., Strang, C., & Macpherson, K. (2015). Memory systems interaction in the pigeon: Working and reference memory. Journal of Experimental Psychology: Animal Learning and Cognition, 41(2), 152-162. Zentall, T. R. (2013), Comparative cognition: An approach whose time has come. Journal of the Experimental Analysis of Behavior, 100: 257–268. doi: 10.1002/jeab.35 Roitblat, H. L., Tham, W., & Golub, L. (1982). Performance of Betta splendens in a radial arm maze. Animal Learning & Behavior, 10(1), 108-114. Wilkinson, A., Chan, H. M., & Hall, G. (2007). Spatial learning and memory in the tortoise (Geochelone carbonaria). Journal of Comparative Psychology, 121(4), 412. Wilkie, D. M., & Slobin, P. (1983). Gerbils in space: Performance in the 17-arm radial maze. Journal of the experimental Analysis of Behavior, 40(3), 301-312. Willingham, D.B., & Goedert-Eschmann, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531-534. White, K.G. (1985). Characteristics of forgetting functions in delayed matching to sample. Journal of the Experimental Analysis of Behavior, 44, 15-34. Tulving, E. (1985). How many memory systems are there?. American psychologist, 40(4), 385. Shimp, C.P. & Moffitt, M. (1974). Short-term memory in the pigeon: Stimulus-response associations. Journal of the Experimental Analysis of Behavior, 22(3), 507-512. Diekamp, B., Kalt, T. & Gunturkun, O. (2002). Working memory neurons in pigeons. Journal of Neuroscience, 22, 1-5. DeCoteau, W. E., & Kesner, R. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behavioral neuroscience, 114(6), 1096. Curran, T. & Keele, S.W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory & Cognition, 19, 189-202. Colwill, R., Raymond, M., Ferreira, L., & Escudero, H. (2005). Visual discrimination learning in zebrafish. Behavioral Processes, 70, 19–31. doi:10.1016/j.beproc.2005.03.001 Christie,M.A., & Dalrymple-Alford, J. C. (2004).A new rat model of the human serial reaction time task: Contrasting effects of caudate and hippocampal lesions. Journal of Neuroscience, 24, 1034–1039. Brown, P. L., & Jenkins, H. J. (1968). Autoshaping of the pigeon’s keypeck. Journal of the Experimental Analysis of Behavior, 11, 1–8. Bolhuis, J. J., & Van Kampen, H. S. (1988). Serial position curves in spatial memory of rats: Primacy and recency effects. The Quarterly Journal of Experimental Psychology, 40(2), 135-149. Baddeley, A .D., & Hitch, G. (1974). Working memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press. Atkinson, R. C., & Shiffrin, R. M. (1968). Chapter: Human memory: A proposed system and its control processes. In Spence, K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic Press. pp. 89–195. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2016-07-01 |
date_accessioned |
2016-07-01T00:00:00Z |
date_available |
2016-07-01T00:00:00Z |
url |
https://revistas.usb.edu.co/index.php/IJPR/article/view/2326 |
url_doi |
https://doi.org/10.21500/20112084.2326 |
issn |
2011-2084 |
eissn |
2011-7922 |
doi |
10.21500/20112084.2326 |
citationstartpage |
40 |
citationendpage |
51 |
url2_str_mv |
https://revistas.usb.edu.co/index.php/IJPR/article/download/2326/2378 |
_version_ |
1823199565884424192 |