Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura
.
Introducción. La secuenciación tiene como finalidad determinar la composición de los nucleótidos presentes en el ADN o ARN. Desde la finalización del proyecto genoma humano, surgieron diversas tecnologías de secuenciación como Roche 454, SOLID, Illumina, Ion torrent, Pacbio y Oxford nanopore como herramientas para secuenciar rápidamente, con mayor precisión y costo-eficiencia, permitiendo el desarrollo de proyectos a gran escala y el estudio de genes y genomas, la composición de microbiomas, enfermedades metabólicas y enfermedades genéticas que afectan la población. Objetivo. Describir los fundamentos de los métodos de secuenciación de ADN y sus aplicaciones en las ciencias biomédicas. Métodos. Revisión descriptiva... Ver más
2389-7325
2539-2018
7
2020-08-11
138
172
Revista Investigación en Salud Universidad de Boyacá - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_uniboyaca_revistainvestigacionensaluduniversidaddeboyaca_0_article_498 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE BOYACÁ |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDEBOYACA/logo.png |
country_str |
Colombia |
collection |
Revista Investigación en Salud Universidad de Boyacá |
title |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
spellingShingle |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura Camargo Mancipe, Anny Jineth Valero González, Karen Nattaly Gómez Rodriguez, Alida Marcela Camargo Mancipe, Diego Fernando Suárez Martínez, Carlos Fernando Cuy Chaparro, Laura Esperanza Secuenciación de nucleótidos de alto rendimiento análisis de secuencia genoma humano técnicas genéticas High-Throughput Nucleotide Sequencing Sequence analysis genome human genetic techniques sequenciamento de nucleotídeos de alto rendimento análise de sequência genoma humano técnicas genéticas |
title_short |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
title_full |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
title_fullStr |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
title_full_unstemmed |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
title_sort |
fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura |
title_eng |
Biomedical Foundations and Applications of Major Sequencing Technologies: A Literature Review |
description |
Introducción. La secuenciación tiene como finalidad determinar la composición de los nucleótidos presentes en el ADN o ARN. Desde la finalización del proyecto genoma humano, surgieron diversas tecnologías de secuenciación como Roche 454, SOLID, Illumina, Ion torrent, Pacbio y Oxford nanopore como herramientas para secuenciar rápidamente, con mayor precisión y costo-eficiencia, permitiendo el desarrollo de proyectos a gran escala y el estudio de genes y genomas, la composición de microbiomas, enfermedades metabólicas y enfermedades genéticas que afectan la población. Objetivo. Describir los fundamentos de los métodos de secuenciación de ADN y sus aplicaciones en las ciencias biomédicas. Métodos. Revisión descriptiva de las principales estrategias de secuenciación de ADN de primera, segunda y tercera generación y su aplicación en el entorno biomédico. Esta revisión se realizó a partir de la búsqueda de artículos en bases de datos electrónicas especializadas en investigación científica. Se encontraron 118 documentos, de los cuales se excluyeron 6 por no cumplir con los criterios de inclusión y se seleccionaron 112 por cumplir con todos los requisitos. Conclusiones. La secuenciación de ADN y ARN ha permitido avances en los estudios de organismos biológicos, el surgimiento de los métodos de secuenciación de siguiente generación arroja una gran cantidad de datos, incluidos genomas secuenciados completamente de varias especies, con un rendimiento extenso, tiempos reducidos y costo-eficiencia que lleva a la transformación por completo de las ciencias de la vida, logrando un progreso sin precedentes en el análisis de genomas, la evaluación de ecología microbiana y el diagnóstico de enfermedades.
|
description_eng |
Introduction. The purpose of sequencing is to determine the composition of the nucleotides present in DNA or RNA. Since the completion of the human genome project, several sequencing technologies such as Roche 454, SOLID, Illumina, Ion torrent, Pacbio and Oxford nanopore have emerged as tools for rapid sequencing, with greater precision and cost-efficiency, allowing the development of large-scale projects and the study of genes and genomes, along with the composition of microbiomes and the study of metabolic and genetic diseases that affect the population. Objective. To describe the foundations of the methods of DNA sequencing and their applications in the biomedical sciences. Methods. Descriptive review of the main strategies of first, second and third generation DNA sequencing and their application in the biomedical environment. This review was carried out by searching articles in electronic databases specialized in scientific research. A total of 118 papers were found, of which 6 were excluded as they did not meet the inclusion criteria and 112 were selected as meeting all the requirements. Conclusions. DNA and RNA sequencing has enabled advances in the study of biological organisms, the emergence of next-generation sequencing methods yielding a wealth of data, including fully sequenced genomes of various species, with extensive throughput, reduced time and cost-effectiveness that has led to the complete transformation of the life sciences, achieving unprecedented progress in genome analysis, assessment of microbial ecology and disease diagnosis.
|
author |
Camargo Mancipe, Anny Jineth Valero González, Karen Nattaly Gómez Rodriguez, Alida Marcela Camargo Mancipe, Diego Fernando Suárez Martínez, Carlos Fernando Cuy Chaparro, Laura Esperanza |
author_facet |
Camargo Mancipe, Anny Jineth Valero González, Karen Nattaly Gómez Rodriguez, Alida Marcela Camargo Mancipe, Diego Fernando Suárez Martínez, Carlos Fernando Cuy Chaparro, Laura Esperanza |
topicspa_str_mv |
Secuenciación de nucleótidos de alto rendimiento análisis de secuencia genoma humano técnicas genéticas |
topic |
Secuenciación de nucleótidos de alto rendimiento análisis de secuencia genoma humano técnicas genéticas High-Throughput Nucleotide Sequencing Sequence analysis genome human genetic techniques sequenciamento de nucleotídeos de alto rendimento análise de sequência genoma humano técnicas genéticas |
topic_facet |
Secuenciación de nucleótidos de alto rendimiento análisis de secuencia genoma humano técnicas genéticas High-Throughput Nucleotide Sequencing Sequence analysis genome human genetic techniques sequenciamento de nucleotídeos de alto rendimento análise de sequência genoma humano técnicas genéticas |
citationvolume |
7 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2020 : Revista Investigación en Salud Universidad de Boyacá |
publisher |
Universidad de Boyacá |
ispartofjournal |
Revista Investigación en Salud Universidad de Boyacá |
source |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/498 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Revista Investigación en Salud Universidad de Boyacá - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Mattick JS, Dziadek MA, Terrill BN, Kaplan W, Spigelman AD, Bowling FG, et al. The impact of genomics on the future of medicine and health. MJA. 2014; 201:17-20. https://doi.org/10.5694/mja13.10920 2. Swerdlow SH. WHO classification of tumours of haematopoietic and lymphoid tissues: IARC; 2017;885-887 https://doi.org/10.1002/9781118853771.ch51 3. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic syndromes. JNCCN. 2017; 15:60-87. https://doi.org/10.6004/jnccn.2017.0007 4. Inaba H, Shinozawa K, Amano K, Fukutake K. The Genetic Analysis of Hemophilia a: The Application of Next-Generation Sequencing in the Analysis of Causative Variants Deep inside the Intron of the F8 Gene. ASH. 2016;128:22-93. https://doi.org/10.1182/blood.V128.22.1393.1393 5. Goodeve AC, Pavlova A, Oldenburg J. Genomics of bleeding disorders. Haemophilia. 2014; 20:50-3. https://doi.org/10.1111/hae.12424 6. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science. JAMA. 2001; 285:540-4. https:// doi:10.1001/jama.285.5.540 7. Pereira R, Oliveira J, Sousa M. Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. JCM. 2020; 9:132-150. https://doi.org/10.3390/jcm9010132 8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. 2001; 409:860-921. https://doi.org/10.1038/35057062 9. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001; 291:13-51. https://doi.org/10.1126/science.1058040 10. Wetterstrand KA. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute Fecha de consulta: 03, 03, 2020. Disponible en: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data 11. Laurentino S, Heckmann L, Di Persio S, Li X, zu Hörste GM, Wistuba J, et al. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin. epigenetics. 2019; 213:11:127. https://doi.org/10.1186/s13148-019-0720-3 12. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors.PNAS. 1977;74:54-67. https://doi.org/10.1073/pnas.74.12.5463 13. Lander ES. Initial impact of the sequencing of the human genome. Nat. 2011; 470:187-97. https://doi.org/10.1038/nature09792 14. Tripp S, Grueber M. Economic Impact of the Human Genome Project. Battelle Memorial Institute, Technology Partnership Practice. Fecha de consulta: 15,05, 2020. 15. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Erratum: Corrigendum: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2006; 441:120-145. https://doi.org/10.1038/nature04726 16. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016; 107:1-8. https://doi.org/10.1016/j.ygeno.2015.11.003 17. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017; 550:345-53. https://doi.org/10.1038/nature24286 18. Maxam AM, Gilbert W. A new method for sequencing DNA.PNAS. 1977; 74:560-4. https://doi.org/10.1073/pnas.74.2.560 19. Slatko BE, Gardner AF, Ausubel FM. Overview of next‐generation sequencing technologies. Current Protocols in Molec. Biol. 2018; 122:59. https://doi.org/10.1002/cpmb.59 20. França LT, Carrilho E, Kist TB. A review of DNA sequencing techniques. Q. Rev. Biophys. 2002; 35:169-200. https://doi.org/10.1017/S0033583502003797 21. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008; 92:55-64. http://doi.org/10.1016/j.ygeno.2008.07.001 22. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 1996; 242:84-9. https://doi.org/10.1006/abio.1996.0432. 23. Nyrén P, Lundin A. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal. Biochem. 1985; 151:504-9. https://doi.org/10.1016/0003-2697(85)90211-8 24. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 2009; 55:641-58. https://doi.org/10.1373/clinchem.2008.112789 25. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376-80. https://doi.org/10.1038/nature03959 26. Nyrén P, Pettersson B, Uhlén M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal. Biochem. 1993;208:171-5. https://doi.org/10.1006/abio.1993.1024 27. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007;8:143. https://doi.org/10.1186/gb-2007-8-7-r143 28. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS. 2006; 103:15-20. https://doi.org/10.1073/pnas.0605127103 29. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome research. 2008; 18:51-63. https://doi.org/10.1101/gr.076463.108 30. Shendure J, Ji H. Next-generation DNA sequencing. Nature biotechnology. 2008;26:35. https://doi.org/10.1038/nbt1486 31. Kulski JK. Next-generation sequencing—an overview of the history, tools, and “Omic” applications. Next Generation Sequencing–Advances, Applications and Challenges. 2016:3-60. https://doi.org/10.5772/61964 32. Shirota M, Kinoshita K. Discrepancies between human DNA, mRNA and protein reference sequences and their relation to single nucleotide variants in the human population. Fecha de consulta: 20,03,2020. Disponible en: https://doi.org/10.1093/database/baw124 33. Cloonan N, Forrest A, Kolle G, Gardiner B. a, Faulkner GJ, Brown MK, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing Nat Methods. 2008; 5:6-9. https://doi.org/10.1038/nmeth.1223 34. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 2010; 11:473-83. https://doi.org/10.1093/bib/bbq015 35. Garrido-Cardenas JA, Garcia-Maroto F, Alvarez-Bermejo JA, Manzano-Agugliaro F. DNA sequencing sensors: an overview. Sensors. 2017; 17:588-590. https://doi.org/10.3390/s17030588 36. Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014; 6:106-36. https://doi.org/10.3390/v6010106 37. Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. NAR. 2006;34:6-10. https://doi.org/10.1093/nar/gnj023 38. Turcatti G, Romieu A, Fedurco M, Tairi A-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. NAR. 2008;36 25-34. https://doi.org/10.1093/nar/gkn021 39. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456:53-9. https://doi.org/10.1038/nature07517 40. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. NAR. 2000;28:12-18 https://doi.org/10.1093/nar/28.20.e87 41. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nature Rev. Gen.. 2016;17:333-340. https://doi.org/10.1038/nrg.2016.49 42. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 2017; 8:18-29. https://doi.org/10.3389/fmicb.2017.01829 43. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. GBO. 2016; 14:265-279. https://doi.org/10.1016/j.gpb.2016.05.004 44. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011; 475:348-52. https://doi.org/10.1038/nature10242 45. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 2013;9. https://doi.org/10.1371/journal.pcbi.1003031 46. Rusk N. Torrents of sequence. Nat. Methods. 2010; 8:44-58. https://doi.org/10.1038/nmeth.f.330 47. Magierowski S. Ion Torrent in a Little Detail. Fecha de consulta: 8,04,2020. Disponible en: http://www.cse.yorku.ca/~magiero/Pubs/iontorrent.pdf 48. Kim S, Jung H, Han SH, Lee S, Kwon J, Kim MG, et al. Comparison of two high-throughput semiconductor chip sequencing platforms in noninvasive prenatal testing for Down syndrome in early pregnancy. BMC Med. Gen. 2016; 9:22. https://doi.org/10.1186/s12920-016-0182-9 49. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics. 2012; 13:341-349. https://doi.org/10.1186/1471-2164-13-341 50. Merriman B, D Team IT, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012; 33:397-417. https://doi.org/10.1002/elps.201200424 51. Hsiao Y-P, Lu C-T, Chang-Chien J, Chao W-R, Yang J-J. Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. Materials. 2016; 9:464-478. https://doi.org/10.3390/ma9060464 52. Chen S, Li S, Xie W, Li X, Zhang C, Jiang H, et al. Performance comparison between rapid sequencing platforms for ultra-low coverage sequencing strategy. PLoS One. 2014; 9:3-12. https://doi.org/10.1371/journal.pone.0092192 53. Wang Y, Wen Z, Shen J, Cheng W, Li J, Qin X, et al. Comparison of the performance of Ion Torrent chips in noninvasive prenatal trisomy detection. J. Hum. Genet. 2014; 59:393-406. https://doi.org/10.1038/jhg.2014.40 54. Marine RL, Magaña LC, Castro CJ, Zhao K, Montmayeur AM, Schmidt A, et al. Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. Journal of Virological Methods. 2020; 113:865-874. https://doi.org/10.1016/j.jviromet.2020.113865 55. McCarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & Biol. 2010; 17:675-686. https://doi.org/10.1016/j.chembiol.2010.07.004 56. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008; 320:106-109. https://doi.org/10.1126/science.1150427 57. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum. Mol. Genet. 2010; 19:227-240. https://doi.org/10.1093/hmg/ddq416 58. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, et al. Real-time DNA sequencing from single polymerase molecules. Met. in enzymology. Elsevier. 2010; 308:431-55. https://doi.org/10.1016/S0076-6879(10)72001-2 59. Time SMR. Pacific Biosciences Develops Transformative DNA Sequencing Technology. Fecha de consulta: 05,05,2020. Disponible en: https://www.ndsu.edu/pubweb/~mcclean/plsc411/Pacific%20Biosciences-technology_backgrounder.pdf 60. Rhoads A, Au KF. PacBio sequencing and its applications. GBP.2015; 13:278-89. https://doi.org/10.1016/j.gpb.2015.08.002 61. Travers KJ, Chin C-S, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic acids research. 2010; 38:159-165. https://doi.org/10.1093/nar/gkq543 62. Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long-read sequencing–a powerful tool in viral transcriptome research. Trends in Microbiol. 2019; 27:578-592. https://doi.org/10.1016/j.tim.2019.01.010 63. Metzker ML. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010; 11:31-46. https://doi.org/10.1038/nrg2626 64. Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT, Park I, et al. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides, Nucleotides and Nucleic Acids. 2008; 27:72-82. https://doi.org/10.1038/nrg2626 65. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, et al. Improved fabrication of zero-mode waveguides for single-molecule detection. J. Appl. Phys. 2008; 103:34-38. https://doi.org/10.1063/1.2831366 66. Lundquist PM, Zhong CF, Zhao P, Tomaney AB, Peluso PS, Dixon J, et al. Parallel confocal detection of single molecules in real time. Optics letters. 2008; 33:10-26. https://doi.org/10.1364/OL.33.001026 67. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X-J, et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. 2017; 6:100-108. https://doi:10.12688/f1000research.10571.2 68. Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat. Biot. 2016; 34:518. https://doi.org/10.1038/nbt.3423 69. Kono N, Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Development, growth & differentiation. 2019; 61:316-26. https://doi.org/10.1111/dgd.12608 70. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genom. Biol. 2015; 16:114. https://doi.org/10.1186/s13059-015-0677-2 71. Judge K, Harris SR, Reuter S, Parkhill J, Peacock SJ. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. JAC. 2015; 70:2775-8. https://doi.org/10.1093/jac/dkv206 72. Raphael BJ, Hruban RH, Aguirre AJ, Moffitt RA, Yeh JJ, Stewart C, et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer cell. 2017; 32:185-203. https://doi.org/10.1016/j.ccell.2017.07.007 73. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genom. Biol. 2016; 17:239. https://doi.org/10.1186/s13059-016-1103-0 74. Gibney E, Nolan C. Epigenetics and gene expression. Heredity. 2010; 105:4-13. https://doi.org/10.1038/hdy.2010.54 75. Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology. 2013; 38:220-36. https://doi.org/10.1038/npp.2012.110 76. Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation.JMB. 2013; 425:3970-7. https://doi.org/10.1016/j.jmb.2013.07.015. 77. Mefford HC, Batshaw ML, Hoffman EP. Genomics, intellectual disability, and autism.NEJM. 2012; 366:733-43. https://doi.org/10.1016/j.jmb.2013.07.015 78. Botkin JR, Belmont JW, Berg JS, Berkman BE, Bombard Y, Holm IA, et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. AJHG. 2015; 97:6-21. https://doi.org/10.1016/j.ajhg.2015.05.022 79. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, et al. Genetics of type 1 diabetes: what's next? Diabetes. 2010; 59:1561-71. https://doi.org/10.2337/db10-0076 80. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020; 577:179-89. https://doi.org/10.1038/s41586-019-1879-7 81. Beigh MM. Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”. Medicin. 2016; 3:14. https://doi.org/10.3390/medicines3020014 82. Ross DS, Zehir A, Cheng DT, Benayed R, Nafa K, Hechtman JF, et al. Next-generation assessment of human epidermal growth factor receptor 2 (ERBB2) amplification status: clinical validation in the context of a hybrid capture-based, comprehensive solid tumor genomic profiling assay. JMD.2017; 19:244-54. https://doi.org/10.1016/j.jmoldx.2016.09.010. 83. Pan X, Ji X, Zhang R, Zhou Z, Zhong Y, Peng W, et al. Landscape of somatic mutations in gastric cancer assessed using next‑generation sequencing analysis. Oncology letters. 2018; 16:4863-70. https://doi.org/10.3892/ol.2018.9314. 84. Colvin H, Yamamoto K, Wada N, Mori M. Hereditary gastric cancer syndromes. Surgical Oncology Clinics. 2015; 24:765-77. https://doi.org/10.1016/j.soc.2015.06.002 85. Luo W, Fedda F, Lynch P, Tan D. CDH1 gene and hereditary diffuse gastric cancer syndrome: Molecular and histological alterations and implications for diagnosis and treatment. Front. Pharmacol. 2018; 9:1421. https://doi.org/10.3389/fphar.2018.01421 86. Nemtsova MV, Kalinkin AI, Kuznetsova EB, Bure IV, Alekseeva EA, Bykov II, et al. Clinical relevance of somatic mutations in main driver genes detected in gastric cancer patients by next-generation DNA sequencing. Sci. Rep. 2020; 10:1-11. https://doi.org/10.1038/s41598-020-57544-3 87. Zhang Y, Shen W-X, Zhou L-N, Tang M, Tan Y, Feng C-X, et al. The Value of Next-Generation Sequencing for Treatment in Non-Small Cell Lung Cancer Patients: The Observational, Real-World Evidence in China. BioMed Res. Int. 2020; 20:20. https://doi.org/10.1155/2020/9387167 88. Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget. 2014;5:67-76. https://doi.org/10.18632/oncotarget.2246 89. Wang Y, Liu H, Hou Y, Zhou X, Liang L, Zhang Z, et al. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients. Virchows Archiv. 2018; 472:959-68. https://doi.org/10.1007/s00428-018-2359-4 90. Suh J, Jeong CW, Choi S, Ku JH, Kim HH, Kim KS, et al. Targeted next-generation sequencing for locally advanced prostate cancer in the Korean population. Investig. Clin. Urol. 2020; 61:127-35. https://doi.org/10.4111/icu.2020.61.2.127 91. Bolli N, Genuardi E, Ziccheddu B, Martello M, Oliva S, Terragna C. Next-generation sequencing for clinical management of multiple myeloma: ready for prime time? Front. Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00189 92. Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015; 163:1011-25. https://doi.org/10.1016/j.cell.2015.10.025. 93. Lightbody G, Haberland V, Browne F, Taggart L, Zheng H, Parkes E, et al. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief. Bioinf. 2019; 20:1795-811. https://doi.org/10.1093/bib/bby051 94. Wang B, Olson A, Kumar V, Ware D. Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 2019; 10:384. https://doi.org/10.3389/fgene.2019.00384 95. Jin Y, Lee WY, Toh ST, Tennakoon C, Toh HC, Chow PK-H, et al. Comprehensive analysis of transcriptome profiles in hepatocellular carcinoma. J. Transl. Med. 2019; 17:1-16. https://doi.org/10.1186/s12967-019-2025-x 96. Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick M-A, et al. Transcriptomic hallmarks of tumor plasticity and stromal interactions in brain metastasis. Cell Rep. 2019; 27:1277-92. https://doi.org/10.1016/j.celrep.2019.03.085 97. Jenkinson CP, Göring HH, Arya R, Blangero J, Duggirala R, DeFronzo RA. Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genom. Data. 2016; 8:25-36. https://doi.org/10.1016/j.gdata.2015.12.001 98. Cui Y, Chen W, Chi J, Wang L. Comparison of transcriptome between type 2 diabetes mellitus and impaired fasting glucose. Med Sci Mon Int Med J Exp Clin Res. 2016; 22:4699. https://doi.org/10.12659/msm.896772 99. Del Cornò M, Baldassarre A, Calura E, Conti L, Martini P, Romualdi C, et al. Transcriptome profiles of human visceral adipocytes in obesity and colorectal cancer unravel the effects of body mass index and polyunsaturated fatty acids on genes and biological processes related to tumorigenesis. Front. Immunol. 2019; 10:265. https://doi.org/10.3389/fimmu.2019.00265. 100. Pérot P, Biton A, Marchetta J, Pourcelot A-G, Nazac A, Marret H, et al. Broad-Range Papillomavirus Transcriptome as a Biomarker of Papillomavirus-Associated Cervical High-Grade Cytology. J Mol Diagn. 2019; 21:768-81. https://doi.org/10.1016/j.jmoldx.2019.04.010 101. Al-Eitan LN, Tarkhan AH, Alghamdi MA, Al-Qarqaz FA, Al-Kofahi HS. Transcriptome analysis of HPV-induced warts and healthy skin in humans. BMC Med genomics. 2020; 13:1-10. https://doi.org/10.1186/s12920-020-0700-7 102. Oude Munnink BB, Nieuwenhuijse DF, Stein M, O'Toole A, Haverkate M, Mollers M, et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 2020; 26-11:1802. https://doi.org/10.1038/s41591-020-0997-y. 103. Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. 2020.59-01. https://doi.org/10.1126/science.abe5901. 104. Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. bioRxiv. 2020. https://doi.org/10.1101/2020.09.01.277152 105. Lopez-Alvarez D, Parra B, Cuellar WJ. Genome Sequence of SARS-CoV-2 Isolate Cali-01, from Colombia, Obtained Using Oxford Nanopore MinION Sequencing. Microbiol. Resour. Announc. 2020;9:26. https://doi.org/10.1128/MRA.00573-20. 106. Popa A, Genger J-W, Nicholson MD, Penz T, Schmid D, Aberle SW, et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci. Transl. Med. 2020; 12:573. https://doi.org/10.1126/scitranslmed.abe2555. 107. Derocles SA, Bohan DA, Dumbrell AJ, Kitson JJ, Massol F, Pauvert C, et al. Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Adv. Ecol. Res. 2018; 58:1-62. https://doi.org/10.1016/bs.aecr.2017.12.001 108. Kchouk M, Elloumi M. An Error Correction and DeNovo Assembly Approach for Nanopore Reads Using Short Reads. Curr. Bioinform. 2018;13:241-52. https://doi.org/10.2174/1574893612666170530073736. 109. Castiblanco J. A primer on current and common sequencing technologies. Autoimmunity: From Bench to Bedside. Fecha de consulta: 22 de Julio de 2020, Diponible en: https://www.ncbi.nlm.nih.gov/books/NBK459463/ 110. García-García G, Baux D, Faugère V, Moclyn M, Koenig M, Claustres M, et al. Assessment of the latest NGS enrichment capture methods in clinical context. Sci. Rep. 2016;6:1-8. https://doi.org/10.1038/srep20948 111. Foster MW, Sharp RR. Ethical issues in medical-sequencing research: implications of genotype–phenotype studies for individuals and populations. Hum. Mol. Genet. 2006;15:45-9.https://doi.org/10.1093/hmg/ddl049 112. Martinez-Martin N, Magnus D. Privacy and ethical challenges in next-generation sequencing. Exp. Rev. Precis. Med. Drug Develop. 2019;4:95-10. https://doi.org/10.1080/23808993.2019.1599685 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2020-08-11 |
date_accessioned |
2020-08-11T00:00:00Z |
date_available |
2020-08-11T00:00:00Z |
url |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/498 |
url_doi |
https://doi.org/10.24267/23897325.498 |
issn |
2389-7325 |
eissn |
2539-2018 |
doi |
10.24267/23897325.498 |
citationstartpage |
138 |
citationendpage |
172 |
url2_str_mv |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/498/550 |
_version_ |
1811200582075023360 |
spelling |
Fundamentos y aplicaciones biomédicas de las principales tecnologías de secuenciación: una revisión de literatura Biomedical Foundations and Applications of Major Sequencing Technologies: A Literature Review Introducción. La secuenciación tiene como finalidad determinar la composición de los nucleótidos presentes en el ADN o ARN. Desde la finalización del proyecto genoma humano, surgieron diversas tecnologías de secuenciación como Roche 454, SOLID, Illumina, Ion torrent, Pacbio y Oxford nanopore como herramientas para secuenciar rápidamente, con mayor precisión y costo-eficiencia, permitiendo el desarrollo de proyectos a gran escala y el estudio de genes y genomas, la composición de microbiomas, enfermedades metabólicas y enfermedades genéticas que afectan la población. Objetivo. Describir los fundamentos de los métodos de secuenciación de ADN y sus aplicaciones en las ciencias biomédicas. Métodos. Revisión descriptiva de las principales estrategias de secuenciación de ADN de primera, segunda y tercera generación y su aplicación en el entorno biomédico. Esta revisión se realizó a partir de la búsqueda de artículos en bases de datos electrónicas especializadas en investigación científica. Se encontraron 118 documentos, de los cuales se excluyeron 6 por no cumplir con los criterios de inclusión y se seleccionaron 112 por cumplir con todos los requisitos. Conclusiones. La secuenciación de ADN y ARN ha permitido avances en los estudios de organismos biológicos, el surgimiento de los métodos de secuenciación de siguiente generación arroja una gran cantidad de datos, incluidos genomas secuenciados completamente de varias especies, con un rendimiento extenso, tiempos reducidos y costo-eficiencia que lleva a la transformación por completo de las ciencias de la vida, logrando un progreso sin precedentes en el análisis de genomas, la evaluación de ecología microbiana y el diagnóstico de enfermedades. Introduction. The purpose of sequencing is to determine the composition of the nucleotides present in DNA or RNA. Since the completion of the human genome project, several sequencing technologies such as Roche 454, SOLID, Illumina, Ion torrent, Pacbio and Oxford nanopore have emerged as tools for rapid sequencing, with greater precision and cost-efficiency, allowing the development of large-scale projects and the study of genes and genomes, along with the composition of microbiomes and the study of metabolic and genetic diseases that affect the population. Objective. To describe the foundations of the methods of DNA sequencing and their applications in the biomedical sciences. Methods. Descriptive review of the main strategies of first, second and third generation DNA sequencing and their application in the biomedical environment. This review was carried out by searching articles in electronic databases specialized in scientific research. A total of 118 papers were found, of which 6 were excluded as they did not meet the inclusion criteria and 112 were selected as meeting all the requirements. Conclusions. DNA and RNA sequencing has enabled advances in the study of biological organisms, the emergence of next-generation sequencing methods yielding a wealth of data, including fully sequenced genomes of various species, with extensive throughput, reduced time and cost-effectiveness that has led to the complete transformation of the life sciences, achieving unprecedented progress in genome analysis, assessment of microbial ecology and disease diagnosis. Camargo Mancipe, Anny Jineth Valero González, Karen Nattaly Gómez Rodriguez, Alida Marcela Camargo Mancipe, Diego Fernando Suárez Martínez, Carlos Fernando Cuy Chaparro, Laura Esperanza Secuenciación de nucleótidos de alto rendimiento análisis de secuencia ADN genoma humano técnicas genéticas High-Throughput Nucleotide Sequencing Sequence analysis DNA genome human genetic techniques sequenciamento de nucleotídeos de alto rendimento análise de sequência DNA genoma humano técnicas genéticas 7 2 Núm. 2 , Año 2020 : Revista Investigación en Salud Universidad de Boyacá Artículo de revista Journal article 2020-08-11T00:00:00Z 2020-08-11T00:00:00Z 2020-08-11 application/pdf Universidad de Boyacá Revista Investigación en Salud Universidad de Boyacá 2389-7325 2539-2018 https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/498 10.24267/23897325.498 https://doi.org/10.24267/23897325.498 spa http://creativecommons.org/licenses/by-nc/4.0 Revista Investigación en Salud Universidad de Boyacá - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. 138 172 Mattick JS, Dziadek MA, Terrill BN, Kaplan W, Spigelman AD, Bowling FG, et al. The impact of genomics on the future of medicine and health. MJA. 2014; 201:17-20. https://doi.org/10.5694/mja13.10920 2. Swerdlow SH. WHO classification of tumours of haematopoietic and lymphoid tissues: IARC; 2017;885-887 https://doi.org/10.1002/9781118853771.ch51 3. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic syndromes. JNCCN. 2017; 15:60-87. https://doi.org/10.6004/jnccn.2017.0007 4. Inaba H, Shinozawa K, Amano K, Fukutake K. The Genetic Analysis of Hemophilia a: The Application of Next-Generation Sequencing in the Analysis of Causative Variants Deep inside the Intron of the F8 Gene. ASH. 2016;128:22-93. https://doi.org/10.1182/blood.V128.22.1393.1393 5. Goodeve AC, Pavlova A, Oldenburg J. Genomics of bleeding disorders. Haemophilia. 2014; 20:50-3. https://doi.org/10.1111/hae.12424 6. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science. JAMA. 2001; 285:540-4. https:// doi:10.1001/jama.285.5.540 7. Pereira R, Oliveira J, Sousa M. Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. JCM. 2020; 9:132-150. https://doi.org/10.3390/jcm9010132 8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. 2001; 409:860-921. https://doi.org/10.1038/35057062 9. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001; 291:13-51. https://doi.org/10.1126/science.1058040 10. Wetterstrand KA. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute Fecha de consulta: 03, 03, 2020. Disponible en: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data 11. Laurentino S, Heckmann L, Di Persio S, Li X, zu Hörste GM, Wistuba J, et al. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin. epigenetics. 2019; 213:11:127. https://doi.org/10.1186/s13148-019-0720-3 12. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors.PNAS. 1977;74:54-67. https://doi.org/10.1073/pnas.74.12.5463 13. Lander ES. Initial impact of the sequencing of the human genome. Nat. 2011; 470:187-97. https://doi.org/10.1038/nature09792 14. Tripp S, Grueber M. Economic Impact of the Human Genome Project. Battelle Memorial Institute, Technology Partnership Practice. Fecha de consulta: 15,05, 2020. 15. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Erratum: Corrigendum: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2006; 441:120-145. https://doi.org/10.1038/nature04726 16. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016; 107:1-8. https://doi.org/10.1016/j.ygeno.2015.11.003 17. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017; 550:345-53. https://doi.org/10.1038/nature24286 18. Maxam AM, Gilbert W. A new method for sequencing DNA.PNAS. 1977; 74:560-4. https://doi.org/10.1073/pnas.74.2.560 19. Slatko BE, Gardner AF, Ausubel FM. Overview of next‐generation sequencing technologies. Current Protocols in Molec. Biol. 2018; 122:59. https://doi.org/10.1002/cpmb.59 20. França LT, Carrilho E, Kist TB. A review of DNA sequencing techniques. Q. Rev. Biophys. 2002; 35:169-200. https://doi.org/10.1017/S0033583502003797 21. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008; 92:55-64. http://doi.org/10.1016/j.ygeno.2008.07.001 22. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 1996; 242:84-9. https://doi.org/10.1006/abio.1996.0432. 23. Nyrén P, Lundin A. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal. Biochem. 1985; 151:504-9. https://doi.org/10.1016/0003-2697(85)90211-8 24. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 2009; 55:641-58. https://doi.org/10.1373/clinchem.2008.112789 25. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376-80. https://doi.org/10.1038/nature03959 26. Nyrén P, Pettersson B, Uhlén M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal. Biochem. 1993;208:171-5. https://doi.org/10.1006/abio.1993.1024 27. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007;8:143. https://doi.org/10.1186/gb-2007-8-7-r143 28. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS. 2006; 103:15-20. https://doi.org/10.1073/pnas.0605127103 29. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome research. 2008; 18:51-63. https://doi.org/10.1101/gr.076463.108 30. Shendure J, Ji H. Next-generation DNA sequencing. Nature biotechnology. 2008;26:35. https://doi.org/10.1038/nbt1486 31. Kulski JK. Next-generation sequencing—an overview of the history, tools, and “Omic” applications. Next Generation Sequencing–Advances, Applications and Challenges. 2016:3-60. https://doi.org/10.5772/61964 32. Shirota M, Kinoshita K. Discrepancies between human DNA, mRNA and protein reference sequences and their relation to single nucleotide variants in the human population. Fecha de consulta: 20,03,2020. Disponible en: https://doi.org/10.1093/database/baw124 33. Cloonan N, Forrest A, Kolle G, Gardiner B. a, Faulkner GJ, Brown MK, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing Nat Methods. 2008; 5:6-9. https://doi.org/10.1038/nmeth.1223 34. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 2010; 11:473-83. https://doi.org/10.1093/bib/bbq015 35. Garrido-Cardenas JA, Garcia-Maroto F, Alvarez-Bermejo JA, Manzano-Agugliaro F. DNA sequencing sensors: an overview. Sensors. 2017; 17:588-590. https://doi.org/10.3390/s17030588 36. Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014; 6:106-36. https://doi.org/10.3390/v6010106 37. Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. NAR. 2006;34:6-10. https://doi.org/10.1093/nar/gnj023 38. Turcatti G, Romieu A, Fedurco M, Tairi A-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. NAR. 2008;36 25-34. https://doi.org/10.1093/nar/gkn021 39. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456:53-9. https://doi.org/10.1038/nature07517 40. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. NAR. 2000;28:12-18 https://doi.org/10.1093/nar/28.20.e87 41. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nature Rev. Gen.. 2016;17:333-340. https://doi.org/10.1038/nrg.2016.49 42. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 2017; 8:18-29. https://doi.org/10.3389/fmicb.2017.01829 43. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. GBO. 2016; 14:265-279. https://doi.org/10.1016/j.gpb.2016.05.004 44. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011; 475:348-52. https://doi.org/10.1038/nature10242 45. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 2013;9. https://doi.org/10.1371/journal.pcbi.1003031 46. Rusk N. Torrents of sequence. Nat. Methods. 2010; 8:44-58. https://doi.org/10.1038/nmeth.f.330 47. Magierowski S. Ion Torrent in a Little Detail. Fecha de consulta: 8,04,2020. Disponible en: http://www.cse.yorku.ca/~magiero/Pubs/iontorrent.pdf 48. Kim S, Jung H, Han SH, Lee S, Kwon J, Kim MG, et al. Comparison of two high-throughput semiconductor chip sequencing platforms in noninvasive prenatal testing for Down syndrome in early pregnancy. BMC Med. Gen. 2016; 9:22. https://doi.org/10.1186/s12920-016-0182-9 49. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics. 2012; 13:341-349. https://doi.org/10.1186/1471-2164-13-341 50. Merriman B, D Team IT, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012; 33:397-417. https://doi.org/10.1002/elps.201200424 51. Hsiao Y-P, Lu C-T, Chang-Chien J, Chao W-R, Yang J-J. Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. Materials. 2016; 9:464-478. https://doi.org/10.3390/ma9060464 52. Chen S, Li S, Xie W, Li X, Zhang C, Jiang H, et al. Performance comparison between rapid sequencing platforms for ultra-low coverage sequencing strategy. PLoS One. 2014; 9:3-12. https://doi.org/10.1371/journal.pone.0092192 53. Wang Y, Wen Z, Shen J, Cheng W, Li J, Qin X, et al. Comparison of the performance of Ion Torrent chips in noninvasive prenatal trisomy detection. J. Hum. Genet. 2014; 59:393-406. https://doi.org/10.1038/jhg.2014.40 54. Marine RL, Magaña LC, Castro CJ, Zhao K, Montmayeur AM, Schmidt A, et al. Comparison of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. Journal of Virological Methods. 2020; 113:865-874. https://doi.org/10.1016/j.jviromet.2020.113865 55. McCarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & Biol. 2010; 17:675-686. https://doi.org/10.1016/j.chembiol.2010.07.004 56. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008; 320:106-109. https://doi.org/10.1126/science.1150427 57. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum. Mol. Genet. 2010; 19:227-240. https://doi.org/10.1093/hmg/ddq416 58. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, et al. Real-time DNA sequencing from single polymerase molecules. Met. in enzymology. Elsevier. 2010; 308:431-55. https://doi.org/10.1016/S0076-6879(10)72001-2 59. Time SMR. Pacific Biosciences Develops Transformative DNA Sequencing Technology. Fecha de consulta: 05,05,2020. Disponible en: https://www.ndsu.edu/pubweb/~mcclean/plsc411/Pacific%20Biosciences-technology_backgrounder.pdf 60. Rhoads A, Au KF. PacBio sequencing and its applications. GBP.2015; 13:278-89. https://doi.org/10.1016/j.gpb.2015.08.002 61. Travers KJ, Chin C-S, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic acids research. 2010; 38:159-165. https://doi.org/10.1093/nar/gkq543 62. Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long-read sequencing–a powerful tool in viral transcriptome research. Trends in Microbiol. 2019; 27:578-592. https://doi.org/10.1016/j.tim.2019.01.010 63. Metzker ML. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010; 11:31-46. https://doi.org/10.1038/nrg2626 64. Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT, Park I, et al. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides, Nucleotides and Nucleic Acids. 2008; 27:72-82. https://doi.org/10.1038/nrg2626 65. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, et al. Improved fabrication of zero-mode waveguides for single-molecule detection. J. Appl. Phys. 2008; 103:34-38. https://doi.org/10.1063/1.2831366 66. Lundquist PM, Zhong CF, Zhao P, Tomaney AB, Peluso PS, Dixon J, et al. Parallel confocal detection of single molecules in real time. Optics letters. 2008; 33:10-26. https://doi.org/10.1364/OL.33.001026 67. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X-J, et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. 2017; 6:100-108. https://doi:10.12688/f1000research.10571.2 68. Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat. Biot. 2016; 34:518. https://doi.org/10.1038/nbt.3423 69. Kono N, Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Development, growth & differentiation. 2019; 61:316-26. https://doi.org/10.1111/dgd.12608 70. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genom. Biol. 2015; 16:114. https://doi.org/10.1186/s13059-015-0677-2 71. Judge K, Harris SR, Reuter S, Parkhill J, Peacock SJ. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. JAC. 2015; 70:2775-8. https://doi.org/10.1093/jac/dkv206 72. Raphael BJ, Hruban RH, Aguirre AJ, Moffitt RA, Yeh JJ, Stewart C, et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer cell. 2017; 32:185-203. https://doi.org/10.1016/j.ccell.2017.07.007 73. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genom. Biol. 2016; 17:239. https://doi.org/10.1186/s13059-016-1103-0 74. Gibney E, Nolan C. Epigenetics and gene expression. Heredity. 2010; 105:4-13. https://doi.org/10.1038/hdy.2010.54 75. Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology. 2013; 38:220-36. https://doi.org/10.1038/npp.2012.110 76. Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation.JMB. 2013; 425:3970-7. https://doi.org/10.1016/j.jmb.2013.07.015. 77. Mefford HC, Batshaw ML, Hoffman EP. Genomics, intellectual disability, and autism.NEJM. 2012; 366:733-43. https://doi.org/10.1016/j.jmb.2013.07.015 78. Botkin JR, Belmont JW, Berg JS, Berkman BE, Bombard Y, Holm IA, et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. AJHG. 2015; 97:6-21. https://doi.org/10.1016/j.ajhg.2015.05.022 79. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, et al. Genetics of type 1 diabetes: what's next? Diabetes. 2010; 59:1561-71. https://doi.org/10.2337/db10-0076 80. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020; 577:179-89. https://doi.org/10.1038/s41586-019-1879-7 81. Beigh MM. Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”. Medicin. 2016; 3:14. https://doi.org/10.3390/medicines3020014 82. Ross DS, Zehir A, Cheng DT, Benayed R, Nafa K, Hechtman JF, et al. Next-generation assessment of human epidermal growth factor receptor 2 (ERBB2) amplification status: clinical validation in the context of a hybrid capture-based, comprehensive solid tumor genomic profiling assay. JMD.2017; 19:244-54. https://doi.org/10.1016/j.jmoldx.2016.09.010. 83. Pan X, Ji X, Zhang R, Zhou Z, Zhong Y, Peng W, et al. Landscape of somatic mutations in gastric cancer assessed using next‑generation sequencing analysis. Oncology letters. 2018; 16:4863-70. https://doi.org/10.3892/ol.2018.9314. 84. Colvin H, Yamamoto K, Wada N, Mori M. Hereditary gastric cancer syndromes. Surgical Oncology Clinics. 2015; 24:765-77. https://doi.org/10.1016/j.soc.2015.06.002 85. Luo W, Fedda F, Lynch P, Tan D. CDH1 gene and hereditary diffuse gastric cancer syndrome: Molecular and histological alterations and implications for diagnosis and treatment. Front. Pharmacol. 2018; 9:1421. https://doi.org/10.3389/fphar.2018.01421 86. Nemtsova MV, Kalinkin AI, Kuznetsova EB, Bure IV, Alekseeva EA, Bykov II, et al. Clinical relevance of somatic mutations in main driver genes detected in gastric cancer patients by next-generation DNA sequencing. Sci. Rep. 2020; 10:1-11. https://doi.org/10.1038/s41598-020-57544-3 87. Zhang Y, Shen W-X, Zhou L-N, Tang M, Tan Y, Feng C-X, et al. The Value of Next-Generation Sequencing for Treatment in Non-Small Cell Lung Cancer Patients: The Observational, Real-World Evidence in China. BioMed Res. Int. 2020; 20:20. https://doi.org/10.1155/2020/9387167 88. Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget. 2014;5:67-76. https://doi.org/10.18632/oncotarget.2246 89. Wang Y, Liu H, Hou Y, Zhou X, Liang L, Zhang Z, et al. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients. Virchows Archiv. 2018; 472:959-68. https://doi.org/10.1007/s00428-018-2359-4 90. Suh J, Jeong CW, Choi S, Ku JH, Kim HH, Kim KS, et al. Targeted next-generation sequencing for locally advanced prostate cancer in the Korean population. Investig. Clin. Urol. 2020; 61:127-35. https://doi.org/10.4111/icu.2020.61.2.127 91. Bolli N, Genuardi E, Ziccheddu B, Martello M, Oliva S, Terragna C. Next-generation sequencing for clinical management of multiple myeloma: ready for prime time? Front. Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00189 92. Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015; 163:1011-25. https://doi.org/10.1016/j.cell.2015.10.025. 93. Lightbody G, Haberland V, Browne F, Taggart L, Zheng H, Parkes E, et al. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Brief. Bioinf. 2019; 20:1795-811. https://doi.org/10.1093/bib/bby051 94. Wang B, Olson A, Kumar V, Ware D. Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 2019; 10:384. https://doi.org/10.3389/fgene.2019.00384 95. Jin Y, Lee WY, Toh ST, Tennakoon C, Toh HC, Chow PK-H, et al. Comprehensive analysis of transcriptome profiles in hepatocellular carcinoma. J. Transl. Med. 2019; 17:1-16. https://doi.org/10.1186/s12967-019-2025-x 96. Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick M-A, et al. Transcriptomic hallmarks of tumor plasticity and stromal interactions in brain metastasis. Cell Rep. 2019; 27:1277-92. https://doi.org/10.1016/j.celrep.2019.03.085 97. Jenkinson CP, Göring HH, Arya R, Blangero J, Duggirala R, DeFronzo RA. Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genom. Data. 2016; 8:25-36. https://doi.org/10.1016/j.gdata.2015.12.001 98. Cui Y, Chen W, Chi J, Wang L. Comparison of transcriptome between type 2 diabetes mellitus and impaired fasting glucose. Med Sci Mon Int Med J Exp Clin Res. 2016; 22:4699. https://doi.org/10.12659/msm.896772 99. Del Cornò M, Baldassarre A, Calura E, Conti L, Martini P, Romualdi C, et al. Transcriptome profiles of human visceral adipocytes in obesity and colorectal cancer unravel the effects of body mass index and polyunsaturated fatty acids on genes and biological processes related to tumorigenesis. Front. Immunol. 2019; 10:265. https://doi.org/10.3389/fimmu.2019.00265. 100. Pérot P, Biton A, Marchetta J, Pourcelot A-G, Nazac A, Marret H, et al. Broad-Range Papillomavirus Transcriptome as a Biomarker of Papillomavirus-Associated Cervical High-Grade Cytology. J Mol Diagn. 2019; 21:768-81. https://doi.org/10.1016/j.jmoldx.2019.04.010 101. Al-Eitan LN, Tarkhan AH, Alghamdi MA, Al-Qarqaz FA, Al-Kofahi HS. Transcriptome analysis of HPV-induced warts and healthy skin in humans. BMC Med genomics. 2020; 13:1-10. https://doi.org/10.1186/s12920-020-0700-7 102. Oude Munnink BB, Nieuwenhuijse DF, Stein M, O'Toole A, Haverkate M, Mollers M, et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 2020; 26-11:1802. https://doi.org/10.1038/s41591-020-0997-y. 103. Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. 2020.59-01. https://doi.org/10.1126/science.abe5901. 104. Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, et al. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. bioRxiv. 2020. https://doi.org/10.1101/2020.09.01.277152 105. Lopez-Alvarez D, Parra B, Cuellar WJ. Genome Sequence of SARS-CoV-2 Isolate Cali-01, from Colombia, Obtained Using Oxford Nanopore MinION Sequencing. Microbiol. Resour. Announc. 2020;9:26. https://doi.org/10.1128/MRA.00573-20. 106. Popa A, Genger J-W, Nicholson MD, Penz T, Schmid D, Aberle SW, et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci. Transl. Med. 2020; 12:573. https://doi.org/10.1126/scitranslmed.abe2555. 107. Derocles SA, Bohan DA, Dumbrell AJ, Kitson JJ, Massol F, Pauvert C, et al. Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Adv. Ecol. Res. 2018; 58:1-62. https://doi.org/10.1016/bs.aecr.2017.12.001 108. Kchouk M, Elloumi M. An Error Correction and DeNovo Assembly Approach for Nanopore Reads Using Short Reads. Curr. Bioinform. 2018;13:241-52. https://doi.org/10.2174/1574893612666170530073736. 109. Castiblanco J. A primer on current and common sequencing technologies. Autoimmunity: From Bench to Bedside. Fecha de consulta: 22 de Julio de 2020, Diponible en: https://www.ncbi.nlm.nih.gov/books/NBK459463/ 110. García-García G, Baux D, Faugère V, Moclyn M, Koenig M, Claustres M, et al. Assessment of the latest NGS enrichment capture methods in clinical context. Sci. Rep. 2016;6:1-8. https://doi.org/10.1038/srep20948 111. Foster MW, Sharp RR. Ethical issues in medical-sequencing research: implications of genotype–phenotype studies for individuals and populations. Hum. Mol. Genet. 2006;15:45-9.https://doi.org/10.1093/hmg/ddl049 112. Martinez-Martin N, Magnus D. Privacy and ethical challenges in next-generation sequencing. Exp. Rev. Precis. Med. Drug Develop. 2019;4:95-10. https://doi.org/10.1080/23808993.2019.1599685 https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/498/550 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_dcae04bc http://purl.org/redcol/resource_type/ARTREV info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |