Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami
.
Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmu... Ver más
2027-5846
13
2022-09-27
35
47
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Ingenierías USBMed - 2022
id |
metarevistapublica_unisanbuenaventura_ingenieriasusbmed_57-article-4495 |
---|---|
record_format |
ojs |
spelling |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf. M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026. C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002. Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501. X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share. H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017. M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=. E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34. Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/ M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf. T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558. M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf. “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021). “OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020). E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34. R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo. “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020). R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871. Text http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=. G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757. R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871. J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002. R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871. Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/ J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf. T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558. P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011. E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34. Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/ Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/ “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019). 13 Ingenierías USBMed Universidad San Buenaventura - USB (Colombia) application/pdf Artículo de revista Núm. 2 , Año 2022 : Ingenierías USBMed 2 diseño Español plegado cinética Acústica arquitectónica metamateriales Origami Alzate Arias, Fredy Alberto Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia, el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495 Publication https://creativecommons.org/licenses/by-nc-nd/4.0 “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019). “ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019). R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000. Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. Ingenierías USBMed - 2022 Journal article Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute. https://doi.org/10.21500/20275846.4495 2022-09-27T00:00:00Z 2022-09-27T00:00:00Z 2022-09-27 47 https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858 35 10.21500/20275846.4495 2027-5846 |
institution |
UNIVERSIDAD DE SAN BUENAVENTURA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDESANBUENAVENTURA_COLOMBIA/logo.png |
country_str |
Colombia |
collection |
Ingenierías USBMed |
title |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
spellingShingle |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami Alzate Arias, Fredy Alberto diseño plegado cinética Acústica arquitectónica metamateriales Origami Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño |
title_short |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
title_full |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
title_fullStr |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
title_full_unstemmed |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
title_sort |
prospectiva de diseño de dispositivos acusticos con metamateriales. técnicas origami |
title_eng |
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami |
description |
Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia, el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano
|
description_eng |
This work does a comprehensive look in academic database on projects that have to do with structures, active acoustic devices inspired by metamaterials and in forms created from patterns seen in nature, the focus of the work is to give a forward-looking look at the different scenarios that result from the different projects that innovative in architectural acoustics, also as a contribution of technological vigilance and art strait on this type of device. A detailed report of what is the current state of scientific production in this field and as is our country with review to other countries considering that architectural acoustics converge in many fields of knowledge such as materials, the civil engineering, physics and design, combining science, art, technology and innovation as the main aspects of the research group of the Faculty be Arts and Humanities of the Metropolitan Technological Institute.
|
author |
Alzate Arias, Fredy Alberto |
author_facet |
Alzate Arias, Fredy Alberto |
topicspa_str_mv |
diseño plegado cinética Acústica arquitectónica metamateriales Origami |
topic |
diseño plegado cinética Acústica arquitectónica metamateriales Origami Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño |
topic_facet |
diseño plegado cinética Acústica arquitectónica metamateriales Origami Palabras claves: Metamateriales, Acústica Arquitectónica, Origami, Cinética, Plegado, Diseño |
citationvolume |
13 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2022 : Ingenierías USBMed |
publisher |
Universidad San Buenaventura - USB (Colombia) |
ispartofjournal |
Ingenierías USBMed |
source |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495 |
language |
Español |
format |
Article |
rights |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. Ingenierías USBMed - 2022 |
references |
T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA SS2009.pdf. M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026. C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002. Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501. X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share. H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017. M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=. E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34. Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/ M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf. T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558. M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf. “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/ search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021). “OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020). E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34. R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo. “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020). R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871. M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=. G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https: //doi.org/10.1002/ad.1757. R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871. J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March, 2016. https://doi.org/10.1016/j.autcon.2015.12.002. R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottora to/8871. Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/ J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf. T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558. P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011. E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34. Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/ Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/ “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019). “WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid =60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01 6e6f20c (accessed May 25, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019). “Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0 26dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019). “ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019). “Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019). R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-09-27 |
date_accessioned |
2022-09-27T00:00:00Z |
date_available |
2022-09-27T00:00:00Z |
url |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4495 |
url_doi |
https://doi.org/10.21500/20275846.4495 |
eissn |
2027-5846 |
doi |
10.21500/20275846.4495 |
citationstartpage |
35 |
citationendpage |
47 |
url2_str_mv |
https://revistas.usb.edu.co/index.php/IngUSBmed/article/download/4495/4858 |
_version_ |
1823468245890367488 |