Titulo:

Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
.

Guardado en:

1794-2470

2462-9448

14

2017-03-22

53

65

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_unicolmayor_nova_9_article_517
record_format ojs
institution UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCOLEGIOMAYORDECUNDINAMARCA/logo.png
country_str Colombia
collection NOVA
title Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
spellingShingle Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
Castañeda Alvarez, Estefania
Sánchez, Ligia Consuelo
Biological Control
Antibiosis
Growth curve
Bacillus subtilis
Fusarium sp.
Control Biológico
Antibiosis
Curva de crecimiento
Bacillus subtilis
Fusarium sp.
title_short Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
title_full Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
title_fullStr Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
title_full_unstemmed Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
title_sort evaluación del crecimiento de cuatro especies del género bacillus sp., primer paso para entender su efecto biocontrolador sobre fusarium sp.
author Castañeda Alvarez, Estefania
Sánchez, Ligia Consuelo
author_facet Castañeda Alvarez, Estefania
Sánchez, Ligia Consuelo
topic Biological Control
Antibiosis
Growth curve
Bacillus subtilis
Fusarium sp.
Control Biológico
Antibiosis
Curva de crecimiento
Bacillus subtilis
Fusarium sp.
topic_facet Biological Control
Antibiosis
Growth curve
Bacillus subtilis
Fusarium sp.
Control Biológico
Antibiosis
Curva de crecimiento
Bacillus subtilis
Fusarium sp.
citationvolume 14
citationissue 26
publisher Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD
ispartofjournal NOVA
source https://revistas.unicolmayor.edu.co/index.php/nova/article/view/517
language
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2017-03-22
date_accessioned 2017-03-22 00:00:00
date_available 2017-03-22 00:00:00
url https://revistas.unicolmayor.edu.co/index.php/nova/article/view/517
url_doi https://doi.org/10.22490/24629448.1751
issn 1794-2470
eissn 2462-9448
doi 10.22490/24629448.1751
citationstartpage 53
citationendpage 65
url2_str_mv https://revistas.unicolmayor.edu.co/index.php/nova/article/download/517/902
_version_ 1811200264350203904
spelling Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.
Castañeda Alvarez, Estefania
Sánchez, Ligia Consuelo
Biological Control
Antibiosis
Growth curve
Bacillus subtilis
Fusarium sp.
Control Biológico
Antibiosis
Curva de crecimiento
Bacillus subtilis
Fusarium sp.
14
26
Artículo de revista
Journal article
2017-03-22 00:00:00
2017-03-22 00:00:00
2017-03-22
application/pdf
Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD
NOVA
1794-2470
2462-9448
https://revistas.unicolmayor.edu.co/index.php/nova/article/view/517
10.22490/24629448.1751
https://doi.org/10.22490/24629448.1751
https://creativecommons.org/licenses/by-nc-sa/4.0/
53
65
Parra NSR. Contexto y perspectiva de la red de suministro: Plantas aromáticas en Colombia. Vol. 33, REVISTA ECONÓMICAS CUC. 2012. p. 135–56. 2. ASOHOFRUCOL [Internet]. [cited 2016 Nov 5]. Available from: http://www.asohofrucol.com.co/bibliotecavirtual.php 3. Laurence MH, Summerell BA, Burgess LW, Liew ECY. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol. 2014;118(4):374–84. 4. McGovern RJ. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015 Jul;73:78–92. 5. Zakaria L, Leong SK, Latiffah Z, Baharuddin S. Molecular Characterization of Fusarium Oxysporum F. Sp. Cubense of Banana. Am J Appl Sci. 2009;6(7):1301–7. 6. Steinkellner S, Mammerler R, Vierheilig H. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol. 2008 Nov 3;122(3):395–401. 7. Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, et al. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic (Amsterdam). 2012;135:32–9. 8. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol Control. 2009;50(3):205–21. 9. Baker KF (Kenneth F, Cook RJ. Biological control of plant pathogens. American Phytopathological Society; 1982. 10. Cook RJ, Abel P, Nelson R, De B, Hoffmann N, Rogers S, et al. Biological control and holistic plant-health care in agriculture. Am J Altern Agric. 1988 Jan 30;3(2–3):51. 11. El Arbi A, Rochex A, Chataigné G, Béchet M, Lecouturier D, Arnauld S, et al. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Res Microbiol. 2016 Jan;167(1):46–57. 12. Ojiambo PS, Scherm H. Biological and application-oriented factors influencing plant disease suppression by biological control: a meta-analytical review. Phytopathology. 2006;96(11):1168–74. 13. Pavlou GC, Vakalounakis DJ. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot. 2005;24(2):135–40. 14. Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control. 2008 Jul;46(1):46–56. 15. Nagórska K, Bikowski M, Obuchowski M. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol. 2007;54(3):495–508. 16. Leelasuphakul W, Hemmanee P, Chuenchitt S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol. 2008 Apr;48(1):113–21. 17. Kaur P, Bhardwaj NK, Sharma J. Process optimization for hyper production of xylanase via statistical methodology from isolated Bacillus pumilus 3GAH using lignocellulosic waste. Biocatal Agric Biotechnol. 2016 Apr;6:159–67. 18. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008 Mar 1;16(3):115–25. 19. Liu J, Hagberg I, Novitsky L, Hadj-Moussa H, Avis TJ. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 2014 Nov;118(11):855–61. 20. Latoud C, Peypoux F, Michel G. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: Modifications of membrane permeability and lipid composition. J Antibiot (Tokyo). 1987;40(11):1588–95. 21. Universidad Pública de Navarra. Cultivo de microorganismos. 2008;1–19. 22. Guérin A, Dargaignaratz C, Broussolle V, Clavel T, Nguyenthe C. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Vol. 59, Food Microbiology. 2016. 23. Dunlap CA, Bowman MJ, Schisler DA. Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biol Control. 2013 Feb;64(2):166–75. 24. Guez JS, Chenikher S, Cassar JP, Jacques P. Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol. 2007;131(1):67–75. 25. Kiss A, Balikó G, Csorba A, Chuluunbaatar T, Medzihradszky KF, Alföldi L. Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. J Bacteriol. 2008 Oct;190(19):6448–57. 26. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, et al. Influence of Culture Conditions on Lipopeptide Production by Bacillus subtilis. Appl Biochem Biotechnol. 2001;91–93(1–9):551–62. 27. Mizumoto S, Shoda M. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solidstate fermentation by response surface methodology. Appl Microbiol Biotechnol. 2007 Jul 31;76(1):101–8. 28. Fukusaki E, Panbangred W, Shinmyo A, Okada H. The complete nucleotide sequence of the xylanase gene (xynA) of Bacillus pumilus. FEBS Lett. 1984;171(2):197–201. 29. Krätzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989 Oct;171(10):5422–9. 30. Zhao X, Zhou Z, Han Y, Wang Z, Fan J, Xiao H. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res. 2013;168(9):598–606. 31. Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P. Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol. 2016;167(4):272–81. 32. Zhao Y, Sangare L, Wang Y, Folly YME, Selvaraj JN, Xing F, et al. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum. J Biotechnol. 2015 Jan 20;194:10–1. 33. Consuelo L, Leal Msc S, Constanza L, Ramírez Msc C. Evaluación de la congelación para conservación de especies autóctonas bacterianas. 34. Ezziyyani M, Sánchez CP, Requena ME, Rubio L, Castillo MEC. Biocontrol por Streptomyces rochei – ziyani–, de la podredumbre del pimiento ( Capsicum annuum l.) Causada por Phytophthora capsici. An Biol. 2004;0(26):61–8. 35. Dauner M, Storni T, Sauer U, Sauer UWE. Bacillus subtilis Metabolism and Energetics in Carbon-Limited and ExcessCarbon Chemostat Culture Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture. J Bacteriol. 2001;183(24):7308–17. 36. Piedrahíta-Aguirre CA, Alegre RM. Production of lipopeptide iturin a using novel strain Bacillus iso 1 in a packed bed bioreactor. Biocatal Agric Biotechnol. 2014 Apr;3(2):154–8. 37. Kapilan R, Arasaratnam V. Paddy Husk as Support for Solid State Fermentation to Produce Xylanase from Bacillus pumilus. Rice Sci. 2011;18(1):36–45. 38. Öztürk S, Çalık P, Özdamar TH. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review. Trends Biotechnol. 2016;34(4):329–45. 39. Şahin B, Öztürk S, Çalık P, Özdamar TH. Feeding strategy design for recombinant human growth hormone production by Bacillus subtilis. Bioprocess Biosyst Eng. 2015 Oct 24;38(10):1855–65. 40. Ye Y, Li Q, Fu G, Yuan G, Miao J, Lin W. Identification of Antifungal Substance (Iturin A2) Produced by Bacillus subtilis B47 and Its Effect on Southern Corn Leaf Blight. J Integr Agric. 2012;11(1):90–9. 41. Park Y-C, Kim S-G, Park K, Lee KH, Seo J-H. Fed-batch production of d-ribose from sugar mixtures by transketolasedeficient Bacillus subtilis SPK1. Appl Microbiol Biotechnol. 2004 Dec 16;66(3):297–302. 42. Chen X, Zhang C, Cheng J, Shi X, Li L, Zhang Z, et al. Enhancement of adenosine production by Bacillus subtilis CGMCC 4484 through metabolic flux analysis and simplified feeding strategies. Bioprocess Biosyst Eng. 2013 Dec 25;36(12):1851–9. 43. Yao S, Zhao S, Lu Z, Gao Y, Lv F, Bie X. Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Rev Argent Microbiol. 2015;47(4):344–9. 44. Sadfi N, Chérif M, Hajlaoui MR, Boudabbous A, Bélanger R. Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann Microbiol. 2002;52:323–37. 45. Ramírez LCC, Arévalo GZY, Moreno BVE. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova. 2014; 12(21). 46. Ramírez LCC, Leal LCS, Rodríguez FAE. Determinación de la presencia de bacterias patógenas para el humano en aguas de riego en la cuenca alta de la sabana de Bogotá; DC Colombia. Nova. 2014;12(22). 47. Corrales LC, Romero DMA, Macías JAB, Vargas AMC. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015;13(24):5582.
========================================== DOI: http://dx.doi.org/10.22490/24629448.1751
https://revistas.unicolmayor.edu.co/index.php/nova/article/download/517/902
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication