Titulo:
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess
.
Guardado en:
2027-5846
7
2016-10-04
14
20
Ingenierías USBmed - 2016
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unisanbuenaventura_ingenieriasusbmed_57_article_2618 |
---|---|
record_format |
ojs |
spelling |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes. Ruiz-Botero, Maribel Zuluaga-Bedoya, Christian Ospina-Alarcon, Manuel Garcia-Tirado, Jose Aeration Bioprocess Estimation Mass transfer coefficient Oxygen scavenger 7 2 Núm. 2 , Año 2016 : Ingenierías USBMed Artículo de revista Journal article 2016-10-04T00:00:00Z 2016-10-04T00:00:00Z 2016-10-04 application/pdf Universidad San Buenaventura - USB (Colombia) Ingenierías USBMed 2027-5846 https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618 10.21500/20275846.2618 https://doi.org/10.21500/20275846.2618 eng https://creativecommons.org/licenses/by-nc-sa/4.0/ Ingenierías USBmed - 2016 14 20 L. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000. https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE SAN BUENAVENTURA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png |
country_str |
Colombia |
collection |
Ingenierías USBMed |
title |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
spellingShingle |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess Ruiz-Botero, Maribel Zuluaga-Bedoya, Christian Ospina-Alarcon, Manuel Garcia-Tirado, Jose Aeration Bioprocess Estimation Mass transfer coefficient Oxygen scavenger |
title_short |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
title_full |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
title_fullStr |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
title_full_unstemmed |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
title_sort |
comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
title_eng |
Comparison of empirical correlations for the estimation of the oxygen transfer coefficient in an aerobic bioprocess |
description_eng |
This paper shows a comparison of three different empirical correlations found in the literature for the estimation of the oxygen transfer coefficient in an aeration pilot plant. To this end, a phenomenological-based semi-physical model (PBSM) of the aeration pilot plant is used. This evaluation tested the relationship between empirical correlations and the oxygen transfer phenomenon from the gas phase to the liquid phase was assessed. The results show that empirical correlations of the oxygen transfer coefficient found in the literature are not based on the knowledge of the physical phenomena, and hence are not suitable to generalize the transference mechanism in other similar processes.
|
author |
Ruiz-Botero, Maribel Zuluaga-Bedoya, Christian Ospina-Alarcon, Manuel Garcia-Tirado, Jose |
author_facet |
Ruiz-Botero, Maribel Zuluaga-Bedoya, Christian Ospina-Alarcon, Manuel Garcia-Tirado, Jose |
topic |
Aeration Bioprocess Estimation Mass transfer coefficient Oxygen scavenger |
topic_facet |
Aeration Bioprocess Estimation Mass transfer coefficient Oxygen scavenger |
citationvolume |
7 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2016 : Ingenierías USBMed |
publisher |
Universidad San Buenaventura - USB (Colombia) |
ispartofjournal |
Ingenierías USBMed |
source |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Ingenierías USBmed - 2016 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
L. Åmand, “Control of aeration systems in activated sludge processes – a review,” IVL Swedish Environ. Res. Institute/Department Inf. Technol. Uppsala Univ. Uppsala, Sweden, pp. 1–19, 2011. [2] A. Amicarelli, F. Di Sciascio, J. M. Toibero, and H. Alvarez, “Including dissolved oxygen dynamics into the Bt δ -Endotoxins Production process model and its application to process control,” Brazilian J. Chem. Eng., vol. 27, no. 01, pp. 41–62, 2010. [3] D. M. Atia, F. H. Fahmy, N. M. Ahmed, and H. T. Dorrah, “Design and Control Strategy of Diffused Air Aeration System,” World Acad. Sci. Eng. Technol., vol. 6, no. 3, pp. 666–670, 2012. [4] L. Åmand, G. Olsson, and B. Carlsson, “Aeration control - A review,” Water Sci. Technol., vol. 67, pp. 2374–2398, 2013. [5] H. Álvarez, R. Lamanna, P. Vega, and S. Revollar, “Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 6, no. 3, pp. 10–20, 2009. [6] M. A. Kelland, Production Chemicals for the Oil and Gas Industry, Second Edition. CRC Press, 2014. [7] P. Hui and H. Palmer, “Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration,” Biotechnol. Bioeng., vol. 37, pp. 392–396, 1991. [8] Y. Shi, X. Zhan, L. Ma, L. Li, and C. Li, “Evaluation of antioxidants using oxidation reaction rate constants,” Front. Chem. China, vol. 2, no. 2, pp. 140–145, 2007. [9] P. M. Wilkinson, B. Doldersum, P. H. M. R. Cramers, and L. L. Van Dierendonck, “The kinetics of uncatalyzed sodium sulfite oxidation,” Chem. Eng. Sci., vol. 48, no. 5, pp. 933–941, 1993. [10] R. Hermann, N. Walther, U. Maier, and J. Buchs, “Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation,” Biotechnol. Bioeng., vol. 74, no. 5, pp. 355–363, 2001. [11] E. L. Schierholz, J. S. Gulliver, S. C. Wilhelms, and H. E. Henneman, “Gas transfer from air diffusers,” Water Res., vol. 40, pp. 1018–1026, 2006. [12] K. K. Al-Ahmady, “Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems,” Al-Rafadain Eng. J., vol. 19, no. 4, pp. 43–54, 2011. [13] E. Pittoors, Y. Guo, and S. W. H. Van Hulle, “Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks,” Chem. Eng. J., vol. 243, pp. 51–59, 2014. [14] M. Moltzer, “Analysis of Robust Stability of Model Predictive Control for Biological Wastewater Treatment Plants,” Eindhoven University of Technology, Eindhoven, Holanda, 2008. [15] M. Henze, W. Gujer, T. Mino, and M. C. M. van Loosdrecht, “Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,” IWA Publ., p. 121, 2000. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2016-10-04 |
date_accessioned |
2016-10-04T00:00:00Z |
date_available |
2016-10-04T00:00:00Z |
url |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/2618 |
url_doi |
https://doi.org/10.21500/20275846.2618 |
eissn |
2027-5846 |
doi |
10.21500/20275846.2618 |
citationstartpage |
14 |
citationendpage |
20 |
url2_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/2618/2383 |
_version_ |
1811200769140981760 |