Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América
.
El rápido crecimiento de la población mundial ha conducido a una sobreexplotación de los recursos naturales y, los recursos hídricos no son la excepción; afectando las poblaciones de peces en todo el mundo. Además, la poca variabilidad en las especies de interés comercial y los pocos avances en el desarrollo de paquetes tecnológicos y productivos conllevan a que esta problemática se acentúe. La crioconservación seminal es una técnica que permite el resguardo del material genético durante tiempo indefinido, permitiendo su disponibilidad constante. Sin embargo, puede causar algunos efectos negativos sobre la integridad celular y sus funciones. Dentro de esto, la formación de cristales de hielo, el estrés osmótico y con gran relevancia el estr... Ver más
0121-3709
2011-2629
27
2023-07-04
765
Orinoquia - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unillanos_orinoquia_57_article_765 |
---|---|
record_format |
ojs |
spelling |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América Antioxidants in the cryopreservation of fish semen: a review with emphasis on freshwater species from south America El rápido crecimiento de la población mundial ha conducido a una sobreexplotación de los recursos naturales y, los recursos hídricos no son la excepción; afectando las poblaciones de peces en todo el mundo. Además, la poca variabilidad en las especies de interés comercial y los pocos avances en el desarrollo de paquetes tecnológicos y productivos conllevan a que esta problemática se acentúe. La crioconservación seminal es una técnica que permite el resguardo del material genético durante tiempo indefinido, permitiendo su disponibilidad constante. Sin embargo, puede causar algunos efectos negativos sobre la integridad celular y sus funciones. Dentro de esto, la formación de cristales de hielo, el estrés osmótico y con gran relevancia el estrés oxidativo son los de mayor incidencia. De acuerdo a lo anterior, el uso de sustancias con capacidad de reducir los efectos del estrés oxidativo como lo son los antioxidantes pueden constituirse como una alternativa de mejora de estos procesos conllevando a la estandarización de protocolos mejorados para su aplicación en bancos de germoplasma. El objetivo de esta revisión es hacer una breve descripción de la crioconservación seminal como biotecnología reproductiva, sus usos e implicaciones y de algunos de los trabajos desarrollados en especies nativas de Sur América con el uso de sustancias antioxidantes. The rapid growth of the world population has led to an overexploitation of natural resources and water resources are no exception; affecting fish populations around the world. Furthermore, the little variability in the species of commercial interest and the few advances in the development of technological and productive packages lead to this problem being accentuated. Seminal cryopreservation is a technique that allows the protection of genetic material for an indefinite period of time, allowing its constant availability. However, it can cause some negative effects on cellular integrity and functions. Within this, the formation of ice crystals, osmotic stress and, with great relevance, oxidative stress are those with the greatest incidence. According to the above, the use of substances with the capacity to reduce the effects of oxidative stress such as antioxidants can be constituted as an alternative to improve these processes, leading to the standardization of improved protocols for their application in germplasm banks. The aim of this review is to make a brief description of seminal cryopreservation as a reproductive biotechnology, its uses and implications and some of the work developed in native South American species with the use of antioxidant substances. Guaje, Diana Medina-Robles, Víctor M. Amenaza bancos de germoplasma calidad seminal estrés oxidativo Threat germplasm banks semen quality oxidative stress Ameaça bancos de germoplasma qualidade do sêmen estresse oxidativo 27 2 Artículo de revista Journal article 2023-07-04T00:00:00Z 2023-07-04T00:00:00Z 2023-07-04 application/pdf Universidad de los Llanos Orinoquia 0121-3709 2011-2629 https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/765 10.22579/20112629.765 https://doi.org/10.22579/20112629.765 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Orinoquia - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 765 Adames, M. S., de Toledo, C. P. R., Neumann, G., Buzzi, A. H., Buratto, C. N., Piana, P. A., y Bombardelli, R. A. (2015). Optimization of the sperm: Oocyte ratio and sperm economy in the artificial reproduction of Rhamdia quelen using fructose as a sperm motility modulator. Animal Reproduction Science, 161, 119–128. https://doi.org/10.1016/j.anireprosci.2015.08.014 Agarwal, A. y Prabakaran, S. A. (2005). Oxidative stress and antioxidants in male infertility: a difficult balance. Iranian Journal of Reproductive Medicine Iranian Journal of Reproductive Medicine, 3(1), 1–8. http://ssu.ac.ir/ijrm/index.php/ijrm/article/view/392 Aisen, E., Quintana, M., Medina, V., Morello, H., y Venturino, A. (2005). Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose-based hypertonic extenders. Cryobiology, 50(3), 239–249. https://doi.org/10.1016/j.cryobiol.2005.02.002 Alves Pereira, F. (2015). Glutationa Reduzida e Adenosina trifosfato (ATP) na Criopreservação seminal de Tambaqui, Colossoma macropomum. Tese de Mestre. Brasil, Universidade Federal do Rio Grande. Ball, B. A. (2008). Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Animal Reproduction Science, 107(3–4), 257–267. https://doi.org/10.1016/j.anireprosci.2008.04.014 Bansal, A. K., y Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. Veterinary Medicine International, 2011. https://doi.org/10.4061/2011/686137 Cabrita, E., Horváth, Á., Marinović, Z., & Asturiano, J. F. (2022). Technologies and strategies for ex situ conservation of aquatic organisms: the role of cryopreservation in long-term management. In Cellular and Molecular Approaches in Fish Biology (pp. 1-48). Academic Press. Barreiros, A. L. B. S., David, J. M., y David, J. P. (2006). Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quimica Nova, 29(1), 113–123. https://doi.org/10.1590/s0100-40422006000100021 Betsy, J., y Kumar, S. (2020). Cryopreservation of Fish Gametes. https://doi.org/10.1007/978-981-15-4025-7_3 Bilodeau, J. F., Blanchette, S., Gagnon, C., y Sirard, M. A. (2001). Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 56(2), 275–286. https://doi.org/10.1016/S0093-691X(01)00562-3 Bucak, M. N., Ateşşahin, A., Varişli, Ö., Yüce, A., Tekin, N., y Akçay, A. (2007). The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen. Microscopic and oxidative stress parameters after freeze-thawing process. Theriogenology, 67(5), 1060–1067. https://doi.org/10.1016/j.theriogenology.2006.12.004 Bunaciu, A. A., Aboul-Enein, H. Y., y Fleschin, S. (2012). FTIR spectrophotometric methods used for antioxidant activity assay in medicinal plants. Applied Spectroscopy Reviews, 47(4), 245–255. https://doi.org/10.1080/05704928.2011.645260 Cabrita, E., Martínez-Páramo, S., Gavaia, P. J., Riesco, M. F., Valcarce, D. G., Sarasquete, C., Herráez, M. P., y Robles, V. (2014). Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture, 432, 389–401. https://doi.org/10.1016/j.aquaculture.2014.04.034 Cabrita, E., Robles, V., Cuñado, S., Wallace, J. C., Sarasquete, C., y Herráez, M. P. (2005). Evaluation of gilthead sea bream, Sparus aurata, sperm quality after cryopreservation in 5 ml macrotubes. Cryobiology, 50(3), 273–284. https://doi.org/10.1016/j.cryobiol.2005.02.005 Cabrita, E., Sarasquete, C., Martínez-Páramo, S., Robles, V., Beirão, J., Pérez-Cerezales, S., y Herráez, M. P. (2010). Cryopreservation of fish sperm: Applications and perspectives. Journal of Applied Ichthyology, 26(5), 623–635. https://doi.org/10.1111/j.1439-0426.2010.01556.x Calcagnotto, D., y De Almeida Toledo-Filho, S. (2000). Loss of genetic variability at the transferrin locus in five hatchery stocks of tambaqui (Colossoma macropomum). Genetics and Molecular Biology, 23(1), 127–130. https://doi.org/10.1590/S1415-47572000000100023 Cao, G., y Cutler, R. G. (1993). High concentrations of antioxidants may not improve defense against oxidative stress. Archives of Gerontology and Geriatrics, 17(3), 189–201. https://doi.org/10.1016/0167-4943(93)90050-R Carvalho, O. F. de, Ferreira, J. D. de J., Silveira, N. de A., y Freneau, G. E. (2002). Efeito oxidativo do óxido nítrico e infertilidade no macho. Jornal Brasileiro de Patologia e Medicina Laboratorial, 38(1), 33–38. https://doi.org/10.1590/s1676-24442002000100007 Chapman, B. B., Hulthén, K., Brodersen, J., Nilsson, P. A., Skov, C., Hansson, L. A., y Brönmark, C. (2012). Partial migration in fishes: Causes and consequences. Journal of Fish Biology, 81(2), 456–478. https://doi.org/10.1111/j.1095-8649.2012.03342.x Cosson, J. (2019). Fish Sperm Physiology: Structure, Factors Regulating Motility, and Motility Evaluation. In Biological Research in Aquatic Science. https://doi.org/10.5772/intechopen.85139 Costa LS, Fidelis GP, Cordeiro SL, et al.(2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother, 64(1), 21–28. doi:10.1016/j.biopha.2009.03.005 Cruzat, V. F., Petry, É. R., y Tirapegui, J. (2009). Glutamina: aspectos bioquímicos, metabólicos, moleculares e suplementação. Revista Brasileira de Medicina Do Esporte, 15(5), 392–397. https://doi.org/10.1590/s1517-86922009000600015 Da Costa, B. B., Marques, L. S., Lassen, P. G., Rodrigues, R. B., Da Rosa-Silva, H. T., Moreira, J. C. F., de Oliveira, D. L., y Streit, D. P. (2020). Effect of glutamine and cysteine supplementation on quality of cryopreserved sperm of South American silver catfish. Aquaculture Research, 52(5), 2173–2181. https://doi.org/10.1111/are.15070 Da Costa, B. B., Marques, L. S., Lassen, P. G., Rodrigues, R. B., Tais Da Rosa Silva, H., Moreira, J. C. F., y Streit, D. P. (2019). Effects of cysteine supplementation on the quality of cryopreserved sperm of South American silver catfish. Aquaculture Research, 51(2), 455–464. https://doi.org/10.1111/are.14389 Da Silva, E. C. B., y Guerra, M. M. P. (2012). Terapias antioxidantes na criopreservação espermática. Revista Portuguesa de Ciências Veterinárias, 111, 143–149. De Almeida-Monteiro, P. S., Oliveira-Araújo, M. S., Pinheiro, R. R. R., Lopes, J. T., Ferreira, Y. M., Montenegro, A. R., Melo-Maciel, M. A. P., y Salmito-Vanderley, C. S. B. (2017). Influence of vitamins C and e on the quality of cryopreserved semen Prochilodus brevis (Prochilodontidae, Teleostei). Semina: Ciencias Agrarias, 38(4), 2669–2680. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2669 de Oliveira Pedreira, A. C., Malacarne, A. M., Dalmaso, A. C. S., Carvalho, K. I. F. S., Chagas, T. V., da Silva Gambetta, M. I. R., Chiella, R. J., y Bombardelli, R. A. (2022). L-carnitine solution used on Rhamdia quelen thawed sperm activation boosts sperm movement, maintains larval quality, and permits to optimize the sperm use. Animal Reproduction Science, 245. https://doi.org/10.1016/j.anireprosci.2022.107054 Dickinson, D. A., y Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64, 1019–1026. https://doi.org/https://doi.org/10.1016/S0006-2952(02)01172-3 Dourado, O. F. (1981). Principais peixes e crustáceos dos açudes controlados pelo DNOCS. Convênio SUDENE/DNOCS. Félix, F., Oliveira, C. C. V., y Cabrita, E. (2021). Antioxidants in fish sperm and the potential role of melatonin. Antioxidants, 10(1), 1–29. https://doi.org/10.3390/antiox10010036 Fidalgo-Guerreiro, V. H., y FERREIRA, G. (2011). Mitigação de impactos à ictiofauna após barramentos de corpos d’água através de medidas socioeducativas e educação ambiental. In 1 CONGRESSO BRASILEIRO DE AVALIAÇÃO DE IMPACTO (Vol. 1, p. 2011). Figueroa, E., Farias, J. G., Lee-Estevez, M., Valdebenito, I., Risopatrón, J., Magnotti, C., Romero, J., Watanabe, I., y Oliveira, R. P. S. (2018). Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media increase sperm function and fertility rate in Atlantic salmon (Salmo salar). Aquaculture, 493, 1–8. https://doi.org/10.1016/j.aquaculture.2018.04.046 Food and Agriculture Organization (FAO). (2022). El estado mundial de la pesca y la acuicultura 2022. Hacia la transformación azul. In Fao. https://doi.org/https://doi.org/10.4060/cc0461 Food and Agriculture Organization of the United Nations (FAO). (2018). The State of World Fisheries and Aquaculture. Retrieved from http://www.fao.org/3/i9540en/i9540en.pdf Galo, J. M., Streit-Junior, D. P., Sirol, R. N., Ribeiro, R. P., Digmayer, M., Andrade, V. X. L., y Ebert, A. R. (2011). Anormalidades espermáticas de piracanjuba Brycon orbignyanus (Valenciennes, 1849) após a criopreservação. Brazilian Journal of Biology, 71(3), 693–699. https://doi.org/10.1590/S1519-69842011000400014 Gheller, S. M. M., Corcini, C. D., de Brito, C. R. C., Acosta, I. B., Tavares, G. C., Soares, S. L., Silva, A. C., Pires, D. M., y Varela Junior, A. S. (2019). Use of trehalose in the semen cryopreservation of Amazonian catfish Leiarius marmoratus. Cryobiology, 87(June 2018), 74–77. https://doi.org/10.1016/j.cryobiol.2019.02.001 Gülçin, I. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78(8), 803–811. https://doi.org/10.1016/j.lfs.2005.05.103 Hernández, C. L., Ortega-Lara, A., Sánchez-Garcés, G. C., y Alford, M. H. (2015). Genetic and Morphometric Evidence for the Recognition of Several Recently Synonymized Species of Trans-Andean Rhamdia (Pisces: Siluriformes: Heptapteridae). Copeia, 103(3), 563–579. https://doi.org/10.1643/CI-14-145 Holt, W. V. (2000a). Basic aspects of frozen storage of semen. Animal Reproduction Science, 62(1–3), 3–22. https://doi.org/10.1016/S0378-4320(00)00152-4 Holt, W. V. (2000b). Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology, 53(1), 47–58. https://doi.org/10.1016/S0093-691X(99)00239-3 Horizonte, B., Borges, J. C., Silva, M. R., Esper, C. R., y Franceschini, P. H. (2011). Membrana plasmática de espermatozoides bovinos: efeito de metabólitos do oxigênio, antioxidantes e criopreservação. Revista Brasileira de Reprodução Animal, 35(3), 303–314. Klaiwattana, P., Srisook, K., Srisook, E., Vuthiphandchai, V., y Neumvonk, J. (2016). Effect of cryopreservation on lipid composition and antioxidant enzyme activity of seabass (Lates calcarifer) sperm. Iranian Journal of Fisheries Sciences, 15(1), 157–169. http://www.jifro.ir/browse.php?a_id=940&sid=1&slc_lang=en%0Ahttps://www.cabdirect.org/cabdirect/abstract/20163044938 Kohen, R., y Nyska, A. (2002). Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicologic Pathology, 30(6), 620–650. https://doi.org/10.1080/0192623029016672 Lahnsteiner, F., y Caberlotto, S. (2012). Motility of gilthead seabream Sparus aurata spermatozoa and its relation to temperature, energy metabolism and oxidative stress. Aquaculture, 370–371, 76–83. https://doi.org/10.1016/j.aquaculture.2012.09.034 Lasso, L., Alvarez, G., y June, M. (1994). of Superoxide Cells during Cryopreservation. 15(3). Lima Assis, I. D., Palhares, P. C., Machado, G. J., Souza, J. G. D. S., Souza França, T. D., Oliveira Felizardo, V. D., y Murgas, L. D. S. (2019). Effect of melatonin on cryopreserved sperm of Prochilodus lineatus (Characiformes). CryoLetters, 40(3), 152-158. Lopes, J.T., Salmito-Vanderley, C.S.B., Almeida-Monteiro, P. S. (2016). Presença de antioxidantes no sêmen de teleósteos e sua utilização na suplementação de meios de congelação seminal. Revista Brasileira de Reprodução Animal, 40(1), 29–34. Lopes, J. T., Oliveira-Araújo, M. S., Nascimento, R. V. do, Montenegro, Y. M. F. A. R., y Salmito-Vanderley, C. S. B. (2018). Efeito de vitaminas e aminoácidos como suplementação da solução crioprotetora para a criopreservação do sêmen de tambaqui (Colossoma macropomum). In Acta Scientiae Veterinariae (Vol. 46, Issue August, pp. 1–8). Luberda, Z. (2005). The role of glutathione in mammalian gametes. Reproductive Biology, 5(1), 5–17. Maldonado-Ocampo, J., Vari, R., y Usma Oviedo, J. S. (2008). Checklist of the freshwater fishes of Colombia. Biota Colombiana, 9(2), 312. Marchioro, M. I., y Baldisserotto, B. (1999). Sobrevivência de alevinos de Jundiá (Rhamdia quelen Quoy & Gaimard, 1824) à variação de salinidade da água. Ciência Rural, 29(2), 315–318. https://doi.org/10.1590/s0103-84781999000200021 Maria, A. N., Azevedo, H. C., & Carneiro, P. C. F. (2011). Protocolo para criopreservação do sêmen de Tambaqui (Colossoma macropomum). Comunicado Técnico, 112, 8. Martínez-Páramo, S., Diogo, P., Dinis, M. T., Herráez, M. P., Sarasquete, C., y Cabrita, E. (2012). Incorporation of ascorbic acid and α-tocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology, 77(6), 1129–1136. https://doi.org/10.1016/j.theriogenology.2011.10.017 Mazur, P. (1984). Freezing of living cells: mechanisms and implications. The American Journal of Physiology, 247(3 Pt 1), 0–4. https://doi.org/10.1152/ajpcell.1984.247.3.C125 Medeiros, G. F., Mendes, A., Castro, R. A. B., Baú, E. C., Nader, H. B., y Dietrich, C. P. (2000). Distribution of sulfated glycosaminoglycans in the animal kingdom: Widespread occurrence of heparin-like compounds in invertebrates. Biochimica et Biophysica Acta - General Subjects, 1475(3), 287–294. https://doi.org/10.1016/S0304-4165(00)00079-9 Medina-Robles, V. M., Velasco-Santamaría, Y. M., & Cruz-Casallas, P. E. (2005). Aspectos generales de la crioconservación espermática en peces teleósteos. Revista Colombiana de Ciencias Pecuarias, 18(1), 34–48. file:///C:/Users/Cris/Desktop/REFER?NCIAS/Robles, Santamar?a, Casallas - Aspectos generales de la crioconservaci?n esperm?tica en peces tele?steos - 2005.pdf Migaud, H., Bell, G., Cabrita, E., McAndrew, B., Davie, A., Bobe, J., ... & Carrillo, M. (2013). Gamete quality and broodstock management in temperate fish. Reviews in Aquaculture, 5, S194-S223. Miliorini, A. B., Murgas, L. D. S., Rosa, P. V., Oberlender, G., Pereira, G. J. M., y Da Costa, D. V. (2011). A morphological classification proposal for curimba (Prochilodus lineatus) sperm damages after cryopreservation. Aquaculture Research, 42(2), 177–187. https://doi.org/10.1111/j.1365-2109.2010.02575.x Mojica, J. I., Usma Oviedo, J. S., Álvarez León, R., y Lasso, C. A. (2012). Libro rojo de peces dulceacuícolas. Motta, N. C., Egger, R. C., Monteiro, K. S., Vogel de Oliveira, A., y Solis Murgas, L. D. (2022). Effects of melatonin supplementation on the quality of cryopreserved sperm in the neotropical fish Prochilodus lineatus. Theriogenology, 179, 14–21. https://doi.org/10.1016/j.theriogenology.2021.11.012 Nascimento, R. V. do. (2021). Suplementação do meio de congelação seminal de Prochilodus brevis com polissacarídeos sulfatados extraídos de pele de tilápia e de algas marinhas. Tese de Doutorado. Brasil, Universidade estadual do ceará, 2021. https://pesquisa.bvsalud.org/portal/resource/pt/vtt-221996 Navarro, R. D., Navarro, F. K. S. P., Felizardo, V. de O., Murgas, L. D. S., y Andrade, E. de S. (2014). Qualidade de sêmen de Curimba (Prochilodus lineatus) criopreservados com vitaminas. Acta Scientiarum - Technology, 36(1), 55–60. https://doi.org/10.4025/actascitechnol.v36i1.19586 Nordberg, J., y Arnér, E. S. J. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine, 31(11), 1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9 Olfati Karaji, R., Daghigh Kia, H., y Ashrafi, I. (2014). Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze-thaw bull sperm. Cell and Tissue Banking, 15(3), 461–470. https://doi.org/10.1007/s10561-013-9412-y Palhares, P. C., Assis, I. de L., Machado, G. J., de Freitas, R. M. P., de Freitas, M. B. D., Paula, D. A. J., Carneiro, W. F., Motta, N. C., y Murgas, L. D. S. (2021). Sperm characteristics, peroxidation lipid and antioxidant enzyme activity changes in milt of Brycon orbignyanus cryopreserved with melatonin in different freezing curves. Theriogenology, 176, 18–25. https://doi.org/10.1016/j.theriogenology.2021.09.013 Palhares, P. C., Assis, I. de L., Souza, J. G. da S., França, T. de S., Egger, R. C., Paula, D. A. de J., y Murgas, L. D. S. (2020). Effect of melatonin supplementation to a cytoprotective medium on post-thawed Brycon orbignyanus sperm quality preserved during different freezing times. Cryobiology, 96, 159–165. https://doi.org/10.1016/j.cryobiol.2020.07.002 Paula, D. A. J., Andrade, E. S., Murgas, L. D. S., Felizardo, V. O., Winkaler, E. U., Zeviani, W., y Freitas, R. T. F. (2012). Vitamin E and reduced glutathione in Prochilodus lineatus (curimba) semen cryopreservation (Characiformes: Prochilodontidae). Neotropical Ichthyology, 10(3), 661–665. https://doi.org/10.1590/S1679-62252012005000016 Pereira Maduenho, L., y Martinez, C. B. R. (2008). Acute effects of diflubenzuron on the freshwater fish Prochilodus lineatus. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 148(3), 265–272. https://doi.org/10.1016/j.cbpc.2008.06.010 Pereira, V. A., de Alencar, D. B., Araújo, I. W. F. de, Rodrigues, J. A. G., Lopes, J. T., Nunes, L. T., Ferreira, Y. M., Lobato, J. S., Montenegro, A. R., y Salmito Vanderley, C. S. B. (2020). Supplementation of cryodiluent media with seaweed or Nile tilapia skin sulfated polysaccharides for freezing of Colossoma macropomum (Characiformes: Serrasalmidae) semen. Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735553 Reiter, R. J. (2000). Melatonin: Lowering the high price of free radicals. News in Physiological Sciences, 15(5), 246–250. https://doi.org/10.1152/physiologyonline.2000.15.5.246 Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 64(1), 21–28. https://doi.org/10.1016/j.biopha.2009.03.005 Gadea, J., Molla, M., Selles, E., Marco, M. A., Garcia-Vazquez, F. A., & Gardon, J. C. (2011). Reduced glutathione content in human sperm is decreased after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology, 62(1), 40–46. https://doi.org/10.1016/j.cryobiol.2010.12.001 Medina-Robles, V. M., Velasco-Santamaría, Y. M., & Cruz-Casallas, P. E. (2005). Aspectos generales de la crioconservación espermática en peces teleósteos. Revista Colombiana de Ciencias Pecuarias, 18(1), 34–48. file:///C:/Users/Cris/Desktop/REFER?NCIAS/Robles, Santamar?a, Casallas - Aspectos generales de la crioconservaci?n esperm?tica en peces tele?steos - 2005.pdf Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., & Rocha, L. A. (2016). Fish biodiversity and conservation in South America. Journal of fish biology, 89(1), 12–47. https://doi.org/10.1111/jfb.13016 Reynalte-Tataje, D. A., Soares, M. da L., Massaro, M. V., Bastian, R., y Pelicice, F. M. (2020). First evidence of a spawning site of the endangered fish Brycon orbignyanus (Valenciennes, 1850) (characiformes, bryconidae) in the middlE Uruguay River, Brazil. Acta Limnologica Brasiliensia, 32(3 m), 1–5. https://doi.org/10.1590/S2179-975X2220 Ricardo, M. C., Aguiar, C. A., Rizzo, E., y Bazzoli, N. (1996). Morfologia da micrópila e da células micropilar em teleósteos neotropicais de água doce. Arq. Bras. Med. Vet. Zootec, 17-24. Saleh, R. A., y Agarwal, A. (2002). Oxidative stress and male infertility: From research bench to clinical practice. Journal of Andrology, 23(6), 737–752. Sanches, E. G., Tosta, G. A. M., y Souza-Filho, J. J. (2013). Economic feasibility of cobia juvenile production (Rachycentron canadum). Boletim Do Instituto de Pesca, 39(1), 15–26. Sandoval-Vargas, L., Dumorné, K., Contreras, P., Farías, J. G., Figueroa, E., Risopatrón, J., y Valdebenito, I. (2021). Cryopreservation of coho salmon sperm (Oncorhynchus kisutch): Effect on sperm function, oxidative stress and fertilizing capacity. Aquaculture, 533(September). https://doi.org/10.1016/j.aquaculture.2020.736151 Sanocka, D., y Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology, 2(Table 2), 1–7. https://doi.org/10.1186/1477-7827-2-12 Sikka, S. (2001). Relative Impact of Oxidative Stress on Male Reproductive Function. Current Medicinal Chemistry, 8(7), 851–862. https://doi.org/10.2174/0929867013373039 Steiber, A., Kerner, J., y Hoppel, C. L. (2004). Carnitine: A nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine, 25(5–6), 455–473. https://doi.org/10.1016/j.mam.2004.06.006 Streit, D. P., Sirol, R. N., Ribeiro, R. P., Moraes, G. V., Vargas, L. D. M., y Watanabe, A. L. (2008). Qualitative parameters of the piapara semen (Leporinus elongatus Valenciennes, 1850). Brazilian Journal of Biology, 68(2), 373–377. https://doi.org/10.1590/S1519-69842008000200019 Suquet, M., Dreanno, C., Fauvel, C., Cosson, J., y Billard, R. (2000). Cryopreservation of sperm in marine fish. Aquaculture Research, 31(3), 231–243. https://doi.org/10.1046/j.1365-2109.2000.00445.x Xavier, A. M. M., Neumann, G., Sanches, E. A., Cardoso, S. U., y Bombardelli, R. A. (2021). Extenders with vitamins C and E applied to Rhamdia quelen sperm cryopreservation / Extensores com vitaminas C e aplicados à criopreservação de esperma de Rhamdia quelen. Brazilian Journal of Development, 7(12), 119898–119912. https://doi.org/10.34117/bjdv7n12-653 Zhu, Z., Li, R., Lv, Y., y Zeng, W. (2019). Melatonin protects rabbit spermatozoa from cryo-damage via decreasing oxidative stress. Cryobiology, 88(22), 1–8. https://doi.org/10.1016/j.cryobiol.2019.04.009 Zini, A., y Libman, J. (2014). Oxidative Stress and Male Infertility. Systems Biology of Free Radicals and Antioxidants, 9783642300, 1–4178. https://doi.org/10.1007/978-3-642-30018-9 https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/765/1316 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE LOS LLANOS |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png |
country_str |
Colombia |
collection |
Orinoquia |
title |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América |
spellingShingle |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América Guaje, Diana Medina-Robles, Víctor M. Amenaza bancos de germoplasma calidad seminal estrés oxidativo Threat germplasm banks semen quality oxidative stress Ameaça bancos de germoplasma qualidade do sêmen estresse oxidativo |
title_short |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América |
title_full |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América |
title_fullStr |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América |
title_full_unstemmed |
Antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de Sur América |
title_sort |
antioxidantes en la crioconservación de semen de peces: una revisión con énfasis en especies de agua dulce de sur américa |
title_eng |
Antioxidants in the cryopreservation of fish semen: a review with emphasis on freshwater species from south America |
description |
El rápido crecimiento de la población mundial ha conducido a una sobreexplotación de los recursos naturales y, los recursos hídricos no son la excepción; afectando las poblaciones de peces en todo el mundo. Además, la poca variabilidad en las especies de interés comercial y los pocos avances en el desarrollo de paquetes tecnológicos y productivos conllevan a que esta problemática se acentúe. La crioconservación seminal es una técnica que permite el resguardo del material genético durante tiempo indefinido, permitiendo su disponibilidad constante. Sin embargo, puede causar algunos efectos negativos sobre la integridad celular y sus funciones. Dentro de esto, la formación de cristales de hielo, el estrés osmótico y con gran relevancia el estrés oxidativo son los de mayor incidencia. De acuerdo a lo anterior, el uso de sustancias con capacidad de reducir los efectos del estrés oxidativo como lo son los antioxidantes pueden constituirse como una alternativa de mejora de estos procesos conllevando a la estandarización de protocolos mejorados para su aplicación en bancos de germoplasma. El objetivo de esta revisión es hacer una breve descripción de la crioconservación seminal como biotecnología reproductiva, sus usos e implicaciones y de algunos de los trabajos desarrollados en especies nativas de Sur América con el uso de sustancias antioxidantes.
|
description_eng |
The rapid growth of the world population has led to an overexploitation of natural resources and water resources are no exception; affecting fish populations around the world. Furthermore, the little variability in the species of commercial interest and the few advances in the development of technological and productive packages lead to this problem being accentuated. Seminal cryopreservation is a technique that allows the protection of genetic material for an indefinite period of time, allowing its constant availability. However, it can cause some negative effects on cellular integrity and functions. Within this, the formation of ice crystals, osmotic stress and, with great relevance, oxidative stress are those with the greatest incidence. According to the above, the use of substances with the capacity to reduce the effects of oxidative stress such as antioxidants can be constituted as an alternative to improve these processes, leading to the standardization of improved protocols for their application in germplasm banks. The aim of this review is to make a brief description of seminal cryopreservation as a reproductive biotechnology, its uses and implications and some of the work developed in native South American species with the use of antioxidant substances.
|
author |
Guaje, Diana Medina-Robles, Víctor M. |
author_facet |
Guaje, Diana Medina-Robles, Víctor M. |
topicspa_str_mv |
Amenaza bancos de germoplasma calidad seminal estrés oxidativo |
topic |
Amenaza bancos de germoplasma calidad seminal estrés oxidativo Threat germplasm banks semen quality oxidative stress Ameaça bancos de germoplasma qualidade do sêmen estresse oxidativo |
topic_facet |
Amenaza bancos de germoplasma calidad seminal estrés oxidativo Threat germplasm banks semen quality oxidative stress Ameaça bancos de germoplasma qualidade do sêmen estresse oxidativo |
citationvolume |
27 |
citationissue |
2 |
publisher |
Universidad de los Llanos |
ispartofjournal |
Orinoquia |
source |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/765 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Orinoquia - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Adames, M. S., de Toledo, C. P. R., Neumann, G., Buzzi, A. H., Buratto, C. N., Piana, P. A., y Bombardelli, R. A. (2015). Optimization of the sperm: Oocyte ratio and sperm economy in the artificial reproduction of Rhamdia quelen using fructose as a sperm motility modulator. Animal Reproduction Science, 161, 119–128. https://doi.org/10.1016/j.anireprosci.2015.08.014 Agarwal, A. y Prabakaran, S. A. (2005). Oxidative stress and antioxidants in male infertility: a difficult balance. Iranian Journal of Reproductive Medicine Iranian Journal of Reproductive Medicine, 3(1), 1–8. http://ssu.ac.ir/ijrm/index.php/ijrm/article/view/392 Aisen, E., Quintana, M., Medina, V., Morello, H., y Venturino, A. (2005). Ultramicroscopic and biochemical changes in ram spermatozoa cryopreserved with trehalose-based hypertonic extenders. Cryobiology, 50(3), 239–249. https://doi.org/10.1016/j.cryobiol.2005.02.002 Alves Pereira, F. (2015). Glutationa Reduzida e Adenosina trifosfato (ATP) na Criopreservação seminal de Tambaqui, Colossoma macropomum. Tese de Mestre. Brasil, Universidade Federal do Rio Grande. Ball, B. A. (2008). Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Animal Reproduction Science, 107(3–4), 257–267. https://doi.org/10.1016/j.anireprosci.2008.04.014 Bansal, A. K., y Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. Veterinary Medicine International, 2011. https://doi.org/10.4061/2011/686137 Cabrita, E., Horváth, Á., Marinović, Z., & Asturiano, J. F. (2022). Technologies and strategies for ex situ conservation of aquatic organisms: the role of cryopreservation in long-term management. In Cellular and Molecular Approaches in Fish Biology (pp. 1-48). Academic Press. Barreiros, A. L. B. S., David, J. M., y David, J. P. (2006). Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quimica Nova, 29(1), 113–123. https://doi.org/10.1590/s0100-40422006000100021 Betsy, J., y Kumar, S. (2020). Cryopreservation of Fish Gametes. https://doi.org/10.1007/978-981-15-4025-7_3 Bilodeau, J. F., Blanchette, S., Gagnon, C., y Sirard, M. A. (2001). Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 56(2), 275–286. https://doi.org/10.1016/S0093-691X(01)00562-3 Bucak, M. N., Ateşşahin, A., Varişli, Ö., Yüce, A., Tekin, N., y Akçay, A. (2007). The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen. Microscopic and oxidative stress parameters after freeze-thawing process. Theriogenology, 67(5), 1060–1067. https://doi.org/10.1016/j.theriogenology.2006.12.004 Bunaciu, A. A., Aboul-Enein, H. Y., y Fleschin, S. (2012). FTIR spectrophotometric methods used for antioxidant activity assay in medicinal plants. Applied Spectroscopy Reviews, 47(4), 245–255. https://doi.org/10.1080/05704928.2011.645260 Cabrita, E., Martínez-Páramo, S., Gavaia, P. J., Riesco, M. F., Valcarce, D. G., Sarasquete, C., Herráez, M. P., y Robles, V. (2014). Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture, 432, 389–401. https://doi.org/10.1016/j.aquaculture.2014.04.034 Cabrita, E., Robles, V., Cuñado, S., Wallace, J. C., Sarasquete, C., y Herráez, M. P. (2005). Evaluation of gilthead sea bream, Sparus aurata, sperm quality after cryopreservation in 5 ml macrotubes. Cryobiology, 50(3), 273–284. https://doi.org/10.1016/j.cryobiol.2005.02.005 Cabrita, E., Sarasquete, C., Martínez-Páramo, S., Robles, V., Beirão, J., Pérez-Cerezales, S., y Herráez, M. P. (2010). Cryopreservation of fish sperm: Applications and perspectives. Journal of Applied Ichthyology, 26(5), 623–635. https://doi.org/10.1111/j.1439-0426.2010.01556.x Calcagnotto, D., y De Almeida Toledo-Filho, S. (2000). Loss of genetic variability at the transferrin locus in five hatchery stocks of tambaqui (Colossoma macropomum). Genetics and Molecular Biology, 23(1), 127–130. https://doi.org/10.1590/S1415-47572000000100023 Cao, G., y Cutler, R. G. (1993). High concentrations of antioxidants may not improve defense against oxidative stress. Archives of Gerontology and Geriatrics, 17(3), 189–201. https://doi.org/10.1016/0167-4943(93)90050-R Carvalho, O. F. de, Ferreira, J. D. de J., Silveira, N. de A., y Freneau, G. E. (2002). Efeito oxidativo do óxido nítrico e infertilidade no macho. Jornal Brasileiro de Patologia e Medicina Laboratorial, 38(1), 33–38. https://doi.org/10.1590/s1676-24442002000100007 Chapman, B. B., Hulthén, K., Brodersen, J., Nilsson, P. A., Skov, C., Hansson, L. A., y Brönmark, C. (2012). Partial migration in fishes: Causes and consequences. Journal of Fish Biology, 81(2), 456–478. https://doi.org/10.1111/j.1095-8649.2012.03342.x Cosson, J. (2019). Fish Sperm Physiology: Structure, Factors Regulating Motility, and Motility Evaluation. In Biological Research in Aquatic Science. https://doi.org/10.5772/intechopen.85139 Costa LS, Fidelis GP, Cordeiro SL, et al.(2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother, 64(1), 21–28. doi:10.1016/j.biopha.2009.03.005 Cruzat, V. F., Petry, É. R., y Tirapegui, J. (2009). Glutamina: aspectos bioquímicos, metabólicos, moleculares e suplementação. Revista Brasileira de Medicina Do Esporte, 15(5), 392–397. https://doi.org/10.1590/s1517-86922009000600015 Da Costa, B. B., Marques, L. S., Lassen, P. G., Rodrigues, R. B., Da Rosa-Silva, H. T., Moreira, J. C. F., de Oliveira, D. L., y Streit, D. P. (2020). Effect of glutamine and cysteine supplementation on quality of cryopreserved sperm of South American silver catfish. Aquaculture Research, 52(5), 2173–2181. https://doi.org/10.1111/are.15070 Da Costa, B. B., Marques, L. S., Lassen, P. G., Rodrigues, R. B., Tais Da Rosa Silva, H., Moreira, J. C. F., y Streit, D. P. (2019). Effects of cysteine supplementation on the quality of cryopreserved sperm of South American silver catfish. Aquaculture Research, 51(2), 455–464. https://doi.org/10.1111/are.14389 Da Silva, E. C. B., y Guerra, M. M. P. (2012). Terapias antioxidantes na criopreservação espermática. Revista Portuguesa de Ciências Veterinárias, 111, 143–149. De Almeida-Monteiro, P. S., Oliveira-Araújo, M. S., Pinheiro, R. R. R., Lopes, J. T., Ferreira, Y. M., Montenegro, A. R., Melo-Maciel, M. A. P., y Salmito-Vanderley, C. S. B. (2017). Influence of vitamins C and e on the quality of cryopreserved semen Prochilodus brevis (Prochilodontidae, Teleostei). Semina: Ciencias Agrarias, 38(4), 2669–2680. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2669 de Oliveira Pedreira, A. C., Malacarne, A. M., Dalmaso, A. C. S., Carvalho, K. I. F. S., Chagas, T. V., da Silva Gambetta, M. I. R., Chiella, R. J., y Bombardelli, R. A. (2022). L-carnitine solution used on Rhamdia quelen thawed sperm activation boosts sperm movement, maintains larval quality, and permits to optimize the sperm use. Animal Reproduction Science, 245. https://doi.org/10.1016/j.anireprosci.2022.107054 Dickinson, D. A., y Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64, 1019–1026. https://doi.org/https://doi.org/10.1016/S0006-2952(02)01172-3 Dourado, O. F. (1981). Principais peixes e crustáceos dos açudes controlados pelo DNOCS. Convênio SUDENE/DNOCS. Félix, F., Oliveira, C. C. V., y Cabrita, E. (2021). Antioxidants in fish sperm and the potential role of melatonin. Antioxidants, 10(1), 1–29. https://doi.org/10.3390/antiox10010036 Fidalgo-Guerreiro, V. H., y FERREIRA, G. (2011). Mitigação de impactos à ictiofauna após barramentos de corpos d’água através de medidas socioeducativas e educação ambiental. In 1 CONGRESSO BRASILEIRO DE AVALIAÇÃO DE IMPACTO (Vol. 1, p. 2011). Figueroa, E., Farias, J. G., Lee-Estevez, M., Valdebenito, I., Risopatrón, J., Magnotti, C., Romero, J., Watanabe, I., y Oliveira, R. P. S. (2018). Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media increase sperm function and fertility rate in Atlantic salmon (Salmo salar). Aquaculture, 493, 1–8. https://doi.org/10.1016/j.aquaculture.2018.04.046 Food and Agriculture Organization (FAO). (2022). El estado mundial de la pesca y la acuicultura 2022. Hacia la transformación azul. In Fao. https://doi.org/https://doi.org/10.4060/cc0461 Food and Agriculture Organization of the United Nations (FAO). (2018). The State of World Fisheries and Aquaculture. Retrieved from http://www.fao.org/3/i9540en/i9540en.pdf Galo, J. M., Streit-Junior, D. P., Sirol, R. N., Ribeiro, R. P., Digmayer, M., Andrade, V. X. L., y Ebert, A. R. (2011). Anormalidades espermáticas de piracanjuba Brycon orbignyanus (Valenciennes, 1849) após a criopreservação. Brazilian Journal of Biology, 71(3), 693–699. https://doi.org/10.1590/S1519-69842011000400014 Gheller, S. M. M., Corcini, C. D., de Brito, C. R. C., Acosta, I. B., Tavares, G. C., Soares, S. L., Silva, A. C., Pires, D. M., y Varela Junior, A. S. (2019). Use of trehalose in the semen cryopreservation of Amazonian catfish Leiarius marmoratus. Cryobiology, 87(June 2018), 74–77. https://doi.org/10.1016/j.cryobiol.2019.02.001 Gülçin, I. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78(8), 803–811. https://doi.org/10.1016/j.lfs.2005.05.103 Hernández, C. L., Ortega-Lara, A., Sánchez-Garcés, G. C., y Alford, M. H. (2015). Genetic and Morphometric Evidence for the Recognition of Several Recently Synonymized Species of Trans-Andean Rhamdia (Pisces: Siluriformes: Heptapteridae). Copeia, 103(3), 563–579. https://doi.org/10.1643/CI-14-145 Holt, W. V. (2000a). Basic aspects of frozen storage of semen. Animal Reproduction Science, 62(1–3), 3–22. https://doi.org/10.1016/S0378-4320(00)00152-4 Holt, W. V. (2000b). Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology, 53(1), 47–58. https://doi.org/10.1016/S0093-691X(99)00239-3 Horizonte, B., Borges, J. C., Silva, M. R., Esper, C. R., y Franceschini, P. H. (2011). Membrana plasmática de espermatozoides bovinos: efeito de metabólitos do oxigênio, antioxidantes e criopreservação. Revista Brasileira de Reprodução Animal, 35(3), 303–314. Klaiwattana, P., Srisook, K., Srisook, E., Vuthiphandchai, V., y Neumvonk, J. (2016). Effect of cryopreservation on lipid composition and antioxidant enzyme activity of seabass (Lates calcarifer) sperm. Iranian Journal of Fisheries Sciences, 15(1), 157–169. http://www.jifro.ir/browse.php?a_id=940&sid=1&slc_lang=en%0Ahttps://www.cabdirect.org/cabdirect/abstract/20163044938 Kohen, R., y Nyska, A. (2002). Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicologic Pathology, 30(6), 620–650. https://doi.org/10.1080/0192623029016672 Lahnsteiner, F., y Caberlotto, S. (2012). Motility of gilthead seabream Sparus aurata spermatozoa and its relation to temperature, energy metabolism and oxidative stress. Aquaculture, 370–371, 76–83. https://doi.org/10.1016/j.aquaculture.2012.09.034 Lasso, L., Alvarez, G., y June, M. (1994). of Superoxide Cells during Cryopreservation. 15(3). Lima Assis, I. D., Palhares, P. C., Machado, G. J., Souza, J. G. D. S., Souza França, T. D., Oliveira Felizardo, V. D., y Murgas, L. D. S. (2019). Effect of melatonin on cryopreserved sperm of Prochilodus lineatus (Characiformes). CryoLetters, 40(3), 152-158. Lopes, J.T., Salmito-Vanderley, C.S.B., Almeida-Monteiro, P. S. (2016). Presença de antioxidantes no sêmen de teleósteos e sua utilização na suplementação de meios de congelação seminal. Revista Brasileira de Reprodução Animal, 40(1), 29–34. Lopes, J. T., Oliveira-Araújo, M. S., Nascimento, R. V. do, Montenegro, Y. M. F. A. R., y Salmito-Vanderley, C. S. B. (2018). Efeito de vitaminas e aminoácidos como suplementação da solução crioprotetora para a criopreservação do sêmen de tambaqui (Colossoma macropomum). In Acta Scientiae Veterinariae (Vol. 46, Issue August, pp. 1–8). Luberda, Z. (2005). The role of glutathione in mammalian gametes. Reproductive Biology, 5(1), 5–17. Maldonado-Ocampo, J., Vari, R., y Usma Oviedo, J. S. (2008). Checklist of the freshwater fishes of Colombia. Biota Colombiana, 9(2), 312. Marchioro, M. I., y Baldisserotto, B. (1999). Sobrevivência de alevinos de Jundiá (Rhamdia quelen Quoy & Gaimard, 1824) à variação de salinidade da água. Ciência Rural, 29(2), 315–318. https://doi.org/10.1590/s0103-84781999000200021 Maria, A. N., Azevedo, H. C., & Carneiro, P. C. F. (2011). Protocolo para criopreservação do sêmen de Tambaqui (Colossoma macropomum). Comunicado Técnico, 112, 8. Martínez-Páramo, S., Diogo, P., Dinis, M. T., Herráez, M. P., Sarasquete, C., y Cabrita, E. (2012). Incorporation of ascorbic acid and α-tocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology, 77(6), 1129–1136. https://doi.org/10.1016/j.theriogenology.2011.10.017 Mazur, P. (1984). Freezing of living cells: mechanisms and implications. The American Journal of Physiology, 247(3 Pt 1), 0–4. https://doi.org/10.1152/ajpcell.1984.247.3.C125 Medeiros, G. F., Mendes, A., Castro, R. A. B., Baú, E. C., Nader, H. B., y Dietrich, C. P. (2000). Distribution of sulfated glycosaminoglycans in the animal kingdom: Widespread occurrence of heparin-like compounds in invertebrates. Biochimica et Biophysica Acta - General Subjects, 1475(3), 287–294. https://doi.org/10.1016/S0304-4165(00)00079-9 Medina-Robles, V. M., Velasco-Santamaría, Y. M., & Cruz-Casallas, P. E. (2005). Aspectos generales de la crioconservación espermática en peces teleósteos. Revista Colombiana de Ciencias Pecuarias, 18(1), 34–48. file:///C:/Users/Cris/Desktop/REFER?NCIAS/Robles, Santamar?a, Casallas - Aspectos generales de la crioconservaci?n esperm?tica en peces tele?steos - 2005.pdf Migaud, H., Bell, G., Cabrita, E., McAndrew, B., Davie, A., Bobe, J., ... & Carrillo, M. (2013). Gamete quality and broodstock management in temperate fish. Reviews in Aquaculture, 5, S194-S223. Miliorini, A. B., Murgas, L. D. S., Rosa, P. V., Oberlender, G., Pereira, G. J. M., y Da Costa, D. V. (2011). A morphological classification proposal for curimba (Prochilodus lineatus) sperm damages after cryopreservation. Aquaculture Research, 42(2), 177–187. https://doi.org/10.1111/j.1365-2109.2010.02575.x Mojica, J. I., Usma Oviedo, J. S., Álvarez León, R., y Lasso, C. A. (2012). Libro rojo de peces dulceacuícolas. Motta, N. C., Egger, R. C., Monteiro, K. S., Vogel de Oliveira, A., y Solis Murgas, L. D. (2022). Effects of melatonin supplementation on the quality of cryopreserved sperm in the neotropical fish Prochilodus lineatus. Theriogenology, 179, 14–21. https://doi.org/10.1016/j.theriogenology.2021.11.012 Nascimento, R. V. do. (2021). Suplementação do meio de congelação seminal de Prochilodus brevis com polissacarídeos sulfatados extraídos de pele de tilápia e de algas marinhas. Tese de Doutorado. Brasil, Universidade estadual do ceará, 2021. https://pesquisa.bvsalud.org/portal/resource/pt/vtt-221996 Navarro, R. D., Navarro, F. K. S. P., Felizardo, V. de O., Murgas, L. D. S., y Andrade, E. de S. (2014). Qualidade de sêmen de Curimba (Prochilodus lineatus) criopreservados com vitaminas. Acta Scientiarum - Technology, 36(1), 55–60. https://doi.org/10.4025/actascitechnol.v36i1.19586 Nordberg, J., y Arnér, E. S. J. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine, 31(11), 1287–1312. https://doi.org/10.1016/S0891-5849(01)00724-9 Olfati Karaji, R., Daghigh Kia, H., y Ashrafi, I. (2014). Effects of in combination antioxidant supplementation on microscopic and oxidative parameters of freeze-thaw bull sperm. Cell and Tissue Banking, 15(3), 461–470. https://doi.org/10.1007/s10561-013-9412-y Palhares, P. C., Assis, I. de L., Machado, G. J., de Freitas, R. M. P., de Freitas, M. B. D., Paula, D. A. J., Carneiro, W. F., Motta, N. C., y Murgas, L. D. S. (2021). Sperm characteristics, peroxidation lipid and antioxidant enzyme activity changes in milt of Brycon orbignyanus cryopreserved with melatonin in different freezing curves. Theriogenology, 176, 18–25. https://doi.org/10.1016/j.theriogenology.2021.09.013 Palhares, P. C., Assis, I. de L., Souza, J. G. da S., França, T. de S., Egger, R. C., Paula, D. A. de J., y Murgas, L. D. S. (2020). Effect of melatonin supplementation to a cytoprotective medium on post-thawed Brycon orbignyanus sperm quality preserved during different freezing times. Cryobiology, 96, 159–165. https://doi.org/10.1016/j.cryobiol.2020.07.002 Paula, D. A. J., Andrade, E. S., Murgas, L. D. S., Felizardo, V. O., Winkaler, E. U., Zeviani, W., y Freitas, R. T. F. (2012). Vitamin E and reduced glutathione in Prochilodus lineatus (curimba) semen cryopreservation (Characiformes: Prochilodontidae). Neotropical Ichthyology, 10(3), 661–665. https://doi.org/10.1590/S1679-62252012005000016 Pereira Maduenho, L., y Martinez, C. B. R. (2008). Acute effects of diflubenzuron on the freshwater fish Prochilodus lineatus. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 148(3), 265–272. https://doi.org/10.1016/j.cbpc.2008.06.010 Pereira, V. A., de Alencar, D. B., Araújo, I. W. F. de, Rodrigues, J. A. G., Lopes, J. T., Nunes, L. T., Ferreira, Y. M., Lobato, J. S., Montenegro, A. R., y Salmito Vanderley, C. S. B. (2020). Supplementation of cryodiluent media with seaweed or Nile tilapia skin sulfated polysaccharides for freezing of Colossoma macropomum (Characiformes: Serrasalmidae) semen. Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735553 Reiter, R. J. (2000). Melatonin: Lowering the high price of free radicals. News in Physiological Sciences, 15(5), 246–250. https://doi.org/10.1152/physiologyonline.2000.15.5.246 Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 64(1), 21–28. https://doi.org/10.1016/j.biopha.2009.03.005 Gadea, J., Molla, M., Selles, E., Marco, M. A., Garcia-Vazquez, F. A., & Gardon, J. C. (2011). Reduced glutathione content in human sperm is decreased after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology, 62(1), 40–46. https://doi.org/10.1016/j.cryobiol.2010.12.001 Medina-Robles, V. M., Velasco-Santamaría, Y. M., & Cruz-Casallas, P. E. (2005). Aspectos generales de la crioconservación espermática en peces teleósteos. Revista Colombiana de Ciencias Pecuarias, 18(1), 34–48. file:///C:/Users/Cris/Desktop/REFER?NCIAS/Robles, Santamar?a, Casallas - Aspectos generales de la crioconservaci?n esperm?tica en peces tele?steos - 2005.pdf Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., & Rocha, L. A. (2016). Fish biodiversity and conservation in South America. Journal of fish biology, 89(1), 12–47. https://doi.org/10.1111/jfb.13016 Reynalte-Tataje, D. A., Soares, M. da L., Massaro, M. V., Bastian, R., y Pelicice, F. M. (2020). First evidence of a spawning site of the endangered fish Brycon orbignyanus (Valenciennes, 1850) (characiformes, bryconidae) in the middlE Uruguay River, Brazil. Acta Limnologica Brasiliensia, 32(3 m), 1–5. https://doi.org/10.1590/S2179-975X2220 Ricardo, M. C., Aguiar, C. A., Rizzo, E., y Bazzoli, N. (1996). Morfologia da micrópila e da células micropilar em teleósteos neotropicais de água doce. Arq. Bras. Med. Vet. Zootec, 17-24. Saleh, R. A., y Agarwal, A. (2002). Oxidative stress and male infertility: From research bench to clinical practice. Journal of Andrology, 23(6), 737–752. Sanches, E. G., Tosta, G. A. M., y Souza-Filho, J. J. (2013). Economic feasibility of cobia juvenile production (Rachycentron canadum). Boletim Do Instituto de Pesca, 39(1), 15–26. Sandoval-Vargas, L., Dumorné, K., Contreras, P., Farías, J. G., Figueroa, E., Risopatrón, J., y Valdebenito, I. (2021). Cryopreservation of coho salmon sperm (Oncorhynchus kisutch): Effect on sperm function, oxidative stress and fertilizing capacity. Aquaculture, 533(September). https://doi.org/10.1016/j.aquaculture.2020.736151 Sanocka, D., y Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology, 2(Table 2), 1–7. https://doi.org/10.1186/1477-7827-2-12 Sikka, S. (2001). Relative Impact of Oxidative Stress on Male Reproductive Function. Current Medicinal Chemistry, 8(7), 851–862. https://doi.org/10.2174/0929867013373039 Steiber, A., Kerner, J., y Hoppel, C. L. (2004). Carnitine: A nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine, 25(5–6), 455–473. https://doi.org/10.1016/j.mam.2004.06.006 Streit, D. P., Sirol, R. N., Ribeiro, R. P., Moraes, G. V., Vargas, L. D. M., y Watanabe, A. L. (2008). Qualitative parameters of the piapara semen (Leporinus elongatus Valenciennes, 1850). Brazilian Journal of Biology, 68(2), 373–377. https://doi.org/10.1590/S1519-69842008000200019 Suquet, M., Dreanno, C., Fauvel, C., Cosson, J., y Billard, R. (2000). Cryopreservation of sperm in marine fish. Aquaculture Research, 31(3), 231–243. https://doi.org/10.1046/j.1365-2109.2000.00445.x Xavier, A. M. M., Neumann, G., Sanches, E. A., Cardoso, S. U., y Bombardelli, R. A. (2021). Extenders with vitamins C and E applied to Rhamdia quelen sperm cryopreservation / Extensores com vitaminas C e aplicados à criopreservação de esperma de Rhamdia quelen. Brazilian Journal of Development, 7(12), 119898–119912. https://doi.org/10.34117/bjdv7n12-653 Zhu, Z., Li, R., Lv, Y., y Zeng, W. (2019). Melatonin protects rabbit spermatozoa from cryo-damage via decreasing oxidative stress. Cryobiology, 88(22), 1–8. https://doi.org/10.1016/j.cryobiol.2019.04.009 Zini, A., y Libman, J. (2014). Oxidative Stress and Male Infertility. Systems Biology of Free Radicals and Antioxidants, 9783642300, 1–4178. https://doi.org/10.1007/978-3-642-30018-9 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2023-07-04 |
date_accessioned |
2023-07-04T00:00:00Z |
date_available |
2023-07-04T00:00:00Z |
url |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/765 |
url_doi |
https://doi.org/10.22579/20112629.765 |
issn |
0121-3709 |
eissn |
2011-2629 |
doi |
10.22579/20112629.765 |
citationendpage |
765 |
url2_str_mv |
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/765/1316 |
_version_ |
1811200647671840768 |