Titulo:

Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
.

Sumario:

Este artículo describe un procedimiento realizado para simular una estrategia de control de temperatura en un reactor pirolítico, que contiene residuos plásticos urbanos de poliestireno. La obtención del modelo dinámico del proceso se hizo aplicando procesamiento de los datos suministrados, en las curvas de respuesta (termogramas), de los análisis termogravimétricos de muestras de poliestireno (EPS). El modelo de degradación térmica obtenido en forma de ecuación diferencial no lineal y un modelo dinámico de transferencia térmica en un reactor convencional, fueron los insumos para elaborar una simulación, a partir de la cual se examinó un controlador PID, en tiempo discreto. Durante la simulación se evaluó la potencia térmica aplicada, por u... Ver más

Guardado en:

0124-7492

18

2018-03-06

110

127

Ingenium Revista de la facultad de ingeniería - 2018

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisanbuenaventura_ingeniumrevistadelafacultaddeingenieria_62_article_3435
record_format ojs
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection Ingenium Revista de la facultad de ingeniería
title Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
spellingShingle Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
Bellón Hernández, Oscar
Tovar Quiroz, Edilberto
Muñoz Prieto, Efrén
Pirólisis de polímeros
análisis termogravimétrico
modelo dinámico
control de temperatura
Polymer pyrolysis
thermogravimetric analysis
dynamic model
temperature control.
title_short Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
title_full Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
title_fullStr Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
title_full_unstemmed Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
title_sort simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - simulation of a temperature control system in a pyrolysis reactor of municipal plastic waste
title_eng Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
description Este artículo describe un procedimiento realizado para simular una estrategia de control de temperatura en un reactor pirolítico, que contiene residuos plásticos urbanos de poliestireno. La obtención del modelo dinámico del proceso se hizo aplicando procesamiento de los datos suministrados, en las curvas de respuesta (termogramas), de los análisis termogravimétricos de muestras de poliestireno (EPS). El modelo de degradación térmica obtenido en forma de ecuación diferencial no lineal y un modelo dinámico de transferencia térmica en un reactor convencional, fueron los insumos para elaborar una simulación, a partir de la cual se examinó un controlador PID, en tiempo discreto. Durante la simulación se evaluó la potencia térmica aplicada, por unidad de masa de material degradado, para separar compuestos orgánicos volátiles y líquidos, que se empezaban a diferenciar en ciertos valores específicos de temperatura. Dichos productos que pueden sustituir combustibles fósiles y otros, son materias primas de alto valor en procesos industriales.
author Bellón Hernández, Oscar
Tovar Quiroz, Edilberto
Muñoz Prieto, Efrén
author_facet Bellón Hernández, Oscar
Tovar Quiroz, Edilberto
Muñoz Prieto, Efrén
topicspa_str_mv Pirólisis de polímeros
análisis termogravimétrico
modelo dinámico
control de temperatura
Polymer pyrolysis
thermogravimetric analysis
dynamic model
temperature control.
topic Pirólisis de polímeros
análisis termogravimétrico
modelo dinámico
control de temperatura
Polymer pyrolysis
thermogravimetric analysis
dynamic model
temperature control.
topic_facet Pirólisis de polímeros
análisis termogravimétrico
modelo dinámico
control de temperatura
Polymer pyrolysis
thermogravimetric analysis
dynamic model
temperature control.
citationvolume 18
citationissue 36
citationedition Núm. 36 , Año 2017 : INGENIUM
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal Ingenium
source https://revistas.usb.edu.co/index.php/Ingenium/article/view/3435
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Ingenium Revista de la facultad de ingeniería - 2018
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references C. M. López y J. R. L. Canepa, «Poliestireno expandido (EPS) y su problemática ambiental», Kuxulkab’, vol. 19, núm. 36, sep. 2014. [2] N. Hamidi, F. Tebyanian, R. Massoudi, y L. Whitesides, «Pyrolysis of Household Plastic Wastes», Br. J. Appl. Sci. Technol., vol. 3, núm. 3, p. n/a, 2013. [3] Adnan, J. Shah, y M. R. Jan, «Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts» J. Taiwan Inst. Chem. Eng.2014. [4] C. Vasile, M. A. Brebu, T. Karayildirim, J. Yanik, y H. Darie, «Feedstock recycling from plastic and thermoset fractions of used computers (I): pyrolysis», J. Mater. Cycles Waste Manag., vol. 8, núm. 2, pp. 99–108, 2006. [5] C. Martínez, C. Aarón, C. Campos, y L. D. Rosario, «Biodegradación de poliestireno utilizando microorganismos presentes en el humus de lombriz durante los meses, Octubre – Diciembre 2016», Univ. Lambayeque - UDL, may 2017. [6] T. Maharana, Y. S. Negi, y B. Mohanty, “Review Article: Recycling of Polystyrene”, Polym.-Plast. Technol. Eng., vol. 46, núm. 7, pp. 729–736, jul. 2007. [7] C. Areeprasert et al., “Municipal Plastic Waste Composition Study at Transfer Station of Bangkok and Possibility of its Energy Recovery by Pyrolysis”, Energy Procedia, vol. 107, pp. 222–226, feb. 2017. [8] N. Patni et al., “Alternate Strategies for Conversion of Waste Plastic to Fuels, Alternate Strategies for Conversion of Waste Plastic to Fuels”, Int. Sch. Res. Not. Int. Sch. Res. Not., vol. 2013, 2013, p. e902053, may 2013. [9] P. Shaohong et al., “Controlled Pyrolysis of Waste TV Housing Plastic Added Brominated Flame Retardants”, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011, pp. 2023–2026. 2011 [10] J. Scheirs y W. Kaminsky, Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. J. Wiley & Sons, 2006. [11] K. Naka y S. Konishi, “Design and fabrication of pyrolyzed polymer micro and nano structures”, en 2005 IEEE International Symposium on Micro-NanoMechatronics and Human Science , pp. 103–108. 2005 [12] A. Undri et al., “Carbon from microwave assisted pyrolysis of waste tires”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 396–404, nov. 2013. [13] M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, y A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products”, J. Anal. Appl. Pyrolysis.2015. [14] A. G. Gal’chenko, N. A. Khalturinskii, y A. A. Berlin, “High temperature pyrolysis of polymers”, Polym. Sci. USSR, vol. 22, núm. 1, pp. 15–22, 1980. [15] N. Miskolczi y R. Nagy, “Hydrocarbons obtained by waste plastic pyrolysis: Comparative analysis of decomposition described by different kinetic models”, Fuel Process. Technol., vol. 104, pp. 96–104, dic. 2012. [16] A. Niksiar, M. Sohrabi, y A. Rahimi, “A correction on a published kinetic model for tyre pyrolysis in a conical spouted bed reactor”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 707–709, nov. 2013. [17] C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Combust. Process. Lab., dic. 2007. [18] J. Li, J. Gong, y S. I. Stoliarov, “Development of pyrolysis models for charring polymers”, Polym. Degrad. Stab., vol. 115, pp. 138–152, may 2015. [19] T.-A. Ngo, J. Kim, y S.-S. Kim, “Fast pyrolysis of palm kernel cake using a fluidized bed reactor: Design of experiment and characteristics of bio-oil”, J. Ind. Eng. Chem., vol. 19, núm. 1, pp. 137–143, ene. 2013. [20] A. Y. Snegirev, V. A. Talalov, V. V. Stepanov, y J. N. Harris, “Formal kinetics of polystyrene pyrolysis in non-oxidizing atmosphere”, Thermochim. Acta, vol. 548, pp. 17–26, nov. 2012. [21] G. Boyer, “Fully coupled CFD simulation of the pyrolysis of non-charring polymers: A predictive approach”, Fire Saf. J.2017 [22] B. P. Bustamante, «La degradación de los plásticos», Rev. Univ. EAFIT, vol. 30, núm. 94, pp. 67–86, ago. 2012. [23] O. Bellón Hernández y E. Muñoz Prieto, «Procedimiento para Obtención de un Modelo Dinámico del Proceso de Pirólisis de Polímeros a Partir de los Datos de una Termogravimetría», en Congreso Internacional de Ingeniería Mecatrónica y Automática CIIMA 2016, Bucaramanga, Colombia, 2016.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-03-06
date_accessioned 2018-03-06T00:00:00Z
date_available 2018-03-06T00:00:00Z
url https://revistas.usb.edu.co/index.php/Ingenium/article/view/3435
url_doi https://doi.org/10.21500/01247492.3435
issn 0124-7492
doi 10.21500/01247492.3435
citationstartpage 110
citationendpage 127
url2_str_mv https://revistas.usb.edu.co/index.php/Ingenium/article/download/3435/2828
_version_ 1811200854358753280
spelling Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste
Este artículo describe un procedimiento realizado para simular una estrategia de control de temperatura en un reactor pirolítico, que contiene residuos plásticos urbanos de poliestireno. La obtención del modelo dinámico del proceso se hizo aplicando procesamiento de los datos suministrados, en las curvas de respuesta (termogramas), de los análisis termogravimétricos de muestras de poliestireno (EPS). El modelo de degradación térmica obtenido en forma de ecuación diferencial no lineal y un modelo dinámico de transferencia térmica en un reactor convencional, fueron los insumos para elaborar una simulación, a partir de la cual se examinó un controlador PID, en tiempo discreto. Durante la simulación se evaluó la potencia térmica aplicada, por unidad de masa de material degradado, para separar compuestos orgánicos volátiles y líquidos, que se empezaban a diferenciar en ciertos valores específicos de temperatura. Dichos productos que pueden sustituir combustibles fósiles y otros, son materias primas de alto valor en procesos industriales.
Bellón Hernández, Oscar
Tovar Quiroz, Edilberto
Muñoz Prieto, Efrén
Pirólisis de polímeros
análisis termogravimétrico
modelo dinámico
control de temperatura
Polymer pyrolysis
thermogravimetric analysis
dynamic model
temperature control.
18
36
Núm. 36 , Año 2017 : INGENIUM
Artículo de revista
Journal article
2018-03-06T00:00:00Z
2018-03-06T00:00:00Z
2018-03-06
application/pdf
Universidad San Buenaventura - USB (Colombia)
Ingenium
0124-7492
https://revistas.usb.edu.co/index.php/Ingenium/article/view/3435
10.21500/01247492.3435
https://doi.org/10.21500/01247492.3435
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Ingenium Revista de la facultad de ingeniería - 2018
110
127
C. M. López y J. R. L. Canepa, «Poliestireno expandido (EPS) y su problemática ambiental», Kuxulkab’, vol. 19, núm. 36, sep. 2014. [2] N. Hamidi, F. Tebyanian, R. Massoudi, y L. Whitesides, «Pyrolysis of Household Plastic Wastes», Br. J. Appl. Sci. Technol., vol. 3, núm. 3, p. n/a, 2013. [3] Adnan, J. Shah, y M. R. Jan, «Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts» J. Taiwan Inst. Chem. Eng.2014. [4] C. Vasile, M. A. Brebu, T. Karayildirim, J. Yanik, y H. Darie, «Feedstock recycling from plastic and thermoset fractions of used computers (I): pyrolysis», J. Mater. Cycles Waste Manag., vol. 8, núm. 2, pp. 99–108, 2006. [5] C. Martínez, C. Aarón, C. Campos, y L. D. Rosario, «Biodegradación de poliestireno utilizando microorganismos presentes en el humus de lombriz durante los meses, Octubre – Diciembre 2016», Univ. Lambayeque - UDL, may 2017. [6] T. Maharana, Y. S. Negi, y B. Mohanty, “Review Article: Recycling of Polystyrene”, Polym.-Plast. Technol. Eng., vol. 46, núm. 7, pp. 729–736, jul. 2007. [7] C. Areeprasert et al., “Municipal Plastic Waste Composition Study at Transfer Station of Bangkok and Possibility of its Energy Recovery by Pyrolysis”, Energy Procedia, vol. 107, pp. 222–226, feb. 2017. [8] N. Patni et al., “Alternate Strategies for Conversion of Waste Plastic to Fuels, Alternate Strategies for Conversion of Waste Plastic to Fuels”, Int. Sch. Res. Not. Int. Sch. Res. Not., vol. 2013, 2013, p. e902053, may 2013. [9] P. Shaohong et al., “Controlled Pyrolysis of Waste TV Housing Plastic Added Brominated Flame Retardants”, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011, pp. 2023–2026. 2011 [10] J. Scheirs y W. Kaminsky, Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. J. Wiley & Sons, 2006. [11] K. Naka y S. Konishi, “Design and fabrication of pyrolyzed polymer micro and nano structures”, en 2005 IEEE International Symposium on Micro-NanoMechatronics and Human Science , pp. 103–108. 2005 [12] A. Undri et al., “Carbon from microwave assisted pyrolysis of waste tires”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 396–404, nov. 2013. [13] M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, y A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products”, J. Anal. Appl. Pyrolysis.2015. [14] A. G. Gal’chenko, N. A. Khalturinskii, y A. A. Berlin, “High temperature pyrolysis of polymers”, Polym. Sci. USSR, vol. 22, núm. 1, pp. 15–22, 1980. [15] N. Miskolczi y R. Nagy, “Hydrocarbons obtained by waste plastic pyrolysis: Comparative analysis of decomposition described by different kinetic models”, Fuel Process. Technol., vol. 104, pp. 96–104, dic. 2012. [16] A. Niksiar, M. Sohrabi, y A. Rahimi, “A correction on a published kinetic model for tyre pyrolysis in a conical spouted bed reactor”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 707–709, nov. 2013. [17] C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Combust. Process. Lab., dic. 2007. [18] J. Li, J. Gong, y S. I. Stoliarov, “Development of pyrolysis models for charring polymers”, Polym. Degrad. Stab., vol. 115, pp. 138–152, may 2015. [19] T.-A. Ngo, J. Kim, y S.-S. Kim, “Fast pyrolysis of palm kernel cake using a fluidized bed reactor: Design of experiment and characteristics of bio-oil”, J. Ind. Eng. Chem., vol. 19, núm. 1, pp. 137–143, ene. 2013. [20] A. Y. Snegirev, V. A. Talalov, V. V. Stepanov, y J. N. Harris, “Formal kinetics of polystyrene pyrolysis in non-oxidizing atmosphere”, Thermochim. Acta, vol. 548, pp. 17–26, nov. 2012. [21] G. Boyer, “Fully coupled CFD simulation of the pyrolysis of non-charring polymers: A predictive approach”, Fire Saf. J.2017 [22] B. P. Bustamante, «La degradación de los plásticos», Rev. Univ. EAFIT, vol. 30, núm. 94, pp. 67–86, ago. 2012. [23] O. Bellón Hernández y E. Muñoz Prieto, «Procedimiento para Obtención de un Modelo Dinámico del Proceso de Pirólisis de Polímeros a Partir de los Datos de una Termogravimetría», en Congreso Internacional de Ingeniería Mecatrónica y Automática CIIMA 2016, Bucaramanga, Colombia, 2016.
https://revistas.usb.edu.co/index.php/Ingenium/article/download/3435/2828
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication