Titulo:

Chlorella, ¿un potencial biofertilizante?
.

Sumario:

Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas... Ver más

Guardado en:

0121-3709

2011-2629

23

2019-12-16

Orinoquia - 2020

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unillanos_orinoquia_57_article_582
record_format ojs
spelling Chlorella, ¿un potencial biofertilizante?
Chlorella, a potential biofertilizer?
Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas microalgas como biofertilizantes se denomina algalización. Durante este proceso se usan principalmente clorofitas por su alta tasa de crecimiento, la facilidad de su cultivo a gran escala, y su adaptación a las condiciones del suelo. El género Chlorella es de gran interés porque diversos estudios han mostrado que puede ayudar en la fijación del nitrógeno, mejorar las propiedades físicas y químicas del suelo, y producir sustancias que promueven el desarrollo de la planta y el control de infecciones. Por esta razón, las microalgas del género Chlorella representan una alternativa viable para la biofertilización, generando beneficios no solo para la producción agrícola sino también para el medio ambiente.
Microalgae are photoautotrophic organisms with fast growth and the ability to adapt to different environments. They convert carbon dioxide into biomass and are considered to have great biotechnological potential because of it. Algal biomass can be used in food and bioactive compounds industry, in biofuels production, in bioremediation and biofertilization. As biofertilizers, chlorophytes and cyanophytes microalgae produce polysaccharides (mucilage) that can avoid erosion, improve the structure and organic matter content in the soil, and increase the ions concentration for crop plants. Thus, reducing the need for conventional crop chemical fertilizers. The use of this microalgae as biofertilizers is called algalization. Algalization uses mainly chlorophytes due to their high growth rate, their simple large scale cultivation, and their adaptation to soil conditions. Chlorella genus is of special interest because research has shown that it can help with nitrogen fixation, improve physical and chemical properties of the soil, and produce substances that can promote plant development and infections control. Therefore, microalgae from Chlorella genus are a viable alternative for biofertilization, generating benefits for agricultural production and the environment.
Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
algalization
chlorophytes
cyanophytes
soil improvement
algalización
cianofitas
clorofitas
mejoramiento de suelos
algalização
clorofíceas
cianofíceas
melhoramento do solo
23
2
Artículo de revista
Journal article
2019-12-16T00:00:00Z
2019-12-16T00:00:00Z
2019-12-16
application/pdf
Universidad de los Llanos
Orinoquia
0121-3709
2011-2629
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/582
10.22579/20112629.582
https://doi.org/10.22579/20112629.582
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Orinoquia - 2020
Abd Elhafz A, Abd Elhafz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. Recent Res Sci Technol. 2015;7:14-21.
Adessia A, De Carvalhoc RC, De Philippisa R, Branquinhoc C, Da Silva JM. Microbial extracellular polymeric substances improve water retention indryland biological soil crusts. Soil Biol Biochem. 2018;116:67-69.
Agwa OK, Ogugbue CJ, Williams EE. Field Evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 2017;12(4):181-189.
Al-Shakankery FM, Hamouda RA, Ammar MM. The promotive effect of different concentrations of marine algae as biofertilizers on growth and yield of maize (Zea mays L.) plants. J chem Biol Phys Sci. 2014; 4:43201-43211.
Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function: cultivating biocrust mosses. Restor Ecol. 2016;24:324-335. DOI: 10.1111/rec.12311
Arce MI, Méndoza-Lera C, Almagro M, Catalán N, Romaní A, Martí E, Gómez R, et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev. 2019;188:441-453.
Awale R, Machado S, Ghimire R, Bista P. 2017. Soil Health. In: Yorgey G, Kruger C, (Editors). Advances in dryland farming in the Inland Pacifc Northwest. Washington State University. p. 47-98.
Baumann K, Glaser K, Mutz JE, Karsten U, Maclennan A, Hu Y, Michalikd D, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol Biochem. 2017;109:156-166. DOI: 10.1016/j.soilbio.2017.02.011
Beltrame A, Pascholati SF. Cianobactérias e algas reduzem os sintomas causados por Tobacco mosaic virus (TMV) em plantas de fumo. Summa Phytopathol. 2011;37(2):140-145.
Bileva T. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J Earth Sci Clim Change. 2013;4:136-138.
Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:33.
Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard - Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. DOI: 1485. DOI: 10.3389/fmicb.2017.01485
Chacón TL. 2010. Efecto de la aplicación de soluciones de Chlorella vulgaris y Scenedesmus obliquus sobre el contenido de compuestos funcionales en germinados de brócoli (Brassica oleracea var itálica). Magister en diseño y gestión de procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá DC, Colombia. 106 p.
Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena. 2016;148(2): 117-125. DOI: 10.1016/j.catena.2016.06.017
Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of microalgae for biodiesel feedstock. Adv Microbiol. 2014a;4:365-376.
Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. J Arid Environ. 2014b;67:521-527.
Cólica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70. DOI: 10.1016/j.soilbio.2013.09.017
Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9(5):793-800. DOI: 10.1007/s12649-017-9873-5
Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valor. 2017;8:1-10. DOI: 10.1007/s12649-017-0123-7
Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. http://orgprints.org/17043/1/17043.pdf (5 March, 2019).
Elarroussia H, Elmernissia N, Benhimaa R, Isam MEK, Najib B, Abedelaziz S, Imane W. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016;7:55-63.
El Modafar C, Elgadda M, El Boutachfaitib R, Abouraicha E, Zehhara N, Petit E, et al. Induction of natural defence accompanied by salicylic aciddependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hort. 2012;138:55-63. doi.org/10.1016/j.scienta.2012.02.011
El-Sheekh MM, Khairy HM, El-Shenody R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iranian J Environ Health Sci Eng. 2012;9(1):10. DOI: 10.1186/1735-2746-9-10
Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci. 2008;4:165-169.
Felde VJMNL, Chamizo S, Felix-Henningsen P, Drahorad SL. What stabilizes biological soil crusts in the Negev Desert?. Plant soil. 2018;429(1-2):9-18. DOI: 10.1007/s11104-017-3459-7
Fischer T, Veste M, Bens O, Hüttl RF. Dew formation on the surface of biological soil crusts in central european sand ecosystems. Biogeosciences Discussions. 2012;9:8075-8092.
Ghiloufi W, Büdel B, Chaieb M. Effects of biological soil crusts on a mediterranean perennial grass (Stipatanacissima, L.). Plant Biosyst. 2016;151:158-167. DOI: 10.1080/11263504.2015.1118165
Ghosh AK. Functions and bio-functions of soil and its restoration. IJRAR - Int J Res Anal Rev. 2018;5(3):672-677.
Grzzesik M, Romanowska-Duda Z. Improvements germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud. 2014;23:1147-1153.
Grzzesik M, Romanowska-Duda Z. Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24(3): 1003-1012. DOI: 10.15244/pjoes/34667
Grzzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55:510-521.
Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43-50.
Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol. 2012;28(4):1459-1466.
Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxins in cyanobacteria. Curr Microbiol. 2010;6(5)1:361-369.
Iyovo GD, Du G, Chen J. Sustainable biomethane, biofertilizer and biodiesel system from poultry waste. Indian J Sci Technol. 2010;3(10):1062-1069.
Kholssi R, Marks EAN, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing efect of Chlorella sorokiniana suspensions on wheat growth. J Plant Growth Regul. 2018; 1-6. DOI: 10.1007/s00344-018-9879-7
Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, Kim BH. Effect of biostimulator, Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J. 2018;34(6):567-574. DOI: 10.5423/PPJ.FT.11.2018.0254
Kim MJ, Shim CK, Kim YK, Park JH, Hong SJ, Ji HJ, Han EJ, Yoon JC. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J Hortic Sci Technol. 2014;32:872-878.
Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM). 2015; 6(2):176-181. DOI: 10.5958/0976-4038.2015.00030.5
Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci. 2010;53:1135-1141.
Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol. 2014;48:307-315. DOI: 10.1021/es403785j
Lin CS, Chou TL, Wu JT. Biodiversity of soil algae in the farmlands of mid-taiwan. Bot Stud. 2013;54:41. DOI: 10.1186/1999-3110-54-41
Liu J, Chen F. Biology and industrial applications of Chlorella: Advances and prospects. Adv Biochem Eng Biotechnol. 2016a;153:1-35.
Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016b;14(10):191. DOI: 10.3390/md14100191
Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the Southwest Kalahari, Botswana. Soil Biol Biochem. 2010;42:313-318. DOI: 10.1016/j.soilbio.2009.11.009
Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91-97.
Maqubela M, Mnkeni P, Malam Issa O, Pardo M, D’Acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79-92.
Maqubela MP, Muchaonyerwa P, Mnkeni NS. Inoculation effects of two south african cyanobacteria strains on aggregate stability of a silt loam soil. Afr J Biotechnol. 2012;11:10726-10735.
Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17(6): 504-516. DOI: 10.1007/s10646-008-0204-2
Moreno-García L, Adjallé K, Barnabé S, Raghavan G. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493-506.
Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant soil. 2010;331:217.
Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017;37(1):37-52. DOI: 10.3109/07388551.2015.1108956
Osman M, El-Sheekh M, El-Naggar A, Gheda S. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils. 2010;46:861-875.
Özdemir S, Sukatar A, Öztekin GB. Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. J Agric Sci. 2016;22:596-605.
Pemmaraju D, Appidi T, Minhas G, Singh SP, Khan N, Pal M, Srivastava R, Rengan AK. Chlorophyll rich biomolecular fraction of a cadamba loaded into polymeric nanosystem coupled with photothermal therapy: a synergistic approach for cancer theranostics. Int J Biol Macromol. 2018;110:383-391.
Rana A, Joshi M, Prasanna R, Shivay RS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol. 2012;50:118.
Rajasekaran S, Sundaramoorthy P, Sankar GK. Effect of FYM, N, P fertilizers and biofertilizers on germination and growth of paddy (Oryza sativa L.). Int Lett Nat Sci. 2015;35:59-65.
Raposo MFDJ, De Morais RMSC. Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int J Agric Biol. 2011;13:719-724.
Raposo MF, De Morais RM, Bernardo de Morais AM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2013;11(1): 233-252. DOI:10.3390/md11010233
Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394-404. DOI: 10.1016/j.rser.2018.04.034
Romanowska-Duda ZB, Grzesik M, Owczarczyk A, Mazur-Marzec H. 2010. Impact of intra and extracellular substances fromcyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). In: 20th International Conference on Plant Growth Substance (IPGSA), book of abstracts 28.07- 02.08.2010. Universitat Rovira I Virgili, Tarragona, Spain, 118.
Sahu D, Priyadarshani L, Rath B. Cyanobacteria as potential biofertilizer. CIBTech Journal of Microbiology. 2012;1(2-3):20-26.
Sassi KKB, Silva JA, Calixto CD, Sassi R, Sassi CFC. Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Rev Ciênc Agron. 2019;50(1):54-65. DOI: 10.5935/1806-6690.20190007
Schreiber C, Henning S, Lucy H, Christoph B, Bärbel A, Josefne K, Silvia DS, et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Psychol. 2018; 30(5):2827-2836
Shanan NT, Higazy AM. Integrated biofertilization management and cyanobacteria application to improven growth and flower quality of Matthiola incana. Res J Agric Biol Sci. 2009;5(6):1162-1168.
Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29(6):896-907. DOI: 10.1016/j.biotechadv.2011.07.009
Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev. 2016;55:909-941. DOI: 10.1016/j.rser.2015.11.026
Taher MT, Mohamed AY. Improvement of growth parameters of Zea mays and properties of soil inoculated with two Chlorella species. Rep Opinion. 2015;7: 22-27.
Tarkowski P, Ge LY, Yong JWH, Tan SN. Analytical methods for cytokinins. Trends Anal Chem. 2009;28:323-335.
Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere. 2008;70: 1919-1928. DOI: 10.1016/j.chemosphere.2007.07.038
Venkataraman, GS. 1972. Algal biofertilizers and rice cultivation, Today and Tommorrow’s. New Delhi. Pp 71.
Wang SK, Hu YR, Wang F, Stiles AR, Liu CZ. Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology. 2014;156:117-122.
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949-982.
Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotech. 2013;4(3):405-413. DOI:10.1016/j.copbio.2013.04.004
Williams L, Loewen-Schneider K, Maier S, Büdel B. Cyanobacterial diversity of western european biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol. 2016;92(10): fiw157. DOI: 10.1093/femsec/fiw157
Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology. 2014;83:391-397.
Zhuang WW, Downing A, Zhang YM. The influence of biological soil crust on 15 N traslocation in soil and vascular plant in a temperate desert of Nortwest China. J Plant Ecol. 2014;8:1-9.
https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/582/pdf
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE LOS LLANOS
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDELOSLLANOS/logo.png
country_str Colombia
collection Orinoquia
title Chlorella, ¿un potencial biofertilizante?
spellingShingle Chlorella, ¿un potencial biofertilizante?
Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
algalization
chlorophytes
cyanophytes
soil improvement
algalización
cianofitas
clorofitas
mejoramiento de suelos
algalização
clorofíceas
cianofíceas
melhoramento do solo
title_short Chlorella, ¿un potencial biofertilizante?
title_full Chlorella, ¿un potencial biofertilizante?
title_fullStr Chlorella, ¿un potencial biofertilizante?
title_full_unstemmed Chlorella, ¿un potencial biofertilizante?
title_sort chlorella, ¿un potencial biofertilizante?
title_eng Chlorella, a potential biofertilizer?
description Las microalgas son organismos fotoautótrofos con un rápido crecimiento y la habilidad de adaptarse a diversos ambientes. Convierten el dióxido de carbono en biomasa y debido a esto, se considera que tienen gran potencial biotecnológico. La biomasa algal puede usarse en la industria alimenticia y de compuestos bioactivos, en la producción de biocombustibles, en la bioremediación y biofertilización. Como biofertilizantes, las microalgas clorofitas y cianofitas, producen polisacáridos (mucílago) que pueden evitar la erosión, mejorar la estructura y el contenido de material orgánica de los suelos, y aumentar la concentración de iones en los cultivos. Reduciendo de esta forma la necesidad de fertilizantes químicos convencionales. El uso de estas microalgas como biofertilizantes se denomina algalización. Durante este proceso se usan principalmente clorofitas por su alta tasa de crecimiento, la facilidad de su cultivo a gran escala, y su adaptación a las condiciones del suelo. El género Chlorella es de gran interés porque diversos estudios han mostrado que puede ayudar en la fijación del nitrógeno, mejorar las propiedades físicas y químicas del suelo, y producir sustancias que promueven el desarrollo de la planta y el control de infecciones. Por esta razón, las microalgas del género Chlorella representan una alternativa viable para la biofertilización, generando beneficios no solo para la producción agrícola sino también para el medio ambiente.
description_eng Microalgae are photoautotrophic organisms with fast growth and the ability to adapt to different environments. They convert carbon dioxide into biomass and are considered to have great biotechnological potential because of it. Algal biomass can be used in food and bioactive compounds industry, in biofuels production, in bioremediation and biofertilization. As biofertilizers, chlorophytes and cyanophytes microalgae produce polysaccharides (mucilage) that can avoid erosion, improve the structure and organic matter content in the soil, and increase the ions concentration for crop plants. Thus, reducing the need for conventional crop chemical fertilizers. The use of this microalgae as biofertilizers is called algalization. Algalization uses mainly chlorophytes due to their high growth rate, their simple large scale cultivation, and their adaptation to soil conditions. Chlorella genus is of special interest because research has shown that it can help with nitrogen fixation, improve physical and chemical properties of the soil, and produce substances that can promote plant development and infections control. Therefore, microalgae from Chlorella genus are a viable alternative for biofertilization, generating benefits for agricultural production and the environment.
author Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
author_facet Ortiz-Moreno, Martha L.
Sandoval-Parra, Karen X.
Solarte-Murillo, Laura V.
topic algalization
chlorophytes
cyanophytes
soil improvement
algalización
cianofitas
clorofitas
mejoramiento de suelos
algalização
clorofíceas
cianofíceas
melhoramento do solo
topic_facet algalization
chlorophytes
cyanophytes
soil improvement
algalización
cianofitas
clorofitas
mejoramiento de suelos
algalização
clorofíceas
cianofíceas
melhoramento do solo
topicspa_str_mv algalización
cianofitas
clorofitas
mejoramiento de suelos
algalização
clorofíceas
cianofíceas
melhoramento do solo
citationvolume 23
citationissue 2
publisher Universidad de los Llanos
ispartofjournal Orinoquia
source https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/582
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Orinoquia - 2020
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Abd Elhafz A, Abd Elhafz A, Gaur SS, Hamdany N, Osman M, Lakshmi TVR. Recent Res Sci Technol. 2015;7:14-21.
Adessia A, De Carvalhoc RC, De Philippisa R, Branquinhoc C, Da Silva JM. Microbial extracellular polymeric substances improve water retention indryland biological soil crusts. Soil Biol Biochem. 2018;116:67-69.
Agwa OK, Ogugbue CJ, Williams EE. Field Evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 2017;12(4):181-189.
Al-Shakankery FM, Hamouda RA, Ammar MM. The promotive effect of different concentrations of marine algae as biofertilizers on growth and yield of maize (Zea mays L.) plants. J chem Biol Phys Sci. 2014; 4:43201-43211.
Antoninka A, Bowker MA, Reed SC, Doherty K. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function: cultivating biocrust mosses. Restor Ecol. 2016;24:324-335. DOI: 10.1111/rec.12311
Arce MI, Méndoza-Lera C, Almagro M, Catalán N, Romaní A, Martí E, Gómez R, et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev. 2019;188:441-453.
Awale R, Machado S, Ghimire R, Bista P. 2017. Soil Health. In: Yorgey G, Kruger C, (Editors). Advances in dryland farming in the Inland Pacifc Northwest. Washington State University. p. 47-98.
Baumann K, Glaser K, Mutz JE, Karsten U, Maclennan A, Hu Y, Michalikd D, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol Biochem. 2017;109:156-166. DOI: 10.1016/j.soilbio.2017.02.011
Beltrame A, Pascholati SF. Cianobactérias e algas reduzem os sintomas causados por Tobacco mosaic virus (TMV) em plantas de fumo. Summa Phytopathol. 2011;37(2):140-145.
Bileva T. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J Earth Sci Clim Change. 2013;4:136-138.
Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:33.
Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard - Water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. DOI: 1485. DOI: 10.3389/fmicb.2017.01485
Chacón TL. 2010. Efecto de la aplicación de soluciones de Chlorella vulgaris y Scenedesmus obliquus sobre el contenido de compuestos funcionales en germinados de brócoli (Brassica oleracea var itálica). Magister en diseño y gestión de procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá DC, Colombia. 106 p.
Chamizo S, Rodríguez-Caballero E, Román JR, Cantón Y. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena. 2016;148(2): 117-125. DOI: 10.1016/j.catena.2016.06.017
Chen X, He G, Deng Z, Wang N, Jiang W, Chen S. Screening of microalgae for biodiesel feedstock. Adv Microbiol. 2014a;4:365-376.
Chen L, Rossi F, Deng S, Liu Y, Wang G, Adessi A, De Philippis R. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. J Arid Environ. 2014b;67:521-527.
Cólica G, Li H, Rossi F, Li D, Liu Y, De Philippis R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem. 2014;68:62-70. DOI: 10.1016/j.soilbio.2013.09.017
Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9(5):793-800. DOI: 10.1007/s12649-017-9873-5
Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valor. 2017;8:1-10. DOI: 10.1007/s12649-017-0123-7
Dubey A, Dubey DK. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. http://orgprints.org/17043/1/17043.pdf (5 March, 2019).
Elarroussia H, Elmernissia N, Benhimaa R, Isam MEK, Najib B, Abedelaziz S, Imane W. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016;7:55-63.
El Modafar C, Elgadda M, El Boutachfaitib R, Abouraicha E, Zehhara N, Petit E, et al. Induction of natural defence accompanied by salicylic aciddependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hort. 2012;138:55-63. doi.org/10.1016/j.scienta.2012.02.011
El-Sheekh MM, Khairy HM, El-Shenody R. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa. Iranian J Environ Health Sci Eng. 2012;9(1):10. DOI: 10.1186/1735-2746-9-10
Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci. 2008;4:165-169.
Felde VJMNL, Chamizo S, Felix-Henningsen P, Drahorad SL. What stabilizes biological soil crusts in the Negev Desert?. Plant soil. 2018;429(1-2):9-18. DOI: 10.1007/s11104-017-3459-7
Fischer T, Veste M, Bens O, Hüttl RF. Dew formation on the surface of biological soil crusts in central european sand ecosystems. Biogeosciences Discussions. 2012;9:8075-8092.
Ghiloufi W, Büdel B, Chaieb M. Effects of biological soil crusts on a mediterranean perennial grass (Stipatanacissima, L.). Plant Biosyst. 2016;151:158-167. DOI: 10.1080/11263504.2015.1118165
Ghosh AK. Functions and bio-functions of soil and its restoration. IJRAR - Int J Res Anal Rev. 2018;5(3):672-677.
Grzzesik M, Romanowska-Duda Z. Improvements germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Pol J Environ Stud. 2014;23:1147-1153.
Grzzesik M, Romanowska-Duda Z. Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24(3): 1003-1012. DOI: 10.15244/pjoes/34667
Grzzesik M, Romanowska-Duda Z, Kalaji HM. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica. 2017;55:510-521.
Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol. 2010;22:43-50.
Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol. 2012;28(4):1459-1466.
Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxins in cyanobacteria. Curr Microbiol. 2010;6(5)1:361-369.
Iyovo GD, Du G, Chen J. Sustainable biomethane, biofertilizer and biodiesel system from poultry waste. Indian J Sci Technol. 2010;3(10):1062-1069.
Kholssi R, Marks EAN, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing efect of Chlorella sorokiniana suspensions on wheat growth. J Plant Growth Regul. 2018; 1-6. DOI: 10.1007/s00344-018-9879-7
Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG, Kim BH. Effect of biostimulator, Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J. 2018;34(6):567-574. DOI: 10.5423/PPJ.FT.11.2018.0254
Kim MJ, Shim CK, Kim YK, Park JH, Hong SJ, Ji HJ, Han EJ, Yoon JC. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J Hortic Sci Technol. 2014;32:872-878.
Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM). 2015; 6(2):176-181. DOI: 10.5958/0976-4038.2015.00030.5
Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD. Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci. 2010;53:1135-1141.
Lan S, Zhang Q, Wu L, Liu Y, Zhang D, Hu C. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol. 2014;48:307-315. DOI: 10.1021/es403785j
Lin CS, Chou TL, Wu JT. Biodiversity of soil algae in the farmlands of mid-taiwan. Bot Stud. 2013;54:41. DOI: 10.1186/1999-3110-54-41
Liu J, Chen F. Biology and industrial applications of Chlorella: Advances and prospects. Adv Biochem Eng Biotechnol. 2016a;153:1-35.
Liu L, Pohnert G, Wei D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs. 2016b;14(10):191. DOI: 10.3390/md14100191
Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the Southwest Kalahari, Botswana. Soil Biol Biochem. 2010;42:313-318. DOI: 10.1016/j.soilbio.2009.11.009
Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91-97.
Maqubela M, Mnkeni P, Malam Issa O, Pardo M, D’Acqui L. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79-92.
Maqubela MP, Muchaonyerwa P, Mnkeni NS. Inoculation effects of two south african cyanobacteria strains on aggregate stability of a silt loam soil. Afr J Biotechnol. 2012;11:10726-10735.
Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17(6): 504-516. DOI: 10.1007/s10646-008-0204-2
Moreno-García L, Adjallé K, Barnabé S, Raghavan G. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493-506.
Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant soil. 2010;331:217.
Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017;37(1):37-52. DOI: 10.3109/07388551.2015.1108956
Osman M, El-Sheekh M, El-Naggar A, Gheda S. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils. 2010;46:861-875.
Özdemir S, Sukatar A, Öztekin GB. Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. J Agric Sci. 2016;22:596-605.
Pemmaraju D, Appidi T, Minhas G, Singh SP, Khan N, Pal M, Srivastava R, Rengan AK. Chlorophyll rich biomolecular fraction of a cadamba loaded into polymeric nanosystem coupled with photothermal therapy: a synergistic approach for cancer theranostics. Int J Biol Macromol. 2018;110:383-391.
Rana A, Joshi M, Prasanna R, Shivay RS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol. 2012;50:118.
Rajasekaran S, Sundaramoorthy P, Sankar GK. Effect of FYM, N, P fertilizers and biofertilizers on germination and growth of paddy (Oryza sativa L.). Int Lett Nat Sci. 2015;35:59-65.
Raposo MFDJ, De Morais RMSC. Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int J Agric Biol. 2011;13:719-724.
Raposo MF, De Morais RM, Bernardo de Morais AM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2013;11(1): 233-252. DOI:10.3390/md11010233
Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev. 2018;92:394-404. DOI: 10.1016/j.rser.2018.04.034
Romanowska-Duda ZB, Grzesik M, Owczarczyk A, Mazur-Marzec H. 2010. Impact of intra and extracellular substances fromcyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). In: 20th International Conference on Plant Growth Substance (IPGSA), book of abstracts 28.07- 02.08.2010. Universitat Rovira I Virgili, Tarragona, Spain, 118.
Sahu D, Priyadarshani L, Rath B. Cyanobacteria as potential biofertilizer. CIBTech Journal of Microbiology. 2012;1(2-3):20-26.
Sassi KKB, Silva JA, Calixto CD, Sassi R, Sassi CFC. Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Rev Ciênc Agron. 2019;50(1):54-65. DOI: 10.5935/1806-6690.20190007
Schreiber C, Henning S, Lucy H, Christoph B, Bärbel A, Josefne K, Silvia DS, et al. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Psychol. 2018; 30(5):2827-2836
Shanan NT, Higazy AM. Integrated biofertilization management and cyanobacteria application to improven growth and flower quality of Matthiola incana. Res J Agric Biol Sci. 2009;5(6):1162-1168.
Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29(6):896-907. DOI: 10.1016/j.biotechadv.2011.07.009
Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev. 2016;55:909-941. DOI: 10.1016/j.rser.2015.11.026
Taher MT, Mohamed AY. Improvement of growth parameters of Zea mays and properties of soil inoculated with two Chlorella species. Rep Opinion. 2015;7: 22-27.
Tarkowski P, Ge LY, Yong JWH, Tan SN. Analytical methods for cytokinins. Trends Anal Chem. 2009;28:323-335.
Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere. 2008;70: 1919-1928. DOI: 10.1016/j.chemosphere.2007.07.038
Venkataraman, GS. 1972. Algal biofertilizers and rice cultivation, Today and Tommorrow’s. New Delhi. Pp 71.
Wang SK, Hu YR, Wang F, Stiles AR, Liu CZ. Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology. 2014;156:117-122.
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949-982.
Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotech. 2013;4(3):405-413. DOI:10.1016/j.copbio.2013.04.004
Williams L, Loewen-Schneider K, Maier S, Büdel B. Cyanobacterial diversity of western european biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol. 2016;92(10): fiw157. DOI: 10.1093/femsec/fiw157
Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology. 2014;83:391-397.
Zhuang WW, Downing A, Zhang YM. The influence of biological soil crust on 15 N traslocation in soil and vascular plant in a temperate desert of Nortwest China. J Plant Ecol. 2014;8:1-9.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-12-16
date_accessioned 2019-12-16T00:00:00Z
date_available 2019-12-16T00:00:00Z
url https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/view/582
url_doi https://doi.org/10.22579/20112629.582
issn 0121-3709
eissn 2011-2629
doi 10.22579/20112629.582
url2_str_mv https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/582/pdf
_version_ 1811200639865192448