Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable
.
El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de co... Ver más
2248-4817
15
2024-04-29
1055
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unillanos_revistasistemasdeproduccionagroecologicos_45_article_1055 |
---|---|
record_format |
ojs |
spelling |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable Comparison of CO2 emissions and potential efficiency between biodiesel and renewable diesel fuels El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de cocina usado. Cada combustible se produce mediante un proceso diferente (transesterificación en el caso del biodiésel e hidrotratamiento en el del diésel renovable). Por esta razón, cada uno de ellos tiene propiedades químicas y físicas diferentes que determinan su rendimiento, incluyendo su eficiencia y las emisiones de CO2. Esta revisión analiza las materias primas de biomasa utilizadas y realiza una comparación entre los procesos de transformación, la eficiencia y las emisiones potenciales de CO2.  Por último, establece las ventajas e inconvenientes del uso de biodiésel y diésel renovable. Renewable biofuels have several advantages, including increasing energy efficiency, diversifying the energy matrix of countries, and reducing greenhouse gases. Moreover, fossil fuels are gradually depleting. Biofuels such as biodiesel and renewable diesel, also known as green diesel or hydrotreated vegetable oil, are becoming essential fields of study as they can mitigate environmental damage without affecting transportation quality. Both biodiesel and renewable diesel are produced from the same biomass, which can come from vegetable oil, animal fats, microalgal oil, or waste cooking oil. Each fuel is created through a different process, transesterification for biodiesel and hydrotreatment for renewable diesel. As a result, each has distinct chemical and physical properties that determine their performance, including efficiency and CO2 emissions. This review examines the biomass feedstock used, compares the transformation processes, efficiency, and potential CO2 emissions, and identifies the advantages and disadvantages of using biodiesel and renewable diesel. Alonso-Jaramillo, Jeronimo Alonso-Gomez, Leonardo Alexis Biomass Fuel Vegetable oil Aceite vegetal Biomasa Combustible Biomassa Combustível Óleo vegetal 15 1 Núm. 1 , Año 2024 : Enero-Junio Artículo de revista Journal article 2024-04-29T00:00:00Z 2024-04-29T00:00:00Z 2024-04-29 application/pdf Universidad de los Llanos Revista Sistemas de Producción Agroecológicos 2248-4817 https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055 10.22579/22484817.1055 https://doi.org/10.22579/22484817.1055 eng https://creativecommons.org/licenses/by-nc-nd/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 1055 Aatola, H., Larmi, M., Sarjovaara, T., and Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1, 1251–1262. https://doi.org/10.4271/2008-01-2500 Adetunji, J. (2017). Fact check: Are diesel cars really more polluting than petrol cars The Conversation. https://theconversation.com/fact-check-are-diesel-cars-really-more-polluting-than-petrol-cars-76241 Ahmad, S., Jafry, A. T., Haq, M. ul, Abbas, N., Ajab, H., Hussain, A., Sajjad, U. (2023). Performance and Emission Characteristics of Second Generation Biodiesel with Oxygenated Additives. Energies, 16, 5153. https://doi.org/10.3390/en16135153 Alonso Gomez, L., y Bello Pérez, L. A. (2018). Materias primas usadas para la producción de etanol de cuatro generaciones: retos y oportunidades. Agrociencia, 52, 967–990. Anuar, M. R., and Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208–223. https://doi.org/10.1016/j.rser.2015.12.296 Bankovic-Ilic, I. B., Stamenkovic, O. S., and Veljkovic, V. B. (2012). Biodiesel production from nonedible plant oils. Renewable and Sustainable Energy Reviews, 16, 3621–3647. https://doi.org/10.1016/j.rser.2012.03.002 Cárdenas, M. D., Armas, O., Mata, C., and Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743–762. https://doi.org/10.1016/j.fuel.2016.08.002 Costa, M., Marchitto, L., Piazzullo, D., andPrati, M. V. (2021). Comparison between the energetic and environmental performance of a combined heat and power unit fueled with diesel and waste vegetable oil: An experimental and numerical study. Renewable Energy, 168, 791–805. https://doi.org/10.1016/j.renene.2020.12.099 Department of Energy, U. (2019). Biofuels and Greenhouse Gas Emissions: Myths versus Facts. EERE, New York, NY. Dimitriadis, A., and Natsios, I. (2018). Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Frontiers in Energy Research, 4. Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., and Goula, M. A. (2019). Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12. https://doi.org/10.3390/en12050809 Dynamicscience. (2020). Chemistry-biofuels-comparing biodiesel and petrodiesel. http://www.dynamicscience.com.au/tester/solutions1/chemistry/organic/diesels.html ETIP Bioenergy - European Technology and Innovation Platform. (2020). Hydrogenated vegetable oil (HVO), 1–4. Firdaus, N., Aunillah, A., Wardiana, E., Pranowo, D., Herman, M., and Syafaruddin. (2022). Comparison of engine performance and emissions for fuels of diesel biodiesel blends and pure biodiesel. IOP Conference Series: Earth and Environmental Science, 1038, 012025. https://doi.org/10.1088/1755-1315/1038/1/012025 Garraín, D., Herrera, I., Lago, C., Lechón, Y., and Sáez, R. (2010). Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid and Renewable Energy, 01, 70–73. https://doi.org/10.4236/sgre.2010.12011 Gerveni, M., Hubbs, T., and Irwin, S. (2024). Revisiting Biomass-Based Diesel Feedstock Trends over 2011-2022. Farmdoc Daily, 14. Hernández, J. J., Rodríguez-Fernández, J., and Calle-Asensio, A. (2020). Performance and regulated gaseous emissions of a Euro 6 diesel vehicle with Lean NOx Trap at different ambient conditions: Sensitivity to the type of fuel. Energy Conversion and Management, 219. https://doi.org/10.1016/j.enconman.2020.113023 IATA. (2019). Fact Sheet 6: Examples of ground transport biofuel mandates around the world, 1–6. Julio, A. A. V., Milessi, T. S., Ocampo Batlle, E. A., Silva Lora, E. E., Yepes Maya, D. M., and Escobar Palacio, J. C. (2022). Techno economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives. Journal of Cleaner Production, 371, 133431. https://doi.org/10.1016/j.jclepro.2022.133431 Komariah, L. N., Arita, S., Rendana, M., Ramayanti, C., Suriani, N. L., and Erisna, D. (2022). Microbial contamination of diesel biodiesel blends in storage tank; an analysis of colony morphology. Heliyon, 8, e09264. https://doi.org/10.1016/j.heliyon.2022.e09264 Maziero, J. V. G., Corrêa, I. M., Bernardi, J. A., and Storino, M. (2007). Desempenho de um motor diesel com óleo bruto de girassol. Revista Brasileira de Agrociência, 13, 249–255. Mofijur, M., Rasul, M. G., Hassan, N. M. S., and Nabi, M. N. (2019). Recent development in the production of third generation biodiesel from microalgae. In Energy Procedia, 5th International Conference on Power and Energy Systems Engineering (CPESE 2018) (Vol. 156, pp. 53–58). https://doi.org/10.1016/j.egypro.2018.11.088 Moodley, P. (2021). Sustainable biofuels: Opportunities and challenges. In R. C. Ray (Ed.), Sustainable Biofuels, Applied Biotechnology Reviews (pp. 1–20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7 Morgenstern, C. (2022). Hydrotreated Vegetable Oil (HVO) explained. Cummins Inc. https://www.cummins.com/news/2022/07/01/hydrotreated-vegetable-oil-hvo-explained Neste Corporation. (2020). Neste Renewable Diesel Handbook. https://www.neste.com/renewable-diesel-handbook Quevedo-Amador, R. A., Escalera-Velasco, B. P., Arias, A. M. R., Reynel-Ávila, H. E., Moreno-Piraján, J. C., Giraldo, L., and Bonilla-Petriciolet, A. (2024). Application of waste biomass for the production of biofuels and catalysts: A review. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-023-02728-4 Simbi, I., Aigbe, U. O., Oyekola, O. O., and Osibote, O. A. (2022). Chemical and quality performance of biodiesel and petrol blends. Energy Conversion and Management: X, 15, 100256. https://doi.org/10.1016/j.ecmx.2022.100256 Tavel CO2. (2017). Transport calculations Travel and climate. Swedish National Travel Survey. https://travelandclimate.org/transport-calculations Uchino, K. (2022). Piezoelectric devices for sustainability technologies. In Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-90386-8.00014-0 United Nations. (2022). The Paris Agreement UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement Your NRG. (2023). HVO fuel specifications | HVO vs Diesel and Biodiesel. https://yournrg.co.uk/advice-hub/hvo/hvo-fuel-specifications https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/1055/1090 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/redcol/resource_type/ARTREF info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE LOS LLANOS |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png |
country_str |
Colombia |
collection |
Revista Sistemas de Producción Agroecológicos |
title |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
spellingShingle |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable Alonso-Jaramillo, Jeronimo Alonso-Gomez, Leonardo Alexis Biomass Fuel Vegetable oil Aceite vegetal Biomasa Combustible Biomassa Combustível Óleo vegetal |
title_short |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
title_full |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
title_fullStr |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
title_full_unstemmed |
Comparación de las emisiones de CO2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
title_sort |
comparación de las emisiones de co2 y la eficiencia potencial entre el biodiesel y el diésel renovable |
title_eng |
Comparison of CO2 emissions and potential efficiency between biodiesel and renewable diesel fuels |
description |
El uso de biocombustibles renovables tiene importantes ventajas, como el aumento de la eficiencia energética, la diversificación de la matriz energética de los países y la reducción de los gases de efecto invernadero, entre otras. Los combustibles fósiles, además, están comenzando un paulatino agotamiento. Los biocombustibles, como el biodiésel y el diésel renovable (también llamado diésel verde o aceite vegetal hidro tratado), se han convertido en importantes campos de investigación, ya que pueden mitigar los perjuicios medioambientales sin afectar a la calidad del transporte. Tanto el biodiésel como el diésel renovable proceden de la misma biomasa, que puede variar entre aceite vegetal, grasas animales, aceite de microalgas y aceite de cocina usado. Cada combustible se produce mediante un proceso diferente (transesterificación en el caso del biodiésel e hidrotratamiento en el del diésel renovable). Por esta razón, cada uno de ellos tiene propiedades químicas y físicas diferentes que determinan su rendimiento, incluyendo su eficiencia y las emisiones de CO2. Esta revisión analiza las materias primas de biomasa utilizadas y realiza una comparación entre los procesos de transformación, la eficiencia y las emisiones potenciales de CO2.  Por último, establece las ventajas e inconvenientes del uso de biodiésel y diésel renovable.
|
description_eng |
Renewable biofuels have several advantages, including increasing energy efficiency, diversifying the energy matrix of countries, and reducing greenhouse gases. Moreover, fossil fuels are gradually depleting. Biofuels such as biodiesel and renewable diesel, also known as green diesel or hydrotreated vegetable oil, are becoming essential fields of study as they can mitigate environmental damage without affecting transportation quality. Both biodiesel and renewable diesel are produced from the same biomass, which can come from vegetable oil, animal fats, microalgal oil, or waste cooking oil. Each fuel is created through a different process, transesterification for biodiesel and hydrotreatment for renewable diesel. As a result, each has distinct chemical and physical properties that determine their performance, including efficiency and CO2 emissions. This review examines the biomass feedstock used, compares the transformation processes, efficiency, and potential CO2 emissions, and identifies the advantages and disadvantages of using biodiesel and renewable diesel.
|
author |
Alonso-Jaramillo, Jeronimo Alonso-Gomez, Leonardo Alexis |
author_facet |
Alonso-Jaramillo, Jeronimo Alonso-Gomez, Leonardo Alexis |
topic |
Biomass Fuel Vegetable oil Aceite vegetal Biomasa Combustible Biomassa Combustível Óleo vegetal |
topic_facet |
Biomass Fuel Vegetable oil Aceite vegetal Biomasa Combustible Biomassa Combustível Óleo vegetal |
topicspa_str_mv |
Aceite vegetal Biomasa Combustible Biomassa Combustível Óleo vegetal |
citationvolume |
15 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2024 : Enero-Junio |
publisher |
Universidad de los Llanos |
ispartofjournal |
Revista Sistemas de Producción Agroecológicos |
source |
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Aatola, H., Larmi, M., Sarjovaara, T., and Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1, 1251–1262. https://doi.org/10.4271/2008-01-2500 Adetunji, J. (2017). Fact check: Are diesel cars really more polluting than petrol cars The Conversation. https://theconversation.com/fact-check-are-diesel-cars-really-more-polluting-than-petrol-cars-76241 Ahmad, S., Jafry, A. T., Haq, M. ul, Abbas, N., Ajab, H., Hussain, A., Sajjad, U. (2023). Performance and Emission Characteristics of Second Generation Biodiesel with Oxygenated Additives. Energies, 16, 5153. https://doi.org/10.3390/en16135153 Alonso Gomez, L., y Bello Pérez, L. A. (2018). Materias primas usadas para la producción de etanol de cuatro generaciones: retos y oportunidades. Agrociencia, 52, 967–990. Anuar, M. R., and Abdullah, A. Z. (2016). Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renewable and Sustainable Energy Reviews, 58, 208–223. https://doi.org/10.1016/j.rser.2015.12.296 Bankovic-Ilic, I. B., Stamenkovic, O. S., and Veljkovic, V. B. (2012). Biodiesel production from nonedible plant oils. Renewable and Sustainable Energy Reviews, 16, 3621–3647. https://doi.org/10.1016/j.rser.2012.03.002 Cárdenas, M. D., Armas, O., Mata, C., and Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743–762. https://doi.org/10.1016/j.fuel.2016.08.002 Costa, M., Marchitto, L., Piazzullo, D., andPrati, M. V. (2021). Comparison between the energetic and environmental performance of a combined heat and power unit fueled with diesel and waste vegetable oil: An experimental and numerical study. Renewable Energy, 168, 791–805. https://doi.org/10.1016/j.renene.2020.12.099 Department of Energy, U. (2019). Biofuels and Greenhouse Gas Emissions: Myths versus Facts. EERE, New York, NY. Dimitriadis, A., and Natsios, I. (2018). Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Frontiers in Energy Research, 4. Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., and Goula, M. A. (2019). Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12. https://doi.org/10.3390/en12050809 Dynamicscience. (2020). Chemistry-biofuels-comparing biodiesel and petrodiesel. http://www.dynamicscience.com.au/tester/solutions1/chemistry/organic/diesels.html ETIP Bioenergy - European Technology and Innovation Platform. (2020). Hydrogenated vegetable oil (HVO), 1–4. Firdaus, N., Aunillah, A., Wardiana, E., Pranowo, D., Herman, M., and Syafaruddin. (2022). Comparison of engine performance and emissions for fuels of diesel biodiesel blends and pure biodiesel. IOP Conference Series: Earth and Environmental Science, 1038, 012025. https://doi.org/10.1088/1755-1315/1038/1/012025 Garraín, D., Herrera, I., Lago, C., Lechón, Y., and Sáez, R. (2010). Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid and Renewable Energy, 01, 70–73. https://doi.org/10.4236/sgre.2010.12011 Gerveni, M., Hubbs, T., and Irwin, S. (2024). Revisiting Biomass-Based Diesel Feedstock Trends over 2011-2022. Farmdoc Daily, 14. Hernández, J. J., Rodríguez-Fernández, J., and Calle-Asensio, A. (2020). Performance and regulated gaseous emissions of a Euro 6 diesel vehicle with Lean NOx Trap at different ambient conditions: Sensitivity to the type of fuel. Energy Conversion and Management, 219. https://doi.org/10.1016/j.enconman.2020.113023 IATA. (2019). Fact Sheet 6: Examples of ground transport biofuel mandates around the world, 1–6. Julio, A. A. V., Milessi, T. S., Ocampo Batlle, E. A., Silva Lora, E. E., Yepes Maya, D. M., and Escobar Palacio, J. C. (2022). Techno economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives. Journal of Cleaner Production, 371, 133431. https://doi.org/10.1016/j.jclepro.2022.133431 Komariah, L. N., Arita, S., Rendana, M., Ramayanti, C., Suriani, N. L., and Erisna, D. (2022). Microbial contamination of diesel biodiesel blends in storage tank; an analysis of colony morphology. Heliyon, 8, e09264. https://doi.org/10.1016/j.heliyon.2022.e09264 Maziero, J. V. G., Corrêa, I. M., Bernardi, J. A., and Storino, M. (2007). Desempenho de um motor diesel com óleo bruto de girassol. Revista Brasileira de Agrociência, 13, 249–255. Mofijur, M., Rasul, M. G., Hassan, N. M. S., and Nabi, M. N. (2019). Recent development in the production of third generation biodiesel from microalgae. In Energy Procedia, 5th International Conference on Power and Energy Systems Engineering (CPESE 2018) (Vol. 156, pp. 53–58). https://doi.org/10.1016/j.egypro.2018.11.088 Moodley, P. (2021). Sustainable biofuels: Opportunities and challenges. In R. C. Ray (Ed.), Sustainable Biofuels, Applied Biotechnology Reviews (pp. 1–20). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00003-7 Morgenstern, C. (2022). Hydrotreated Vegetable Oil (HVO) explained. Cummins Inc. https://www.cummins.com/news/2022/07/01/hydrotreated-vegetable-oil-hvo-explained Neste Corporation. (2020). Neste Renewable Diesel Handbook. https://www.neste.com/renewable-diesel-handbook Quevedo-Amador, R. A., Escalera-Velasco, B. P., Arias, A. M. R., Reynel-Ávila, H. E., Moreno-Piraján, J. C., Giraldo, L., and Bonilla-Petriciolet, A. (2024). Application of waste biomass for the production of biofuels and catalysts: A review. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-023-02728-4 Simbi, I., Aigbe, U. O., Oyekola, O. O., and Osibote, O. A. (2022). Chemical and quality performance of biodiesel and petrol blends. Energy Conversion and Management: X, 15, 100256. https://doi.org/10.1016/j.ecmx.2022.100256 Tavel CO2. (2017). Transport calculations Travel and climate. Swedish National Travel Survey. https://travelandclimate.org/transport-calculations Uchino, K. (2022). Piezoelectric devices for sustainability technologies. In Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-90386-8.00014-0 United Nations. (2022). The Paris Agreement UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement Your NRG. (2023). HVO fuel specifications | HVO vs Diesel and Biodiesel. https://yournrg.co.uk/advice-hub/hvo/hvo-fuel-specifications |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-04-29 |
date_accessioned |
2024-04-29T00:00:00Z |
date_available |
2024-04-29T00:00:00Z |
url |
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/view/1055 |
url_doi |
https://doi.org/10.22579/22484817.1055 |
eissn |
2248-4817 |
doi |
10.22579/22484817.1055 |
citationendpage |
1055 |
url2_str_mv |
https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/1055/1090 |
_version_ |
1811200240931307520 |