Titulo:

Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
.

Sumario:

Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmu... Ver más

Guardado en:

2027-5846

13

2022-09-27

35

47

Ingenierías USBMed - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unisanbuenaventura_ingenieriasusbmed_57_article_4495
record_format ojs
spelling Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  
This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.
Alzate Arias, Fredy Alberto
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
13
2
Núm. 2 , Año 2022 : Ingenierías USBMed
Artículo de revista
Journal article
2022-09-27T00:00:00Z
2022-09-27T00:00:00Z
2022-09-27
application/pdf
Universidad San Buenaventura - USB (Colombia)
Ingenierías USBMed
2027-5846
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
10.21500/20275846.4495
https://doi.org/10.21500/20275846.4495
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Ingenierías USBMed - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
35
47
R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).
“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).
“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).
M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.
M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.
T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.
Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.
H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.
X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.
Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.
C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.
M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.
R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/
Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/
E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.
J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.
Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.
J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.
G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE SAN BUENAVENTURA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png
country_str Colombia
collection Ingenierías USBMed
title Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
spellingShingle Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
Alzate Arias, Fredy Alberto
Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
title_short Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_fullStr Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_full_unstemmed Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
title_sort prospectiva de diseño de dispositivos acusticos con metamateriales. técnicas origami
title_eng Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
description Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano  
description_eng This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.
author Alzate Arias, Fredy Alberto
author_facet Alzate Arias, Fredy Alberto
topic Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
topic_facet Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño
Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
topicspa_str_mv Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño
citationvolume 13
citationissue 2
citationedition Núm. 2 , Año 2022 : Ingenierías USBMed
publisher Universidad San Buenaventura - USB (Colombia)
ispartofjournal Ingenierías USBMed
source https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Ingenierías USBMed - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).
“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).
“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).
“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).
“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).
“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).
M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.
M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.
T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf.
Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.
H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.
X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.
Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.
C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.
M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.
E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.
R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/
Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/
E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.
P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.
T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.
J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.
Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871.
J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002.
G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757.
R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.
M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-09-27
date_accessioned 2022-09-27T00:00:00Z
date_available 2022-09-27T00:00:00Z
url https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495
url_doi https://doi.org/10.21500/20275846.4495
eissn 2027-5846
doi 10.21500/20275846.4495
citationstartpage 35
citationendpage 47
url2_str_mv https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858
_version_ 1811200775832993792