Titulo:
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING
.
Guardado en:
1794-2470
2462-9448
20
2022-09-15
NOVA - 2022
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_unicolmayor_nova_9_article_2007 |
---|---|
record_format |
ojs |
spelling |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING Rondón-Quintana, Hugo Alexander Zafra-Mejía, Carlos Alfonso COVID-19 CFR Colombia Pandemic Statystical analysis Case fatality rate COVID-19 CFR Colombia Análisis estadístico Pandemia Tasa de letalidad 20 38 Núm. 38 , Año 2022 : Enero - Junio Artículo de revista Journal article 2022-09-15 00:00:00 2022-09-15 00:00:00 2022-09-15 application/pdf Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD NOVA 1794-2470 2462-9448 https://revistas.unicolmayor.edu.co/index.php/nova/article/view/2007 10.22490/24629448.6187 https://doi.org/10.22490/24629448.6187 https://creativecommons.org/licenses/by-nc-sa/4.0/ NOVA - 2022 Guan W, Ni Z, Yu H, Liang W, Ou C., He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382:1708-1720. 10.1056/NEJMoa2002032. https://doi.org/10.1056/NEJMoa2002032 Xie M, Chen Q. Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2000;94:119-124. 10.1016/j.ijid.2020.03.071 1201-9712. https://doi.org/10.1016/j.ijid.2020.03.071 Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala N, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. 10.1016/j.arr.2020.101205 https://doi.org/10.1016/j.arr.2020.101205 Bauch CT, Oraby T. Assessing the pandemic potential of MERS-CoV. Lancet, 2013;382:662-664. 10.1016/S0140-6736(13)615044. https://doi.org/10.1016/S0140-6736(13)61504-4 Liu Y, Gayl AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020;27(2):1-4. 10.1093/jtm/taaa021. https://doi.org/10.1093/jtm/taaa021 Berber E, Sumbria D, Çanakoğlu N. Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. J Infect Public Health. 2021;14(8):1051-1064. 10.1016/j.jiph.2021.06.007. https://doi.org/10.1016/j.jiph.2021.06.007 WHO, Department of Communicable Disease Surveillance and Response World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS) p. 10. 2003. Retrieved from https://www.who.int/csr/sars/en/WHOconsensus.pdf. [Accessed 20 September 2021] World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Retrieved from https://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1%26ua=1%26ua=1%26ua=1%26ua=1%26ua=1 [Accessed 20 September 2021] Guzman NA, De la Hoz-Restrepo F, Serrano-Coll H, Gastelbondo B, Mattar S. Using serological studies to assess COVID-19 infection fatality rate in developing countries: A case study from one Colombian department. Int J Infect Dis. 2021;110:4-5. 10.1016/j.ijid.2021.06.018. https://doi.org/10.1016/j.ijid.2021.06.018 Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4):262-267. 10.7326/M20-1495. https://doi.org/10.7326/M20-1495 Fernández-Barat L, López-Aladid R, Torres A. The value of serology testing to manage SARS-CoV-2 infections. Eur Respir J. 2020;56(2):2002411. 10.1183/13993003.02411-2020. https://doi.org/10.1183/13993003.02411-2020 Xiao AT, Tong YX, Zhang, S. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J Med Virol. 2020;92(10):1755-1756. 10.1002/jmv.25855.Epub 2020 Jul 11. https://doi.org/10.1002/jmv.25855 Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. Int J Infect Dis. 2020;101:138-148. https://doi.org/10.1016/j.ijid.2020.09.1464 Perlroth D, Glass RJ, Davey VJ, Cannon D, Garber AM, Owens DK. Health outcomes and costs of community mitigation strategies for an influenza pandemic in the United States. Clin Infect Dis. 2010;50(2):165-74. 10.1086/649867. https://doi.org/10.1086/649867 Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect Dis. 2020;20:669-77. 10.1016/S1473-3099(20)30243-7 Salje H, Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208-211. 10.1126/science.abc3517. https://doi.org/10.1126/science.abc3517 Roques L, Klein EK, Papaix J, Sar A, Soubeyrand S. Using early data to estimate the actual infection fatality ratio from Covid-19 in France. Biology. 2020;9(5):97. 10.3390/biology9050097. https://doi.org/10.3390/biology9050097 Dana S, Simas AB, Filardi BA, Rodriguez RN, Lane Valiengo L, Gallucci-Neto J. Brazilian modeling of COVID-19 (BRAM-COD): A Bayesian Monte Carlo approach for COVID-19 spread in a limited data set context. medRxiv. 2020;2020:1-41 10.1101/2020.04.29.20081174. https://doi.org/10.1101/2020.04.29.20081174 Mellan TA, Hoeltgebaum HH, Mishra S, Whittaker C, Schnekenberg RP, Gandy A, et al. Report 21: Estimating COVID-19 cases and reproduction number in Brazil. medRxiv. 2020:1-24. 10.1101/2020.05.09.20096701 Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-informed estimates of Sars-COV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020;21(4):e69-e70. 10.1016/S1473-3099(20)30584-3 https://doi.org/10.31219/osf.io/wdbpe Marra V, Quartin M. Bayesian estimate of the early COVID-19 infection fatality ratio in Brazil based on a random seroprevalence survey. Int J Infect Dis. 2021;111:190-195. 10.1016/j.ijid.2021.08.016. https://doi.org/10.1016/j.ijid.2021.08.016 Luo G, Zhang X, Zheng H, He D. Infection fatality ratio and case fatality ratio of COVID-19. Int J Infect Dis. 2021;113:43-46. 10.1016/j.ijid.2021.10.004. https://doi.org/10.1016/j.ijid.2021.10.004 Gao J, Zheng P, Jia Y, Chen H, Mao Y, Chen S, et al. Mental health problems and social media exposure during COVID-19 outbreak. PloS One. 2020;15(4):e0231924. 10.1371/journal.pone.0231924. https://doi.org/10.1371/journal.pone.0231924 Rodriguez-Nava G, Yanez-Bello MA, Trelles-Garcia DP, Chung CW, Chaudry S, Khan AS, et al. Clinical characteristics and risk factors for mortality of hospitalized patients with COVID-19 in a community hospital: a retrospective cohort study. Mayo Clin Proc Innov Qual Outcomes. 2021;5(1):1-10. 10.1016/j.mayocpiqo.2020.10.007. https://doi.org/10.1016/j.mayocpiqo.2020.10.007 Liu S, Yang L, Zhang C, Xiang Y, Liu Z, Hu S. et al. Online mental health services in China during the COVID19 outbreak. The lancet Psychiatry. 2020;7(4):e17-e18. 10.1016/S2215-0366(20)30077-8. https://doi.org/10.1016/S2215-0366(20)30077-8 García-Posada M, Aruachan-Vesga S, Mestra D, Humánez K, Serrano-Coll H, Cabrales H, et al. Clinical outcomes of patients hospitalized for COVID-19 and evidence-based on the pharmacological management reduce mortality in a region of the Colombian Caribbean. J Infect Public Health. 2021;14(6):696-701. 10.1016/j.jiph.2021.02.013 https://doi.org/10.1016/j.jiph.2021.02.013 Sharma P, Sharma R. Impact of covid-19 on mental health and aging. Saudi J Biol Sci. 2021;28(12): 7046-7053. 10.1016/j.sjbs.2021.07.087. https://doi.org/10.1016/j.sjbs.2021.07.087 Aguiar M, Stollenwerk N. Condition-specific mortality risk can explain differences in COVID-19 case fatality ratios around the globe. Public Health. 2020;188:18-20. 10.1016/j.puhe.2020.08.021. https://doi.org/10.1016/j.puhe.2020.08.021 Guan W-J, Liang W-H, Zhao Y, Liang H-R, Chen Z-S, Li Y-M, et al. Comorbidity and its impact on 1590 patients with covid-19 in China: a nationwide analysis. Eur Respir J 2020;55(5):2000547. 10.1183/13993003.00547-2020. https://doi.org/10.1183/13993003.01227-2020 Richardson S, Hirsch JS, Narasimhan M, Crawford JM, Mcginn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020;323(20):2052e9. 10.1001/jama.2020.6775. https://doi.org/10.1001/jama.2020.6775 Yang W, Kandula S, Huynh M, Greene S, Van Wye G, Li W, et al. Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis. Lancet Infect Dis. 2021;21(2):203-212. 10.1016/S1473-3099(20)30769-6. https://doi.org/10.1016/S1473-3099(20)30769-6 Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95. 10.1016/j.ijid.2020.03.017 https://doi.org/10.1016/j.ijid.2020.03.017 Xiong D, Zhang L, Watson GL, Sundin P, Bufford T, Zoller JA, et al. Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics. 2020;33:100418. 10.1016/j.epidem.2020.100418. https://doi.org/10.1016/j.epidem.2020.100418 Alshogran OY, Altawalbeh SM, Al-Azzam SI, Karasneh R. Predictors of Covid-19 case fatality rate: An ecological study. Ann Med Surg. 2021;65:102319. 10.1016/j.amsu.2021.102319. https://doi.org/10.1016/j.amsu.2021.102319 Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county versus zip code analyses. J Public Health Manag Pract. 2021;27:S46-S56. 10.1097/PHH.0000000000001263 https://doi.org/10.1097/PHH.0000000000001263 Abate SM, Chekole YA, Estifanos M, Abate KH, Kabthymer RH. Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: A systematic review and meta-analysis. Clinical Nutrition ESPEN. 2021;43:174-183. 10.1016/j.clnesp.2021.03.002. https://doi.org/10.1016/j.clnesp.2021.03.002 Díaz-Guio DA, Villamil-Gómez WE, Dajud L, Pérez-Díaz CE, Bonilla-Aldana K, Mondragón A, et al. Will the Colombian intensive care units collapse due to the COVID-19 pandemic? Travel Med Infect Dis. 2020;38:101746. 10.1016/j.tmaid.2020.101746. https://doi.org/10.1016/j.tmaid.2020.101746 Rodriguez-Villamizar LA, Belalcázar-Ceron LC, Fernández-Niño JA, Marín-Pineda DM, Rojas OA, Acuña L, et al. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Sci Total Environ. 2021;756:144020. 10.1016/j.scitotenv.2020.144020. https://doi.org/10.1016/j.scitotenv.2020.144020 Rondón-Quintana HA, Zafra-Mejía CA. Covid 19 death analysis in Colombia. Revista Cuidarte. 2021;12(3):e1528. 10.15649/cuidarte.1528. https://doi.org/10.15649/cuidarte.1528 Mikiko W, Risi R, Tuccinardi D. Obesity and SARS-CoV-2: a population to safeguard. Diabetes Metab Res Rev. 2020;36:e3325. 10.1002/dmrr.3325 Sánchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. Respir Med. 2020;171:106096. 10.1016/j.rmed.2020.10609639. https://doi.org/10.1016/j.rmed.2020.106096 Sharma A, Garg A, Rout A, Lavie CJ. Association of obesity with more critical illness in COVID-19. Mayo Clinic Proc. 2020;95(9):2040-2042. 10.1016/j.mayocp.2020.06.046. https://doi.org/10.1016/j.mayocp.2020.06.046 Sharma JR, Yadav U.C.S. COVID-19 severity in obese patients: potential mechanisms and molecular targets for clinical intervention. Obes Res Clin Pract. 2021;15(2):163-171. 10.1016/j.orcp.2021.01.004. https://doi.org/10.1016/j.orcp.2021.01.004 Yadav R, Aggarwal S, Singh A. SARS-CoV-2-host dynamics: Increased risk of adverse outcomes of COVID-19 in obesity. Diabetes Metab Syndr: Clinical Res & Rev. 2020;14(5):1355-1360. 10.1016/j.dsx.2020.07.030. https://doi.org/10.1016/j.dsx.2020.07.030 Landecho MF, Marin-Oto M, Recalde-Zamacona B, Bilbao I, Frühbeck G. Obesity as an adipose tissue dysfunction disease and a risk factor for infections - Covid-19 as a case study. Eur J Intern Med. 2021;91:3-9. 10.1016/j.ejim.2021.03.031 https://doi.org/10.1016/j.ejim.2021.03.031 Stefano M, Andrea B, Daniela C, Emanuela M, Lorena P, Daniela D, et al. Malnutrition risk as a negative prognostic factor in COVID-19 patients. Clinical Nutrition ESPEN. 2021;45:369-373. 10.1016/j.clnesp.2021.07.016 https://doi.org/10.1016/j.clnesp.2021.07.016 Mertz D, Kim TH, Johnstone J, Lam PP, Science M, Kuster SP, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ., 2013;347:f5061. 10.1136/bmj.f5061 https://doi.org/10.1136/bmj.f5061 Pearce DC, McCaw JM, McVernon J, Mathews JD. Influenza as a trigger for cardiovascular disease: An investigation of serotype, subtype and geographic location. Environ Res. 2017;156:688-696. 10.1016/j.envres.2017.04.024. https://doi.org/10.1016/j.envres.2017.04.024 Goeijenbier M, van Sloten TT, Slobbe L, Mathieuf C, van Genderen P, Beyer W, Osterhaus A. Benefits of flu vaccination for persons with diabetes mellitus: A review. Vaccine. 2017;35(38):5095-5101. 10.1016/j.vaccine.2017.07.095. https://doi.org/10.1016/j.vaccine.2017.07.095 Tekin S, Keske S, Alan S, Batirel A, Karakoc C, Tasdelen-Fisgin N, et al. Predictors of fatality in influenza A virus subtype infections among inpatients in the 2015-2016 season. Int J Infect Dis. 2019;81:6-9. 10.1016/j.ijid.2019.01.005 https://doi.org/10.1016/j.ijid.2019.01.005 Zhang ZXZ, Kyaw W, Ho HJ, Tay MZ, Huang H, Hein AA, et al. Seasonal influenza-associated intensive care unit admission and death in tropical Singapore, 2011-2015. J Clin Virol. 2019;117:73-79. 10.1016/j.jcv.2019.06.005 https://doi.org/10.1016/j.jcv.2019.06.005 Zou Q, Zheng S, Wang X, Liu S, Bao J, Yu F, et al. Influenza A-associated severe pneumonia in hospitalized patients: Risk factors and NAI treatments. Int J Infect Dis. 2020;92:208-213. 10.1016/j.ijid.2020.01.017. https://doi.org/10.1016/j.ijid.2020.01.017 Polidori MC, Sies H, Ferrucci L, Benzing T. COVID-19 mortality as a fingerprint of biological age. Ageing Res Rev. 2021;67:101308. 10.1016/j.arr.2021.101308. https://doi.org/10.1016/j.arr.2021.101308 Tian F, Liu X, Chao Q, Qian Z, Zhang S, Qi L, et al. Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China. The Innovation. 2021;2(3):100139. 10.1016/j.xinn.2021.100139. https://doi.org/10.1016/j.xinn.2021.100139 Henao-Cespedes V, Garcés-Gómez YA, Ruggeri S, Henao-Cespedes TM. Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia. Egypt J Remote Sens Space Sci. 2021, in press. 10.1016/j.ejrs.2021.04.002. https://doi.org/10.1016/j.ejrs.2021.04.002 Sepulveda ER, Brooker A. Income inequality and COVID-19 mortality: Age-stratified analysis of 22 OECD countries. SSM - Population Health. 2021;16:100904. 10.1016/j.ssmph.2021.100904. https://doi.org/10.1016/j.ssmph.2021.100904 Wildman J. COVID-19 and income inequality in OECD countries. Eur. J. Health Econ. 2021;22(3):455-462. 10.1007/s10198-021-01266-4. https://doi.org/10.1007/s10198-021-01266-4 Ghosh D, Bernstein JA, Mersha TB. COVID-19 pandemic: the African paradox. J Glob Health. 2020;10(2):020348. 10.7189/jogh.10.020348. https://doi.org/10.7189/jogh.10.020348 Lawal Y. Africa's low COVID-19 mortality rate: a paradox? Int. J. Infect. Dis. 2020;102:118-122. 10.1016/j.ijid.2020.10.038. https://doi.org/10.1016/j.ijid.2020.10.038 Birner R, Blaschke N, Bosch C, Daum T, Graf S, Guttler D et al. 'We would rather die from Covid-19 than from hunger' - Exploring lockdown stringencies in five African countries. Glob Food Sec. 2021;31:100571. 10.1016/j.gfs.2021.100571. https://doi.org/10.1016/j.gfs.2021.100571 Kulohoma BW. COVID-19 risk factors: The curious case of Africa's governance and preparedness. Scientific African. 2021;13:e00948. 10.1016/j.sciaf.2021.e00948. https://doi.org/10.1016/j.sciaf.2021.e00948 Ngere I, Dawa J, Hunsperger E, Otieno N, Masika M, Amoth P, et al. High seroprevalence of SARS-CoV-2 but low infection fatality ratio eight months after introduction in Nairobi, Kenya. Int J Infect Dis. 2021;112:25-34. 10.1016/j.ijid.2021.08.062. https://doi.org/10.1016/j.ijid.2021.08.062 Njenga MK, Dawa J, Nanyingi M, Gachohi J, Ngere I, Letko M, et al. Why is There Low Morbidity and Mortality of COVID-19 in Africa? Am J Trop Med Hyg 2020;103:564-9. 10.4269/ajtmh.20-0474. https://doi.org/10.4269/ajtmh.20-0474 Diop BZ, Ngom M, Biyong CP, Biyong JNP. The relatively young and rural population may limit the spread and severity of COVID-19 in Africa: a modelling study. BMJ Glob Health. 2020;5:e002699. 10.1136/bmjgh-2020-002699. https://doi.org/10.1136/bmjgh-2020-002699 Afolabi MO, Folayan MO, Munung NS, Yakubu A, Ndow G, Jegede A, Ambe J, Kombe F. Lessons from the Ebola epidemics and their applications for COVID-19 pandemic response in sub-Saharan Africa. Dev. World Bioeth. 2021;21(1):25-30. 10.1111/dewb.12275. https://doi.org/10.1111/dewb.12275 Tso FY, Lidenge SJ, Peña PB, Clegg AA, Ngowi JR, Mwaiselage J, et al. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int J Infect Dis. 2021;102:577-583. 10.1016/j.ijid.2020.10.104. https://doi.org/10.1016/j.ijid.2020.10.104 Benítez MA, Velasco C, Sequeira AR, Henríquez J, Menezes F, Paolucci F. Responses to COVID-19 in five Latin American countries. Health Policy Technol. 2020;9(4):525-559. 10.1016/j.hlpt.2020.08.014. https://doi.org/10.1016/j.hlpt.2020.08.014 Han J, Shi L-X, Xie Y, Zhang Y-J, Huang S-P, Li J-G, et al. Analysis of factors affecting the prognosis of COVID-19 patients and viral shedding duration. Epidemiol Infect. 2020;148:e125. 10.1017/S0950268820001399. https://doi.org/10.1017/S0950268820001399 Rosas F, Vargas JP. 2015. Capacidad de respuesta hospitalaria distrital en Bogotá ante un evento con múltiples víctimas. Especialización en Medicina de Emergencias, Universidad del Rosario. https://repository.urosario.edu.co/handle/10336/10154 Guerrero N, Yépez-Ch M C. Factores asociados a la vulnerabilidad del adulto mayor con alteraciones de salud [Factors associated with the vulnerability of the elderly with health disorders]. Universidad y Salud. 2015;17(1):121-31. Sánchez-Villegas P, Daponte A. Modelos predictivos de la epidemia de COVID-19 en España con curvas de Gompertz. Gaceta Sanitaria. 2021;35(6):585-589. 10.1016/j.gaceta.2020.05.005. https://doi.org/10.1016/j.gaceta.2020.05.005 Torrealba-Rodriguez O, Conde-Gutiérrez RA, Hernández-Javier AL. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos, Solitons & Fractals. 2020;138:109946. 10.1016/j.chaos.2020.109946. https://doi.org/10.1016/j.chaos.2020.109946 Shen CY. Logistic growth modelling of COVID-19 proliferation in China and its international implications. Int J Infect Dis. 2020;96:582-589. 10.1016/j.ijid.2020.04.085. https://doi.org/10.1016/j.ijid.2020.04.085 Aviv-Sharon E, Aharoni A. Generalized logistic growth modeling of the COVID-19 pandemic in Asia. Infect Dis Model. 2020;5:502-509. 10.1016/j.idm.2020.07.003. https://doi.org/10.1016/j.idm.2020.07.003 Wang P, Zheng X, Li J, Zhu B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons & Fractals. 2020;139:110058. 10.1016/j.chaos.2020.110058. https://doi.org/10.1016/j.chaos.2020.110058 Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N, et al. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomedical J. 2021;44(3):304-316. 10.1016/j.bj.2021.02.006. https://doi.org/10.1016/j.bj.2021.02.006 Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020;180(7):934-943. 10.1001/jamainternmed.2020.0994. https://doi.org/10.1001/jamainternmed.2020.0994 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727-733. 10.1056/NEJMoa2001017. https://doi.org/10.1056/NEJMoa2001017 https://revistas.unicolmayor.edu.co/index.php/nova/article/download/2007/2979 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADCOLEGIOMAYORDECUNDINAMARCA/logo.png |
country_str |
Colombia |
collection |
NOVA |
title |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING |
spellingShingle |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING Rondón-Quintana, Hugo Alexander Zafra-Mejía, Carlos Alfonso COVID-19 Colombia Pandemic Statystical analysis Case fatality rate COVID-19 Colombia Análisis estadístico Pandemia Tasa de letalidad |
title_short |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING |
title_full |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING |
title_fullStr |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING |
title_full_unstemmed |
TEMPORAL ANALYSIS OF COVID-19 IN COLOMBIA: ASSOCIATED INDICATORS AND MODELLING |
title_sort |
temporal analysis of covid-19 in colombia: associated indicators and modelling |
author |
Rondón-Quintana, Hugo Alexander Zafra-Mejía, Carlos Alfonso |
author_facet |
Rondón-Quintana, Hugo Alexander Zafra-Mejía, Carlos Alfonso |
topic |
COVID-19 Colombia Pandemic Statystical analysis Case fatality rate COVID-19 Colombia Análisis estadístico Pandemia Tasa de letalidad |
topic_facet |
COVID-19 Colombia Pandemic Statystical analysis Case fatality rate COVID-19 Colombia Análisis estadístico Pandemia Tasa de letalidad |
citationvolume |
20 |
citationissue |
38 |
citationedition |
Núm. 38 , Año 2022 : Enero - Junio |
publisher |
Universidad Colegio Mayor de Cundinamarca y Universidad Nacional Abierta y a Distancia - UNAD |
ispartofjournal |
NOVA |
source |
https://revistas.unicolmayor.edu.co/index.php/nova/article/view/2007 |
language |
|
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ NOVA - 2022 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-09-15 |
date_accessioned |
2022-09-15 00:00:00 |
date_available |
2022-09-15 00:00:00 |
url |
https://revistas.unicolmayor.edu.co/index.php/nova/article/view/2007 |
url_doi |
https://doi.org/10.22490/24629448.6187 |
issn |
1794-2470 |
eissn |
2462-9448 |
doi |
10.22490/24629448.6187 |
url2_str_mv |
https://revistas.unicolmayor.edu.co/index.php/nova/article/download/2007/2979 |
_version_ |
1811200276158218240 |