Titulo:

Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
.

Sumario:

En este documento se realiza la revisión sobre diferentes modelos de enjambres relacionados con el comportamiento de vorticidad, es decir, movimientos circulares alrededor de un punto llamado vórtice. El comportamiento de vorticidad es característico de los fluidos, motivo por el cual en primer lugar se realiza un acercamiento desde este punto de vista. Por otra parte, sobre los diferentes modelos biológicos se destaca el realizado para el zooplancton Daphnia ya que este ser vivo emplea movimientos circulares para buscar alimento y evadir depredadores. Adicional a los modelos del zooplancton Daphnia se revisan otros enfoques para tener una visión más amplia de  los elementos involucrados para la formación de vórtices en modelos de partícula... Ver más

Guardado en:

0124-7492

17

2016-11-24

162

182

Ingenium Revista de la facultad de ingeniería - 2016

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisanbuenaventura_ingeniumrevistadelafacultaddeingenieria_62_article_2745
record_format ojs
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection Ingenium Revista de la facultad de ingeniería
title Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
spellingShingle Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
Espitia C., Helbert Eduardo
Sofrony E., Jorge Iván
Enjambres
modelos
optimización
robótica
vórtice.
title_short Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
title_full Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
title_fullStr Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
title_full_unstemmed Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
title_sort revisión sobre modelos de enjambres de partículas con características de vorticidad-review about models of swarms particles with vorticity features
title_eng Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
description En este documento se realiza la revisión sobre diferentes modelos de enjambres relacionados con el comportamiento de vorticidad, es decir, movimientos circulares alrededor de un punto llamado vórtice. El comportamiento de vorticidad es característico de los fluidos, motivo por el cual en primer lugar se realiza un acercamiento desde este punto de vista. Por otra parte, sobre los diferentes modelos biológicos se destaca el realizado para el zooplancton Daphnia ya que este ser vivo emplea movimientos circulares para buscar alimento y evadir depredadores. Adicional a los modelos del zooplancton Daphnia se revisan otros enfoques para tener una visión más amplia de  los elementos involucrados para la formación de vórtices en modelos de partículas. Finalmente, se observan posibles aplicaciones de estos modelos para la navegación de robots y optimización.
author Espitia C., Helbert Eduardo
Sofrony E., Jorge Iván
author_facet Espitia C., Helbert Eduardo
Sofrony E., Jorge Iván
topicspa_str_mv Enjambres
modelos
optimización
robótica
vórtice.
topic Enjambres
modelos
optimización
robótica
vórtice.
topic_facet Enjambres
modelos
optimización
robótica
vórtice.
citationvolume 17
citationissue 34
citationedition Núm. 34 , Año 2016 : INGENIUM
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal Ingenium
source https://revistas.usb.edu.co/index.php/Ingenium/article/view/2745
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Ingenium Revista de la facultad de ingeniería - 2016
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references P. Romanczuk, L. Schimansky-Geier, «Mean-field theory of collective motion due to velocity alignment», Ecological Complexity, Vol. 10, 2012, pp. 83-92. [2] D. Strömbom, «Collective motion from local attraction», Journal of Theoretical Biology, Vol. 283, 2011, pp. 145-151. [3] T. Kolokolnikov, J. Carrillo, A. Bertozzi, R. Fetecau, M. Lewis, «Emergent behaviour in multi-particle systems with non-local interactions», Physica D, Vol. 260, 2013, pp. 1-4. [4] H. Berg, «Random walks in biology», Ed. Expanded. USA: Princeton University Press, 1993. [5] D. Sedighizadeh, E. Masehian, «Particle swarm optimization methods, taxonomy and applications», International Journal of Computer Theory and Engineering, Vol. 1, N.° 5, 2009, pp. 486-502. [6] Y. Çengel, J. Cimbala, «Mecánica de fluidos, fundamentos y aplicaciones», 1rd ed. México: McGraw-Hill, 2007. [7] C. Jiménez, «Simulación numérica directa en turbulencia», El Hombre y la Máquina, N.° 22, 2004, pp. 26-33. [8] O. López, «Modelamiento computacional de la calle de vórtices de karman por dinámica de vorticidad», Mecánica Computacional, Vol. 21, 2002, pp. 274-292. [9] M. Kalland, «A Navier-Stokes solver for single and two phase flow», Faculty of Mathematics and Natural Sciences University of Oslo, 2008. [10] S. Armfield, «Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids», Computers & Fluids, Vol. 20, N.° 1, 1991, pp. 1-17. [11] C. Duarte, J. Niño, «Introducción a la mecánica de fluidos», 1rd ed. Bogotá: Universidad Nacional de Colombia, 2004. [12] J. Chen, K. Yang, Y. Yuan, «SPH-based visual simulation of fluid», IEEE Proceedings of 4th International Conference on Computer Science & Education, 2009, pp. 690-693. [13] M. Desbrun, M. Gascuel, «Smoothed particles: A new paradigm for animating highly deformable bodies», Proceedings of EG Workshop on Animation and Simulation, 1996, pp. 61-76. [14] A. Grahn, «Interactive simulation of contrast fluid using smoothed particle hydrodynamics», UMEA University Sweden, 2008. [15] J. Vázquez, «Fundamentos matemáticos de la mecánica de fluidos», 1rd ed. Madrid: Departamento de Matemáticas - Universidad Autónoma de Madrid, 2003. [16] A. Ordemann, «Vortex-swarming of the zooplankton Daphnia», The Biological Physicist, Vol. 2, N.° 3, 2002, pp. 5-10. [17] R. Mach, F. Schweitzer, «Modeling vortex swarming in Daphnia», Bulletin of Mathematical Biology, Vol. 69, N.° 2, 2007, pp. 539-562. [18] T. Vicsek, A. Czirók, B. Eshel, I. Cohen, O. Shochet, «Novel type of phase transition in a system of self-driven particles», Physical Review Letters, Vol. 75, N.° 6, 1995, pp. 1226-1229. [19] H. Levine, W. Rappel, I. Cohen, «Self-organization in systems of self-propelled particles», Physical Review E, Vol. 63, N.° 1, 2000, pp. 017101. [20] F. Schweitzer, «Active Brownian particles with internal energy depot», Trafic and Granular Flow ’99, 2000, pp. 161-172. [21] W. Ebeling, F. Schweitzer, B. Tilch, «Active Brownian particles with energy depots modeling animal mobility», Biosystems, Vol. 49, N.° 1, 1999, pp. 17-29. [22] F. Schweitzer, W. Ebeling, B. Tilch, «Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics», Physical Review E, Vol. 64, N.° 2, 2001, pp. 021110. [23] U. Erdmann, W. Ebeling, V. Anishchenko, «Excitation of rotational modes in two-dimensional systems of driven Brownian particles», Physical Review E, Vol. 65, N.° 6, 2002, pp. 061106. [24] A. Ordemann, G. Balazsi, F. Moss, «Pattern formation and stochastic motion of the zooplankton Daphnia in a light field», Physica A, Vol. 325, 2003, pp. 260-266. [25] R. Mach, F. Schweitzer, «Multi-agent model of biological swarming», Lecture Notes in Computer Science, Vol. 2801, 2003, pp. 810-820. [26] E. Ben-Jacob, I. Cohen, A. Czirdk, T. Vicsek, D. Gutnick, «Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development», Physica A: Statistical Mechanics and its Applications, Vol. 238, N.° 1-4, 1997, pp. 181-197. [27] E. Ben-Jacob, «Learning from bacteria about natural information processing», Annals of the New York Academy of Sciences, Vol. 1178, 2009, pp. 78-90. [28] E. Steager, C. Kim, M. Kim, «Dynamics of pattern formation in bacterial swarms», Physics of Fluids, Vol. 20, N.° 7. 2008, pp. 073601 1-5. [29] T. Umeda, K. Inouve, «Possible role of contact following in the generation of coherent motion of dictyostelium cells», Journal of Theoretical Biology, Vol. 219, N.° 3, 2002, pp. 301-308. [30] A. Mikhailov, V. Calenbuhr, «From cells to societies: models of complex coherent action», 1rd ed. Berlin: Springer-Verlag, 2002. [31] T. Vicsek, A. Zafeiris, «Collective motion», Physics Reports, Vol. 517, 2012, pp. 71-140. [32] Gabriel Baglietto, Ezequiel V. Albano, Julián Candia, «Gregarious versus individualistic behavior in Vicsek swarms and the onset of first-order phase transitions», Physica A, Vol. 392, 2013, pp. 3240-3247. [33] W. Ebeling, U. Erdmann, «Nonequilibrium statistical mechanics of swarms of driven particles», Complexity, Vol. 8, N.° 4, 2003, pp. 23-30. [34] J. Liu, C. Chang, «Novel orthogonal momentum-type particle swarm optimization applied to solve large parameter optimization problems», Journal of Artificial EVolution and Applications, 2008, pp. 1-9. [35] W. Ebeling, F. Schweitzer, «Self-organization, active Brownian dynamics, and biological applications», Nova Acta Leopoldina NF, Vol. 88, N.° 332, 2003, pp. 169-188. [36] R. Mach, F. Schweitzer, «Modeling vortex swarming in Daphnia», Bulletin of Mathematical Biology, Vol. 69, Num. 2, 2007. [37] P. Chavanis, «Brownian particles with long and short range interactions», Physica A, Vol. 390, 2011, pp. 1546-1574. [38] D. Wu, S. Zhu, «Effects of diversity and coupling on transport properties of globally coupled active Brownian particles», Physica A, Vol. 392, 2013, pp. 1280-1286. [39] W. Ebeling, «Active Brownian motion of pairs and swarms of particles», Acta Physica Polonica B, Vol. 38, N.° 5, 2007, pp. 1657. [40] [ U. Erdmann, W. Ebeling, «Collective motion of brownian particles with hydrodynamic interactions», Fluctuation and Noise Letters, Vol. 3, N.° 2, 2003, pp. 145-154. [41] D. Helbing, P. Molnár, F. Schweitzer, «Computer simulations of pedestrian dynamics and trail formation», Evolution of Natural Structures, 1994, pp. 229-234. [42] W. Ebeling, L. Schimansky, «Swarm dynamics attractors and bifurcations of active Brownian motion», The European Physical Journal Special Topics, Vol. 157, N.° 1, 2008, pp. 17-31. [43] W. Guo, C. Wang, L. Du, D. Mei, «Effects of time delay on transport processes in an active Brownian particle», Physica A, Vol. 392, 2013, pp. 4210-4215. [44] O. Chepizhko, V. Kulinskii, «The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid», Physica A, Vol. 415, 2014, pp. 493-502. [45] R. Lukeman, «Modeling collective motion in animal groups: From mathematical analysis to field data», The University of British Columbia, 2009. [46] R. Lukeman, Y. Li, L. Edelstein, «A conceptual model for milling formations in biological aggregates», Bulletin of Mathematical Biology, Vol. 71, N.° 2, 2009, pp. 352-382 [47] S. You, D. Kwon, Y. Park, S. Kim, M. Chung, C. Kookim, «Collective behaviors of two-component swarms», Journal of Theoretical Biology, Vol. 261, N.° 3, 2009, pp. 494-500. [48] I. Couzin, J. Krause, N. Franks, S. Levin, «Effective leadership and decision making in animal groups on themove», Letters to Nature, Vol. 433, 2005, pp. 513-516. [49] [49] T. Zohdi, «Mechanistic modeling of swarms», Computer Methods in Applied Mechanics and Engineering, Vol. 198, N.° 21-26, 2009, pp. 2039-2051. [50] [50] C. McInnes, «Vortex formation in swarms of interacting particles», Physical Review E, Vol. 75, 2007, pp. 032904. [51] [51] F. Vecil, P. Lafitte, J. Linares, «A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations», Physica D, Vol. 260, 2013, pp. 127-144. [52] J. A. Carrillo, S. Martin, V. Panferov, «A new interaction potential for swarming models», Physica D, Vol. 260, pp. 2013, pp. 112-126. [53] D. Grossman, I. Aranson, E. Jacob, «Emergence of agent swarm migration and vortex formation through inelastic collisions», New Journal of Physics, Vol. 10, 2008, pp. 1-11. [54] J. Cohen, «Models and simulation of collective motion biomimetic robots and bacteria», USA: Massachusetts Institute of Technology, 2007. [55] W. Alt, «Nonlinear hyperbolic systems of generalized Navier-Stokes type for interactive motion in biology», Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp. 431-461. [56] J. Carrillo, M. Fornasier, G. Toscani, F. Vecil, «Particle, kinetic, and hydrodynamic models of swarming», Boston: Birkhäuser, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 2009, pp. 297-336. [57] N. Mecholsky, «A continuum model for flocking: Obstacle avoidance, equilibrium, and stability», University of Maryland, 2010. [58] G. Venayagamoorthy, L. Grant, S. Doctor, «Collective robotic search using hybrid techniques: Fuzzy logic and swarm intelligence inspired by nature», Engineering Applications of Artificial Intelligence, Vol. 22, N.° 3, 2009, pp. 431-441. [59] M. Mabrouk, C. McInnes, «Wall following to escape local minima for swarms of agents using internal states and emergent behavior», Proceedings of the World Congress on Engineering, 2008, pp. 24-31. [60] K. Stantz, S. Cameron, R. Robinett, M. Trahan, J. Wagner, J. «Dynamical behavior of multi-robot systems using lattice gas automat», Proceedings of SPIE’s 13th Annual International Symposium on Aerospace/Defense Sensing, Simulation, and Controls, 1999, pp. 1-13. [61] S. Cameron, G. Loubriel, R. Robinett III, K. Stantz, M. Trahan, J. Wagner, «Adaptive remote-sensing techniques implementing swarms of mobile agent», Proceedings of the SPIE The International Society for Optical Engineering, 1999, pp. 160-177. [62] B. Ren, H. Pei, Z. Sun, S. Ge, T. Lee, «Decentralized cooperative control for swarm agents with high-order dynamics», Proceedings of the IEEE International Conference on Automation and Logistics, 2009, pp. 90-95. [63] S. Hou, C. Cheah, J. Slotine, «Dynamic region following formation control for a swarm of robots», IEEE International Conference on Robotics and Automation, 2009, pp. 1929-1934. [64] H. Min, Z. Wang, «Design and Analysis of Group Escape Behavior for Distributed Autonomous Mobile Robots», IEEE International Conference on Robotics and Automation, 2011, pp. 6128-6135. [65] G. Rigatos, «Multi-robot motion planning using swarm intelligence», International Journal of Advanced Robotic Systems, Vol. 5, N.° 2, 2008, pp. 139-144. [66] J. Hereford, «A distributed particle swarm optimization algorithm for swarm robotic applications», IEEE Congress on EVolutionary Computation, 2006, pp. 1678-1685. [67] Y. Meng, O. Kazeem, «A hybrid ACO/PSO control algorithm for distributed swarm robots», Proceedings of IEEE Swarm Intelligence Symposium SIS, 2007, pp. 273-280. [68] A. Gasparri, A. Priolo, G. Ulivi, «A Swarm Aggregation Algorithm for Multi-Robot Systems based on Local Interaction», IEEE International Conference on Control Applications (CCA), 2012, pp. 1497-1502. [69] S. Chen, X. Ding, X. Chen, «Formation Control of Robot Swarm Based on Community Division and Multilevel Topology Design via Pining», The 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1631-1636. [70] A. Chatterjee, F. Matsuno, «Bacterial foraging techniques for solving EKF-based SLAM problems», International Control Conference ICC, 2006, pp. 1-6. [71] M. Pac, A. Erkmen, I. Erkmen, «Control of robotic swarm behaviors based on smoothed particle hydrodynamics», Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 4194-4200. [72] M. Shimizu, A. Ishiguro, T. Kawakatsu, Y. Masubuchi, M. Doi, «Adaptive swarming by exploiting hydrodynamic interaction based on stokesian dynamics method», IEEE SICE Annual Conference (Volume: 2), 2003, pp. 1546-1551. [73] D. Spears, D. Thayer, D. Zarzhitsky, «Foundations of swarm robotic chemical plume tracing from a fluid dynamics perspective», International Journal of Intelligent Computing and Cybernetics, Vol. 2, N.° 4, 2009, pp. 745-785. [74] D. Spears, W. Kerr, W. Spears, «Fluid-like swarms with predictable macroscopic behavior», Lecture Notes in Computer Science, Vol. 4324, 2009, pp. 175-190. [75] B. Siva, «A survey of bio inspired optimization algorithms», International Journal of Soft Computing and Engineering (IJSCE), Vol. 2, N.° 2, 2012, pp. 137-151. [76] R. Eberhart, J. Kennedy, «Particle swarm optimization», IEEE International Conference on Neural Networks, 1995, pp. 1942-1948. [77] M. Dorigo, T Stützle, «The ant colony optimization metaheuristic: algorithms, applications, and advances», Handbook of Metaheuristics, Vol. 57, Chapter 9, 2002, pp. 250-285. [78] X. Yang, «A new metaheuristic bat-inspired algorithm», Studies in Computational Intelligence, Vol. 284, 2010, pp. 65-74. [79] X. Yang, «Firefly algorithm, lévy flights and global optimization», Research and Development in Intelligent Systems XXVI, 2009, pp. 209-218. [80] R. Akbari, A. Mohammadi, K. Ziarati, «A powerful bee swarm optimization algorithm», IEEE 13th International Multitopic Conference INMIC, 2009, pp. 1-6. [81] K. Passino, «Biomimicry of bacterial foraging for distributed optimization and control», IEEE Control Systems Magazine, Vol. 22, N.° 3, 2002, pp. 52-67. [82] S. Menser, J. Hereford, «A new optimization technique», Proceedings of the IEEE SoutheastCon, 2006, pp. 250-255. [83] J. Fieldsend, S. Singh, «A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence», Workshop on Computational Intelligence UKCI, 2002, pp. 37-44. [84] A. Cervantes, «Clasificación mediante enjambre de prototipos», Madrid, España: Universidad Carlos III de Madrid, Departamento de Informática, 2009. [85] K. Deb, N. Padhye, «Development of efficient Particle Swarm Optimizers by using concepts from eVolutionary algorithms», Proceedings of the 12th annual conference on Genetic and eVolutionary computation, GECCO ’10. Portland, Oregon: ACM, 2010, pp. 55-62. [86] S. He, Q. Wu, J. Wen, J. Saunders, P. Patton, «A particle swarm optimizer with passive congregation», Biosystems, Vol. 78, N.° 1-3, 2004, pp. 135-147. [87] J. Vlachogiannis, K. Lee, «A comparative study on particle swarm optimization for optimal steady-state performance of power systems», IEEE Transactions on Power Systems, Vol. 21, N.° 4, 2006, pp. 1718-1728. [88] L. Dos Santos, «A quantum particle swarm optimizer with chaotic mutation operador», Chaos Solitons y Fractals, Vol. 37, N.° 5, 2006, pp. 1409-1418. [89] [89] M. Chen, T. Wang, J. Feng, Y. Tang, L. Zhao, «A Hybrid Particle Swarm Optimization Improved by Mutative Scale Chaos Algorithm», Fourth International Conference on Computational and Information Sciences, 2012, pp. 321-324. [90]K. Tatsumi, T. Ibuki, T. Tanino, «Chaotic particle swarm optimization with an intensive search around the personal and global bests», IEEE International Conference on Systems, Man, and Cybernetics, 2012, pp. 1333-1338. [91] K. Tatsumi, T. Ibuki, S. Nakashima, T. Tanino, «Improved chaotic particle swarm optimization with a perturbation-based chaotic system for a virtual quartic function», IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 208-213. [92] J. Li, Y. Cheng, K. Chen, «Chaotic Particle Swarm Optimization Algorithm Based on Adaptive Inertia Weight», the 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1310-1315. [93] P. Acharjee, S. Goswami, «Chaotic particle swarm optimization based robust load flow», Electrical Power and Energy Systems, Vol. 32, N.° 2, 2010, pp. 141-146. [94] L. Li, H. Peng, X. Wang, «An optimization method inspired by chaotic ant behavior», International Journal of Bifurcation and Chaos, Vol. 16, N.° 08, 2006, pp. 2351-2364. [95] L. Yu-Ying, W. Qiao-Yan, L. Li-Xiang, «Modified chaotic ant swarm to function optimization», The Journal of China Universities of Posts and Telecommunications, Vol. 16, N.° 1, 2009, pp. 58-63. [96] J. Cai, X. Ma, L. Li, Y. Yang, H. Peng, X. Wang, «Chaotic ant swarm optimization to economic dispatch», Electric Power Systems Research, Vol. 77, N.° 10, 2007, pp. 1373-1380. [97] L. Dos Santos, V. Cocco, «Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects», Energy Conversion and Management, Vol. 49, N.° 11, 2008, pp. 3080-3085. [98] K. Tazuke, N. Muramoto, N. Matsui, T. Isokawa, «An Application of Quantum-Inspired Particle Swarm Optimization to Function Optimization Problems», the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, pp. 1-6. [99] X. Liu, X. Liu, «Quantum Particle Swarm Optimization Based on Bloch Coordinates of Qubits», Ninth International Conference on Natural Computation (ICNC), 2013, pp. 554-558. [100] H. Yu, X. Tiantian, H. Pu, «An Improved Quantum Particle Swarm Optimization and Its Application in System Identification», the 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1132-1134. [101] L. Jun-Hui, L. Na, «Parallel Adaptive Immune Quantum-Behaved Particle Swarm Optimization Algorithm (PAIQPSO)», Second International Conference on Intelligent System Design and Engineering Application, 2012, pp. 435-438. [102] L. Xu, L. Zhang, J. Dang, «Quantum-behaved particle swarm optimization with Cauchy disturbance for power economic dispatch», 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, pp. 268-271. [103] S. Jiang, S. Yang, «An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Linear Interpolation», IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 769-775.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2016-11-24
date_accessioned 2016-11-24T00:00:00Z
date_available 2016-11-24T00:00:00Z
url https://revistas.usb.edu.co/index.php/Ingenium/article/view/2745
url_doi https://doi.org/10.21500/01247492.2745
issn 0124-7492
doi 10.21500/01247492.2745
citationstartpage 162
citationendpage 182
url2_str_mv https://revistas.usb.edu.co/index.php/Ingenium/article/download/2745/2405
_version_ 1811200852359118848
spelling Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
Revisión sobre modelos de enjambres de partículas con características de vorticidad-Review About Models of Swarms Particles with Vorticity Features
En este documento se realiza la revisión sobre diferentes modelos de enjambres relacionados con el comportamiento de vorticidad, es decir, movimientos circulares alrededor de un punto llamado vórtice. El comportamiento de vorticidad es característico de los fluidos, motivo por el cual en primer lugar se realiza un acercamiento desde este punto de vista. Por otra parte, sobre los diferentes modelos biológicos se destaca el realizado para el zooplancton Daphnia ya que este ser vivo emplea movimientos circulares para buscar alimento y evadir depredadores. Adicional a los modelos del zooplancton Daphnia se revisan otros enfoques para tener una visión más amplia de  los elementos involucrados para la formación de vórtices en modelos de partículas. Finalmente, se observan posibles aplicaciones de estos modelos para la navegación de robots y optimización.
Espitia C., Helbert Eduardo
Sofrony E., Jorge Iván
Enjambres
modelos
optimización
robótica
vórtice.
17
34
Núm. 34 , Año 2016 : INGENIUM
Artículo de revista
Journal article
2016-11-24T00:00:00Z
2016-11-24T00:00:00Z
2016-11-24
application/pdf
Universidad San Buenaventura - USB (Colombia)
Ingenium
0124-7492
https://revistas.usb.edu.co/index.php/Ingenium/article/view/2745
10.21500/01247492.2745
https://doi.org/10.21500/01247492.2745
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Ingenium Revista de la facultad de ingeniería - 2016
162
182
P. Romanczuk, L. Schimansky-Geier, «Mean-field theory of collective motion due to velocity alignment», Ecological Complexity, Vol. 10, 2012, pp. 83-92. [2] D. Strömbom, «Collective motion from local attraction», Journal of Theoretical Biology, Vol. 283, 2011, pp. 145-151. [3] T. Kolokolnikov, J. Carrillo, A. Bertozzi, R. Fetecau, M. Lewis, «Emergent behaviour in multi-particle systems with non-local interactions», Physica D, Vol. 260, 2013, pp. 1-4. [4] H. Berg, «Random walks in biology», Ed. Expanded. USA: Princeton University Press, 1993. [5] D. Sedighizadeh, E. Masehian, «Particle swarm optimization methods, taxonomy and applications», International Journal of Computer Theory and Engineering, Vol. 1, N.° 5, 2009, pp. 486-502. [6] Y. Çengel, J. Cimbala, «Mecánica de fluidos, fundamentos y aplicaciones», 1rd ed. México: McGraw-Hill, 2007. [7] C. Jiménez, «Simulación numérica directa en turbulencia», El Hombre y la Máquina, N.° 22, 2004, pp. 26-33. [8] O. López, «Modelamiento computacional de la calle de vórtices de karman por dinámica de vorticidad», Mecánica Computacional, Vol. 21, 2002, pp. 274-292. [9] M. Kalland, «A Navier-Stokes solver for single and two phase flow», Faculty of Mathematics and Natural Sciences University of Oslo, 2008. [10] S. Armfield, «Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids», Computers & Fluids, Vol. 20, N.° 1, 1991, pp. 1-17. [11] C. Duarte, J. Niño, «Introducción a la mecánica de fluidos», 1rd ed. Bogotá: Universidad Nacional de Colombia, 2004. [12] J. Chen, K. Yang, Y. Yuan, «SPH-based visual simulation of fluid», IEEE Proceedings of 4th International Conference on Computer Science & Education, 2009, pp. 690-693. [13] M. Desbrun, M. Gascuel, «Smoothed particles: A new paradigm for animating highly deformable bodies», Proceedings of EG Workshop on Animation and Simulation, 1996, pp. 61-76. [14] A. Grahn, «Interactive simulation of contrast fluid using smoothed particle hydrodynamics», UMEA University Sweden, 2008. [15] J. Vázquez, «Fundamentos matemáticos de la mecánica de fluidos», 1rd ed. Madrid: Departamento de Matemáticas - Universidad Autónoma de Madrid, 2003. [16] A. Ordemann, «Vortex-swarming of the zooplankton Daphnia», The Biological Physicist, Vol. 2, N.° 3, 2002, pp. 5-10. [17] R. Mach, F. Schweitzer, «Modeling vortex swarming in Daphnia», Bulletin of Mathematical Biology, Vol. 69, N.° 2, 2007, pp. 539-562. [18] T. Vicsek, A. Czirók, B. Eshel, I. Cohen, O. Shochet, «Novel type of phase transition in a system of self-driven particles», Physical Review Letters, Vol. 75, N.° 6, 1995, pp. 1226-1229. [19] H. Levine, W. Rappel, I. Cohen, «Self-organization in systems of self-propelled particles», Physical Review E, Vol. 63, N.° 1, 2000, pp. 017101. [20] F. Schweitzer, «Active Brownian particles with internal energy depot», Trafic and Granular Flow ’99, 2000, pp. 161-172. [21] W. Ebeling, F. Schweitzer, B. Tilch, «Active Brownian particles with energy depots modeling animal mobility», Biosystems, Vol. 49, N.° 1, 1999, pp. 17-29. [22] F. Schweitzer, W. Ebeling, B. Tilch, «Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics», Physical Review E, Vol. 64, N.° 2, 2001, pp. 021110. [23] U. Erdmann, W. Ebeling, V. Anishchenko, «Excitation of rotational modes in two-dimensional systems of driven Brownian particles», Physical Review E, Vol. 65, N.° 6, 2002, pp. 061106. [24] A. Ordemann, G. Balazsi, F. Moss, «Pattern formation and stochastic motion of the zooplankton Daphnia in a light field», Physica A, Vol. 325, 2003, pp. 260-266. [25] R. Mach, F. Schweitzer, «Multi-agent model of biological swarming», Lecture Notes in Computer Science, Vol. 2801, 2003, pp. 810-820. [26] E. Ben-Jacob, I. Cohen, A. Czirdk, T. Vicsek, D. Gutnick, «Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development», Physica A: Statistical Mechanics and its Applications, Vol. 238, N.° 1-4, 1997, pp. 181-197. [27] E. Ben-Jacob, «Learning from bacteria about natural information processing», Annals of the New York Academy of Sciences, Vol. 1178, 2009, pp. 78-90. [28] E. Steager, C. Kim, M. Kim, «Dynamics of pattern formation in bacterial swarms», Physics of Fluids, Vol. 20, N.° 7. 2008, pp. 073601 1-5. [29] T. Umeda, K. Inouve, «Possible role of contact following in the generation of coherent motion of dictyostelium cells», Journal of Theoretical Biology, Vol. 219, N.° 3, 2002, pp. 301-308. [30] A. Mikhailov, V. Calenbuhr, «From cells to societies: models of complex coherent action», 1rd ed. Berlin: Springer-Verlag, 2002. [31] T. Vicsek, A. Zafeiris, «Collective motion», Physics Reports, Vol. 517, 2012, pp. 71-140. [32] Gabriel Baglietto, Ezequiel V. Albano, Julián Candia, «Gregarious versus individualistic behavior in Vicsek swarms and the onset of first-order phase transitions», Physica A, Vol. 392, 2013, pp. 3240-3247. [33] W. Ebeling, U. Erdmann, «Nonequilibrium statistical mechanics of swarms of driven particles», Complexity, Vol. 8, N.° 4, 2003, pp. 23-30. [34] J. Liu, C. Chang, «Novel orthogonal momentum-type particle swarm optimization applied to solve large parameter optimization problems», Journal of Artificial EVolution and Applications, 2008, pp. 1-9. [35] W. Ebeling, F. Schweitzer, «Self-organization, active Brownian dynamics, and biological applications», Nova Acta Leopoldina NF, Vol. 88, N.° 332, 2003, pp. 169-188. [36] R. Mach, F. Schweitzer, «Modeling vortex swarming in Daphnia», Bulletin of Mathematical Biology, Vol. 69, Num. 2, 2007. [37] P. Chavanis, «Brownian particles with long and short range interactions», Physica A, Vol. 390, 2011, pp. 1546-1574. [38] D. Wu, S. Zhu, «Effects of diversity and coupling on transport properties of globally coupled active Brownian particles», Physica A, Vol. 392, 2013, pp. 1280-1286. [39] W. Ebeling, «Active Brownian motion of pairs and swarms of particles», Acta Physica Polonica B, Vol. 38, N.° 5, 2007, pp. 1657. [40] [ U. Erdmann, W. Ebeling, «Collective motion of brownian particles with hydrodynamic interactions», Fluctuation and Noise Letters, Vol. 3, N.° 2, 2003, pp. 145-154. [41] D. Helbing, P. Molnár, F. Schweitzer, «Computer simulations of pedestrian dynamics and trail formation», Evolution of Natural Structures, 1994, pp. 229-234. [42] W. Ebeling, L. Schimansky, «Swarm dynamics attractors and bifurcations of active Brownian motion», The European Physical Journal Special Topics, Vol. 157, N.° 1, 2008, pp. 17-31. [43] W. Guo, C. Wang, L. Du, D. Mei, «Effects of time delay on transport processes in an active Brownian particle», Physica A, Vol. 392, 2013, pp. 4210-4215. [44] O. Chepizhko, V. Kulinskii, «The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid», Physica A, Vol. 415, 2014, pp. 493-502. [45] R. Lukeman, «Modeling collective motion in animal groups: From mathematical analysis to field data», The University of British Columbia, 2009. [46] R. Lukeman, Y. Li, L. Edelstein, «A conceptual model for milling formations in biological aggregates», Bulletin of Mathematical Biology, Vol. 71, N.° 2, 2009, pp. 352-382 [47] S. You, D. Kwon, Y. Park, S. Kim, M. Chung, C. Kookim, «Collective behaviors of two-component swarms», Journal of Theoretical Biology, Vol. 261, N.° 3, 2009, pp. 494-500. [48] I. Couzin, J. Krause, N. Franks, S. Levin, «Effective leadership and decision making in animal groups on themove», Letters to Nature, Vol. 433, 2005, pp. 513-516. [49] [49] T. Zohdi, «Mechanistic modeling of swarms», Computer Methods in Applied Mechanics and Engineering, Vol. 198, N.° 21-26, 2009, pp. 2039-2051. [50] [50] C. McInnes, «Vortex formation in swarms of interacting particles», Physical Review E, Vol. 75, 2007, pp. 032904. [51] [51] F. Vecil, P. Lafitte, J. Linares, «A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations», Physica D, Vol. 260, 2013, pp. 127-144. [52] J. A. Carrillo, S. Martin, V. Panferov, «A new interaction potential for swarming models», Physica D, Vol. 260, pp. 2013, pp. 112-126. [53] D. Grossman, I. Aranson, E. Jacob, «Emergence of agent swarm migration and vortex formation through inelastic collisions», New Journal of Physics, Vol. 10, 2008, pp. 1-11. [54] J. Cohen, «Models and simulation of collective motion biomimetic robots and bacteria», USA: Massachusetts Institute of Technology, 2007. [55] W. Alt, «Nonlinear hyperbolic systems of generalized Navier-Stokes type for interactive motion in biology», Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp. 431-461. [56] J. Carrillo, M. Fornasier, G. Toscani, F. Vecil, «Particle, kinetic, and hydrodynamic models of swarming», Boston: Birkhäuser, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, 2009, pp. 297-336. [57] N. Mecholsky, «A continuum model for flocking: Obstacle avoidance, equilibrium, and stability», University of Maryland, 2010. [58] G. Venayagamoorthy, L. Grant, S. Doctor, «Collective robotic search using hybrid techniques: Fuzzy logic and swarm intelligence inspired by nature», Engineering Applications of Artificial Intelligence, Vol. 22, N.° 3, 2009, pp. 431-441. [59] M. Mabrouk, C. McInnes, «Wall following to escape local minima for swarms of agents using internal states and emergent behavior», Proceedings of the World Congress on Engineering, 2008, pp. 24-31. [60] K. Stantz, S. Cameron, R. Robinett, M. Trahan, J. Wagner, J. «Dynamical behavior of multi-robot systems using lattice gas automat», Proceedings of SPIE’s 13th Annual International Symposium on Aerospace/Defense Sensing, Simulation, and Controls, 1999, pp. 1-13. [61] S. Cameron, G. Loubriel, R. Robinett III, K. Stantz, M. Trahan, J. Wagner, «Adaptive remote-sensing techniques implementing swarms of mobile agent», Proceedings of the SPIE The International Society for Optical Engineering, 1999, pp. 160-177. [62] B. Ren, H. Pei, Z. Sun, S. Ge, T. Lee, «Decentralized cooperative control for swarm agents with high-order dynamics», Proceedings of the IEEE International Conference on Automation and Logistics, 2009, pp. 90-95. [63] S. Hou, C. Cheah, J. Slotine, «Dynamic region following formation control for a swarm of robots», IEEE International Conference on Robotics and Automation, 2009, pp. 1929-1934. [64] H. Min, Z. Wang, «Design and Analysis of Group Escape Behavior for Distributed Autonomous Mobile Robots», IEEE International Conference on Robotics and Automation, 2011, pp. 6128-6135. [65] G. Rigatos, «Multi-robot motion planning using swarm intelligence», International Journal of Advanced Robotic Systems, Vol. 5, N.° 2, 2008, pp. 139-144. [66] J. Hereford, «A distributed particle swarm optimization algorithm for swarm robotic applications», IEEE Congress on EVolutionary Computation, 2006, pp. 1678-1685. [67] Y. Meng, O. Kazeem, «A hybrid ACO/PSO control algorithm for distributed swarm robots», Proceedings of IEEE Swarm Intelligence Symposium SIS, 2007, pp. 273-280. [68] A. Gasparri, A. Priolo, G. Ulivi, «A Swarm Aggregation Algorithm for Multi-Robot Systems based on Local Interaction», IEEE International Conference on Control Applications (CCA), 2012, pp. 1497-1502. [69] S. Chen, X. Ding, X. Chen, «Formation Control of Robot Swarm Based on Community Division and Multilevel Topology Design via Pining», The 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1631-1636. [70] A. Chatterjee, F. Matsuno, «Bacterial foraging techniques for solving EKF-based SLAM problems», International Control Conference ICC, 2006, pp. 1-6. [71] M. Pac, A. Erkmen, I. Erkmen, «Control of robotic swarm behaviors based on smoothed particle hydrodynamics», Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 4194-4200. [72] M. Shimizu, A. Ishiguro, T. Kawakatsu, Y. Masubuchi, M. Doi, «Adaptive swarming by exploiting hydrodynamic interaction based on stokesian dynamics method», IEEE SICE Annual Conference (Volume: 2), 2003, pp. 1546-1551. [73] D. Spears, D. Thayer, D. Zarzhitsky, «Foundations of swarm robotic chemical plume tracing from a fluid dynamics perspective», International Journal of Intelligent Computing and Cybernetics, Vol. 2, N.° 4, 2009, pp. 745-785. [74] D. Spears, W. Kerr, W. Spears, «Fluid-like swarms with predictable macroscopic behavior», Lecture Notes in Computer Science, Vol. 4324, 2009, pp. 175-190. [75] B. Siva, «A survey of bio inspired optimization algorithms», International Journal of Soft Computing and Engineering (IJSCE), Vol. 2, N.° 2, 2012, pp. 137-151. [76] R. Eberhart, J. Kennedy, «Particle swarm optimization», IEEE International Conference on Neural Networks, 1995, pp. 1942-1948. [77] M. Dorigo, T Stützle, «The ant colony optimization metaheuristic: algorithms, applications, and advances», Handbook of Metaheuristics, Vol. 57, Chapter 9, 2002, pp. 250-285. [78] X. Yang, «A new metaheuristic bat-inspired algorithm», Studies in Computational Intelligence, Vol. 284, 2010, pp. 65-74. [79] X. Yang, «Firefly algorithm, lévy flights and global optimization», Research and Development in Intelligent Systems XXVI, 2009, pp. 209-218. [80] R. Akbari, A. Mohammadi, K. Ziarati, «A powerful bee swarm optimization algorithm», IEEE 13th International Multitopic Conference INMIC, 2009, pp. 1-6. [81] K. Passino, «Biomimicry of bacterial foraging for distributed optimization and control», IEEE Control Systems Magazine, Vol. 22, N.° 3, 2002, pp. 52-67. [82] S. Menser, J. Hereford, «A new optimization technique», Proceedings of the IEEE SoutheastCon, 2006, pp. 250-255. [83] J. Fieldsend, S. Singh, «A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence», Workshop on Computational Intelligence UKCI, 2002, pp. 37-44. [84] A. Cervantes, «Clasificación mediante enjambre de prototipos», Madrid, España: Universidad Carlos III de Madrid, Departamento de Informática, 2009. [85] K. Deb, N. Padhye, «Development of efficient Particle Swarm Optimizers by using concepts from eVolutionary algorithms», Proceedings of the 12th annual conference on Genetic and eVolutionary computation, GECCO ’10. Portland, Oregon: ACM, 2010, pp. 55-62. [86] S. He, Q. Wu, J. Wen, J. Saunders, P. Patton, «A particle swarm optimizer with passive congregation», Biosystems, Vol. 78, N.° 1-3, 2004, pp. 135-147. [87] J. Vlachogiannis, K. Lee, «A comparative study on particle swarm optimization for optimal steady-state performance of power systems», IEEE Transactions on Power Systems, Vol. 21, N.° 4, 2006, pp. 1718-1728. [88] L. Dos Santos, «A quantum particle swarm optimizer with chaotic mutation operador», Chaos Solitons y Fractals, Vol. 37, N.° 5, 2006, pp. 1409-1418. [89] [89] M. Chen, T. Wang, J. Feng, Y. Tang, L. Zhao, «A Hybrid Particle Swarm Optimization Improved by Mutative Scale Chaos Algorithm», Fourth International Conference on Computational and Information Sciences, 2012, pp. 321-324. [90]K. Tatsumi, T. Ibuki, T. Tanino, «Chaotic particle swarm optimization with an intensive search around the personal and global bests», IEEE International Conference on Systems, Man, and Cybernetics, 2012, pp. 1333-1338. [91] K. Tatsumi, T. Ibuki, S. Nakashima, T. Tanino, «Improved chaotic particle swarm optimization with a perturbation-based chaotic system for a virtual quartic function», IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 208-213. [92] J. Li, Y. Cheng, K. Chen, «Chaotic Particle Swarm Optimization Algorithm Based on Adaptive Inertia Weight», the 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1310-1315. [93] P. Acharjee, S. Goswami, «Chaotic particle swarm optimization based robust load flow», Electrical Power and Energy Systems, Vol. 32, N.° 2, 2010, pp. 141-146. [94] L. Li, H. Peng, X. Wang, «An optimization method inspired by chaotic ant behavior», International Journal of Bifurcation and Chaos, Vol. 16, N.° 08, 2006, pp. 2351-2364. [95] L. Yu-Ying, W. Qiao-Yan, L. Li-Xiang, «Modified chaotic ant swarm to function optimization», The Journal of China Universities of Posts and Telecommunications, Vol. 16, N.° 1, 2009, pp. 58-63. [96] J. Cai, X. Ma, L. Li, Y. Yang, H. Peng, X. Wang, «Chaotic ant swarm optimization to economic dispatch», Electric Power Systems Research, Vol. 77, N.° 10, 2007, pp. 1373-1380. [97] L. Dos Santos, V. Cocco, «Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects», Energy Conversion and Management, Vol. 49, N.° 11, 2008, pp. 3080-3085. [98] K. Tazuke, N. Muramoto, N. Matsui, T. Isokawa, «An Application of Quantum-Inspired Particle Swarm Optimization to Function Optimization Problems», the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, pp. 1-6. [99] X. Liu, X. Liu, «Quantum Particle Swarm Optimization Based on Bloch Coordinates of Qubits», Ninth International Conference on Natural Computation (ICNC), 2013, pp. 554-558. [100] H. Yu, X. Tiantian, H. Pu, «An Improved Quantum Particle Swarm Optimization and Its Application in System Identification», the 26th Chinese Control and Decision Conference (CCDC), 2014, pp. 1132-1134. [101] L. Jun-Hui, L. Na, «Parallel Adaptive Immune Quantum-Behaved Particle Swarm Optimization Algorithm (PAIQPSO)», Second International Conference on Intelligent System Design and Engineering Application, 2012, pp. 435-438. [102] L. Xu, L. Zhang, J. Dang, «Quantum-behaved particle swarm optimization with Cauchy disturbance for power economic dispatch», 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012, pp. 268-271. [103] S. Jiang, S. Yang, «An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Linear Interpolation», IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 769-775.
https://revistas.usb.edu.co/index.php/Ingenium/article/download/2745/2405
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication