Titulo:

Un modelo matemático para el estudio y análisis de la dinámica de la COVID-19 en Colombia
.

Sumario:

Se presenta un modelo matemático para analizar la dinámica de la COVID-19, el cual está basado en el modelo SEIR e incluye las subpoblaciones de asintomáticos (H), hospitalizados (D) y fallecidos (D), por lo que se denomina SEAIHRD. El modelo planteado se ha validado con datos reportados en Colombia durante el periodo de tiempo de la epidemia previo a la finalización del aislamiento preventivo obligatorio, así como para la definición de parámetros que también incluyen estimaciones realizadas en trabajo previos asociadas a la dinámica de transmisión del virus. Se implementó elmodelo matemático en Python para la solución del sistema de ecuaciones diferenciales ordinarias en tres diferentes escenarios de la dinámica de la enfermedad para la si... Ver más

Guardado en:

0121-3709

2011-2629

25

2021-06-16

65

76

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Descripción
Sumario:Se presenta un modelo matemático para analizar la dinámica de la COVID-19, el cual está basado en el modelo SEIR e incluye las subpoblaciones de asintomáticos (H), hospitalizados (D) y fallecidos (D), por lo que se denomina SEAIHRD. El modelo planteado se ha validado con datos reportados en Colombia durante el periodo de tiempo de la epidemia previo a la finalización del aislamiento preventivo obligatorio, así como para la definición de parámetros que también incluyen estimaciones realizadas en trabajo previos asociadas a la dinámica de transmisión del virus. Se implementó elmodelo matemático en Python para la solución del sistema de ecuaciones diferenciales ordinarias en tres diferentes escenarios de la dinámica de la enfermedad para la simulación computacional: 1) sin medidas de restricción (no hacer nada), 2) con medidas moderadas, y 3) con medidas fuertes. Los resultados cualitativos sugieren un comportamiento similar al reportado por los datos del Instituto Nacional de Salud de Colombia y muestran las consecuencias de los escenarios extremos, es decir, de no haber hecho nada o si se hubieran implementado medidas restrictivas muy fuertes. Ladinámica poblacional del modelo es cercana a la real permitiendo la estimación de los picos de contagio y casos infectados, así como la potencial población que requerirá hospitalización o termine fallecida. Finalmente, el modelo matemático propuesto hace un compromiso entre sencillez y afinidad al comportamiento de la dinámica de la enfermedad para su potencial adaptación en otras subpoblaciones o regiones del país.
ISSN:0121-3709