Titulo:

Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
.

Sumario:

Introducción. Las bacterias son organismos que se encuentran en diferentes tipos de ambientes que actúan como reservorios, entre estos, los productos de consumo derivados de los animales. Algunas de estas bacterias son capaces de causar enfermedad a los humanos y, a su vez, han evolucionado generando resistencia a antibióticos, lo cual se ha convertido en un problema de salud pública a nivel mundial. Objetivo. Describir los perfiles de susceptibilidad de grupos bacterianos provenientes de productos cárnicos y derivados, de dos lugares de abasto de Tunja. Materiales y Métodos. Estudio descriptivo de corte transversal. Se realizó muestreo de productos cárnicos en los expendios de carne y derivados, en un periodo de tres meses, en dos lugares... Ver más

Guardado en:

2389-7325

2539-2018

6

2019-07-26

19

39

Revista Investigación en Salud Universidad de Boyacá - 2019

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_uniboyaca_revistainvestigacionensaluduniversidaddeboyaca_0_article_439
record_format ojs
spelling Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
Susceptibility profiles of bacterial groups of meat products in Tunja, Boyacá
Introducción. Las bacterias son organismos que se encuentran en diferentes tipos de ambientes que actúan como reservorios, entre estos, los productos de consumo derivados de los animales. Algunas de estas bacterias son capaces de causar enfermedad a los humanos y, a su vez, han evolucionado generando resistencia a antibióticos, lo cual se ha convertido en un problema de salud pública a nivel mundial. Objetivo. Describir los perfiles de susceptibilidad de grupos bacterianos provenientes de productos cárnicos y derivados, de dos lugares de abasto de Tunja. Materiales y Métodos. Estudio descriptivo de corte transversal. Se realizó muestreo de productos cárnicos en los expendios de carne y derivados, en un periodo de tres meses, en dos lugares de abasto de la ciudad de Tunja, de los cuales se tomaron diferentes cortes de productos cárnicos para su posterior análisis. Resultados. A partir de 160 muestras cárnicas recolectadas de 32 puntos de venta, se aislaron 333 cepas bacterianas, encontrando presencia de bacterias Gram negativas y Gram positivas en un 83.2% y 16.8% respectivamente. Por otra parte, los perfiles de susceptibilidad antimicrobiano para estas bacterias mostraron sensibilidad del 19,2% y 0,9%, respectivamente, a los seis antibióticos utilizados para cada grupo en el estudio. Conclusiones. Se encontró una alta presencia de bacterias procedentes de los aislados de productos cárnicos, que obliga a la mejora de las condiciones de manipulación y expendio de estos productos, dado que, entre los principales riesgos se encuentra la adquisición de cepas resistentes mediante el consumo de alimentos contaminados.
Introduction. Bacteria are found in different types of environments that act as reservoirs, among these consumer products derived from animals. Some of these bacteria are able to cause disease to humans and, it in turn, they have devolved generating antibiotics resistance, for that reason has become a public health problem worldwide. Objective. To describe susceptibility profiles of groups bacterium from meat products and derivatives, in two Tunja´s market. Materials and Methods. Descriptive cross-sectional study, they realized sampling meat´s products in meat sale zone and by-products in a three-month period in two Tunja´s market, which different cuts of meat products were taken, for further analysis. Results. From 160 meat samples collected from 32 outlets were isolated 333 bacterial strains, it found presence of Gram-negative and Gram-positive bacteria in 83.2% and 16.8% respectively. Furthermore, the profiles of antimicrobial susceptibility for these bacteria, it showed sensibility of 19,2% and 0,9% respectively to the six antibiotics used for each group in the study. Conclusions. It found a high presence of isolated bacterium from meat products, what oblige to improve od manipulation conditions and sale of these products, since, among the principal risks are the acquisition of strains resistant by means consume of these food contaminate.
Rosas-Leal, Daris Angélica
López-Velandia, Diana Paola
Torres-Caycedo, María Inés
Angarita Merchán, Maritza
bacteria
farmacorresistencia microbiana
inocuidad de los alimentos
enfermedades transmitidas por alimentos
bacteria
drug resistance
microbial
food safety
foodborne diseases
6
2
Núm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacá
Artículo de revista
Journal article
2019-07-26T00:00:00Z
2019-07-26T00:00:00Z
2019-07-26
application/pdf
Universidad de Boyacá
Revista Investigación en Salud Universidad de Boyacá
2389-7325
2539-2018
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/439
10.24267/23897325.439
https://doi.org/10.24267/23897325.439
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista Investigación en Salud Universidad de Boyacá - 2019
19
39
WHO: World Health Organization. [Internet]. Ginebra:Suiza; [31 octubre de 2017; citado 30 enero 2019]. Inocuidad de los alimentos. [aprox. 2 pantallas]. Available from: https://www.who.int/mediacentre/factsheets/fs399/es/
Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, et al. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015;46:51–7. https://doi.org/10.1016/j.fm.2014.07.009
CDC: Centers for Disease Control and Prevention. [Internet]. Druid Hills: Estados Unidos; [26 noviembre de 2018; citado 30 enero 2019]. Antibiotic Resistance Threats in the United States. [aprox. 3 pantallas]. Available from: https://www.cdc.gov/drugresistance/threat-report-2013/index.html
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin S a, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci [Internet]. 2015;112(18):5649–54. https://doi.org/10.1073/pnas.1503141112
Puig Peña Y, Espino Hernández M, Leyva Castillo V. Resistencia antimicrobiana en Salmonella y E. coli aisladas de alimentos: revisión de la literatura. Panor Cuba y Salud. 2011;6(1):30–8.
WHO: World Health Organization. [Internet]. Ginebra:Suiza; [07 noviembre de 2017; citado 30 enero 2019]. Dejemos de administrar antibióticos a animales sanos. [aprox. 1 pantallas]. Available from: https://www.who.int/foodsafety/es/
González L, Cortés JA. Revisión sistemática de la resistencia antimicrobiana en enterobacterias en aislamientos intrahospitalarios en Colombia. Biomédica [Internet]. 2014;34(2):180–97. https://doi.org/10.7705/biomedica.v34i2.1550
Villalobos AP, Barrero LI, Rivera SM, Ovalle MV, Valera D. Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica [Internet]. 2014;34(Sup1):67-80. https://doi.org/10.7705/biomedica.v34i0.1698
Oggioni MR, Dowson CG, Smith JM, Provvedi R, Pozzi G. The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid. [Internet]. 1996;35(3):156–63. https://doi.org/10.1006/plas.1996.0018
Lavilla Lerma L, Benomar N, Knapp CW, Correa Galeote D, Gálvez A, Abriouel H. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. PLoS One. 2014;9(12). https://doi.org/10.1371/journal.pone.0114252
CLSI: Clinical & Laboratory Standards Institute. [Internet]. St. Louis, Missouri, Estados Unidos; [enero de 2017; citado 30 enero 2019]. CLSI M100-27. Performance standards for antimicrobial susceptibility testing. [aprox. 1 pantallas]. Available from: https://clsi.org/media/1469/m100s27_sample.pdf
Pennacchia C, Ercolini D, Villani F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 2011;28(1):84-93. https://doi.org/10.1016/j.fm.2010.08.010
Säde E, Murros A, Björkroth J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013;34(2):252–8. https://doi.org/10.1016/j.fm.2012.10.007
Gribble A, Mills J, Brightwell G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriacae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 2014;97(1):83-92. https://doi.org/10.1016/j.meatsci.2014.01.006
González-Rey C, Siitonen A, Pavlova A, Ciznar I, Svenson SB, Krovacek K. Molecular evidence of Plesiomonas shigelloides as a possible zoonotic agent. Folia Microbiol (Praha). 2011;56(2):178–84. https://doi.org/10.1007/s12223-011-0032-2
Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D. Burkholderia cepacia: This Decision Is Overdue. PDA J Pharm Sci Technol [Internet]. 2011;65(5):535–43. https://doi.org/10.5731/pdajpst.2011.00793
López L, Alfonso, Suárez H. Caracterización microbiológica y molecular de Staphylococcus aureus en productos cárnicos comercializados en Cartagena Colombia. Rev costarric salud pública [Internet]. 2016;25(2):81–9. Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292016000200081&lng=en.
Peixoto R de M, de França CA, de Souza Júnior AF, Veschi JLA, da Costa MM. Etiologia e perfil de sensibilidade antimicrobiana dos isolados bacterianos da mastite em pequenos ruminantes e concordância de técnicas empregadas no diagnóstico. Pesqui Vet Bras. 2010;30(9):735–40. http://dx.doi: 10.1590/S0100-736X2010000900005
Oguttu JW, McCrindle CME, Makita K, Grace D. Investigation of the food value chain of ready-to-eat chicken and the associated risk for staphylococcal food poisoning in Tshwane Metropole, South Africa. Food Control. 2014;45:87–94. https://doi.org/10.1016/j.foodcont.2014.04.026
Grace D. Food safety in low and middle income countries. Int J Environ Res Public Health. 2015;12(9):10490–507. https://doi.org/10.3390/ijerph120910490
Zweifel C, Capek M, Stephan R. Microbiological contamination of cattle carcasses at different stages of slaughter in two abattoirs. Meat Sci. 2014;98(2):198–202. https://doi.org/10.1016/j.meatsci.2014.05.029
Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157(2):130–41. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
Hessain AM, Al-Arfaj AA, Zakri AM, El-Jakee JK, Al-Zogibi OG, Hemeg HA, et al. Molecular characterization of Escherichia coli O157: H7 recovered from meat and meat products relevant to human health in Riyadh, Saudi Arabia. Saudi J Biol Sci. 2015;22(6):725–9. https://doi.org/10.1016/j.sjbs.2015.06.009
Jindal BAK, Pandya MK, Khan MID. Antimicrobial resistance: A public health challenge. Med J Armed Forces India. 2015;71(2):178–81. https://doi.org/10.1016/j.mjafi.2014.04.011
Iwu C, Iweriebor B, Obi L, Basson A, Okoh A. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa. J Food Prot [Internet]. 2016;79(7):1234–9. https://doi.org/10.4315/0362-028X.JFP-15-224
FAO: Organización de las Naciones Unidas para la Alimentación. Expert Consultation on Community-based Veterinary. FAO Animal production and health. [Internet]. 2004;1:1-111. Available from: https://www.fao.org/docrep/016/y5405e/y5405e00.htm
INVIMA: Instituto Nacional de Vigilancia de Medicamento. [Internet].Bogotá, Colombia; [julio 6 de 2017; citado 30 enero 2019]. ABECÉ de la inocuidad de alimentos. [aprox. 5 pantallas]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc-inocuidad.pdf
Ministerio de Salud y Protección Social. [Internet].Bogotá, Colombia; [julio 25 de 2013; citado 30 enero 2019]. RESOLUCIÓN 2674 DE 2013 [aprox. 10 pantallas]. Available from: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=54030
Incontec. NTC 1325. Productos carnicos procesados no enlatados. Icontec. 2008
Terentjeva, M., Avsejenko, J., Streikiša, M., Utināne, A., Kovaļenko, K., & Bērziņš, A. Prevalence and antimicrobial resistance of Salmonella in meat and meat products in Latvia. Ann Agric Environ Med. 2017; 24(2), 317-321. https://doi.org/10.5604/12321966.1235180
Li, L., Ye, L., Zhang, S., & Meng, H. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. Journal of Food Science. 2016 81(6), M1480–M1484. https://doi.org/10.1111/1750-3841.13318
Schwaiger K, Huther S, Hölzel C, Kämpf P, Bauer J. Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol. 2012;154(3):206–11. https://doi.org/10.1016/j.ijfoodmicro.2011.12.014
Ojer-Usoz E, González D, Vitas AI, Leiva J, García-Jalón I, Febles-Casquero A, et al. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain. Meat Sci. 2013;93(2):316–21. https://doi.org/10.1016/j.meatsci.2012.09.009
Gwida M, Hotzel H, Geue L, Tomaso H. Occurrence of Enterobacteriaceae in Raw Meat and in Human Samples from Egyptian Retail Sellers. Int Sch Res Not [Internet]. 2014;2014:1–6. http://dx.doi.org/10.1155/2014/565671
Arriaga RF, Rojas MT, Navarrete J V, Vargas ES, Castillo AG. Presence of class I integrons in Escherichia coli isolated from meat products in Federal Inspection Type (TIF) plants in the Estado de Mexico. Vet Mex. 2013;44(1):23–30.
Anaya PAF, Medina LMR, Ugarriza MEO, Gutiérrez LAL. Determinación de Escherichia coli e identificación del serotipo O157: H7 en carne de cerdo comercializada en los principales supermercados de la ciudad de Cartagena. Rev Lasallista Investig. 2013;10(1):91–100.
Rúgeles LC, Bai J, Martínez AJ, Vanegas MC, Gómez-Duarte OG. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia. Int J Food Microbiol. 2010;138(3):282–6. https://doi.org/10.1016/j.ijfoodmicro.2010.01.034
Herrera A F, Suárez Q W. Isolation and identification of Listeria spp. from fresh fish samples, marketed in Pamplona (Norte de Santander). Rev UDCA Actual Divulg Cient. 2012;15:257–65.
Shawish RR, Al-Humam NA. Contamination of beef products with staphylococcal classical enterotoxins in Egypt and Saudi Arabia. GMS Hyg Infect Control. 2016;11:8. https://doi.org/10.3205/dgkh000268
Carrel M, Zhao C, Thapaliya D, Bitterman P, Kates AE, Hanson BM, et al. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-11423-6
Das P, Mazumder P. Prevalence of Staphylococcus in raw meat samples in Southern Assam, India. J Agric Vet Sci [Internet]. 2016;9(1):23–9. doi:10.9790/2380-09122329
Osman K, Badr J, Al-Maary KS, Moussa IMI, Hessain AM, Amin Girah ZMS, et al. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-staphylococcus in chicken meat retailed to consumers. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.01846
Moreno KM. Carbapenémicos: tipos y mecanismos de resistencia bacterianos. Rev Medica Costa Rica Y Centroam LXX [Internet]. 2013;608:599–605. Available from: https://www.binasss.sa.cr/revistas/rmcc/608/art8.pdf
Jans C, Sarno E, Collineau L, Meile L, Stärk KDC, Stephan R. Consumer exposure to antimicrobial resistant bacteria from food at Swiss retail level. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.00362
Yassin AK, Gong J, Kelly P, Lu G, Guardabassi L, Wei L, et al. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS One. 2017;12(9). https://doi.org/10.1371/journal.pone.0185326
Mateus-Vargas RH, Atanassova V, Reich F, Klein G. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiol. 2017;63:164–9. https://doi.org/10.1016/j.fm.2016.11.013
Buzón-Durán L, Capita R, Alonso-Calleja C. Microbial loads and antibiotic resistance patterns of Staphylococcus aureus in different types of raw poultry-based meat preparations. Poult Sci. 2017;96(11):4046–52. https://doi.org/10.3382/ps/pex200
Kim MS, Lim TH, Jang JH, Lee DH, Kim BY, Kwon JH, et al. Characteristics of the antimicrobial resistance of Staphylococcus aureus isolated from chicken meat produced by different integrated broiler operations in Korea. Poult Sci. 2018;97(3):962-969. https://doi.org/10.3382/ps/pey335
Baylis C, Uyttendaele M, Joosten H, Davies A, Heinz HJ. The Enterobacteriaceae and their significance to the food industry. ILSI Europe Report Series. 2011:1-48.
Fajardo-Zapata ÁL, Méndez-Casallas FJ, Molina LH. Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Univ Sci. 2011;16(1):77–91.
Aidara-Kane A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev Sci Tech [Internet]. 2012;31(1):277–87. Available from: https://doi.org/10.20506/rst.31.1.2115
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/439/478
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE BOYACÁ
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDEBOYACA/logo.png
country_str Colombia
collection Revista Investigación en Salud Universidad de Boyacá
title Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
spellingShingle Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
Rosas-Leal, Daris Angélica
López-Velandia, Diana Paola
Torres-Caycedo, María Inés
Angarita Merchán, Maritza
bacteria
farmacorresistencia microbiana
inocuidad de los alimentos
enfermedades transmitidas por alimentos
bacteria
drug resistance
microbial
food safety
foodborne diseases
title_short Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
title_full Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
title_fullStr Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
title_full_unstemmed Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja, Boyacá
title_sort perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en tunja, boyacá
title_eng Susceptibility profiles of bacterial groups of meat products in Tunja, Boyacá
description Introducción. Las bacterias son organismos que se encuentran en diferentes tipos de ambientes que actúan como reservorios, entre estos, los productos de consumo derivados de los animales. Algunas de estas bacterias son capaces de causar enfermedad a los humanos y, a su vez, han evolucionado generando resistencia a antibióticos, lo cual se ha convertido en un problema de salud pública a nivel mundial. Objetivo. Describir los perfiles de susceptibilidad de grupos bacterianos provenientes de productos cárnicos y derivados, de dos lugares de abasto de Tunja. Materiales y Métodos. Estudio descriptivo de corte transversal. Se realizó muestreo de productos cárnicos en los expendios de carne y derivados, en un periodo de tres meses, en dos lugares de abasto de la ciudad de Tunja, de los cuales se tomaron diferentes cortes de productos cárnicos para su posterior análisis. Resultados. A partir de 160 muestras cárnicas recolectadas de 32 puntos de venta, se aislaron 333 cepas bacterianas, encontrando presencia de bacterias Gram negativas y Gram positivas en un 83.2% y 16.8% respectivamente. Por otra parte, los perfiles de susceptibilidad antimicrobiano para estas bacterias mostraron sensibilidad del 19,2% y 0,9%, respectivamente, a los seis antibióticos utilizados para cada grupo en el estudio. Conclusiones. Se encontró una alta presencia de bacterias procedentes de los aislados de productos cárnicos, que obliga a la mejora de las condiciones de manipulación y expendio de estos productos, dado que, entre los principales riesgos se encuentra la adquisición de cepas resistentes mediante el consumo de alimentos contaminados.
description_eng Introduction. Bacteria are found in different types of environments that act as reservoirs, among these consumer products derived from animals. Some of these bacteria are able to cause disease to humans and, it in turn, they have devolved generating antibiotics resistance, for that reason has become a public health problem worldwide. Objective. To describe susceptibility profiles of groups bacterium from meat products and derivatives, in two Tunja´s market. Materials and Methods. Descriptive cross-sectional study, they realized sampling meat´s products in meat sale zone and by-products in a three-month period in two Tunja´s market, which different cuts of meat products were taken, for further analysis. Results. From 160 meat samples collected from 32 outlets were isolated 333 bacterial strains, it found presence of Gram-negative and Gram-positive bacteria in 83.2% and 16.8% respectively. Furthermore, the profiles of antimicrobial susceptibility for these bacteria, it showed sensibility of 19,2% and 0,9% respectively to the six antibiotics used for each group in the study. Conclusions. It found a high presence of isolated bacterium from meat products, what oblige to improve od manipulation conditions and sale of these products, since, among the principal risks are the acquisition of strains resistant by means consume of these food contaminate.
author Rosas-Leal, Daris Angélica
López-Velandia, Diana Paola
Torres-Caycedo, María Inés
Angarita Merchán, Maritza
author_facet Rosas-Leal, Daris Angélica
López-Velandia, Diana Paola
Torres-Caycedo, María Inés
Angarita Merchán, Maritza
topicspa_str_mv bacteria
farmacorresistencia microbiana
inocuidad de los alimentos
enfermedades transmitidas por alimentos
topic bacteria
farmacorresistencia microbiana
inocuidad de los alimentos
enfermedades transmitidas por alimentos
bacteria
drug resistance
microbial
food safety
foodborne diseases
topic_facet bacteria
farmacorresistencia microbiana
inocuidad de los alimentos
enfermedades transmitidas por alimentos
bacteria
drug resistance
microbial
food safety
foodborne diseases
citationvolume 6
citationissue 2
citationedition Núm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacá
publisher Universidad de Boyacá
ispartofjournal Revista Investigación en Salud Universidad de Boyacá
source https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/439
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista Investigación en Salud Universidad de Boyacá - 2019
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references WHO: World Health Organization. [Internet]. Ginebra:Suiza; [31 octubre de 2017; citado 30 enero 2019]. Inocuidad de los alimentos. [aprox. 2 pantallas]. Available from: https://www.who.int/mediacentre/factsheets/fs399/es/
Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, et al. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015;46:51–7. https://doi.org/10.1016/j.fm.2014.07.009
CDC: Centers for Disease Control and Prevention. [Internet]. Druid Hills: Estados Unidos; [26 noviembre de 2018; citado 30 enero 2019]. Antibiotic Resistance Threats in the United States. [aprox. 3 pantallas]. Available from: https://www.cdc.gov/drugresistance/threat-report-2013/index.html
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin S a, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci [Internet]. 2015;112(18):5649–54. https://doi.org/10.1073/pnas.1503141112
Puig Peña Y, Espino Hernández M, Leyva Castillo V. Resistencia antimicrobiana en Salmonella y E. coli aisladas de alimentos: revisión de la literatura. Panor Cuba y Salud. 2011;6(1):30–8.
WHO: World Health Organization. [Internet]. Ginebra:Suiza; [07 noviembre de 2017; citado 30 enero 2019]. Dejemos de administrar antibióticos a animales sanos. [aprox. 1 pantallas]. Available from: https://www.who.int/foodsafety/es/
González L, Cortés JA. Revisión sistemática de la resistencia antimicrobiana en enterobacterias en aislamientos intrahospitalarios en Colombia. Biomédica [Internet]. 2014;34(2):180–97. https://doi.org/10.7705/biomedica.v34i2.1550
Villalobos AP, Barrero LI, Rivera SM, Ovalle MV, Valera D. Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica [Internet]. 2014;34(Sup1):67-80. https://doi.org/10.7705/biomedica.v34i0.1698
Oggioni MR, Dowson CG, Smith JM, Provvedi R, Pozzi G. The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid. [Internet]. 1996;35(3):156–63. https://doi.org/10.1006/plas.1996.0018
Lavilla Lerma L, Benomar N, Knapp CW, Correa Galeote D, Gálvez A, Abriouel H. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. PLoS One. 2014;9(12). https://doi.org/10.1371/journal.pone.0114252
CLSI: Clinical & Laboratory Standards Institute. [Internet]. St. Louis, Missouri, Estados Unidos; [enero de 2017; citado 30 enero 2019]. CLSI M100-27. Performance standards for antimicrobial susceptibility testing. [aprox. 1 pantallas]. Available from: https://clsi.org/media/1469/m100s27_sample.pdf
Pennacchia C, Ercolini D, Villani F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 2011;28(1):84-93. https://doi.org/10.1016/j.fm.2010.08.010
Säde E, Murros A, Björkroth J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013;34(2):252–8. https://doi.org/10.1016/j.fm.2012.10.007
Gribble A, Mills J, Brightwell G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriacae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 2014;97(1):83-92. https://doi.org/10.1016/j.meatsci.2014.01.006
González-Rey C, Siitonen A, Pavlova A, Ciznar I, Svenson SB, Krovacek K. Molecular evidence of Plesiomonas shigelloides as a possible zoonotic agent. Folia Microbiol (Praha). 2011;56(2):178–84. https://doi.org/10.1007/s12223-011-0032-2
Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D. Burkholderia cepacia: This Decision Is Overdue. PDA J Pharm Sci Technol [Internet]. 2011;65(5):535–43. https://doi.org/10.5731/pdajpst.2011.00793
López L, Alfonso, Suárez H. Caracterización microbiológica y molecular de Staphylococcus aureus en productos cárnicos comercializados en Cartagena Colombia. Rev costarric salud pública [Internet]. 2016;25(2):81–9. Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292016000200081&lng=en.
Peixoto R de M, de França CA, de Souza Júnior AF, Veschi JLA, da Costa MM. Etiologia e perfil de sensibilidade antimicrobiana dos isolados bacterianos da mastite em pequenos ruminantes e concordância de técnicas empregadas no diagnóstico. Pesqui Vet Bras. 2010;30(9):735–40. http://dx.doi: 10.1590/S0100-736X2010000900005
Oguttu JW, McCrindle CME, Makita K, Grace D. Investigation of the food value chain of ready-to-eat chicken and the associated risk for staphylococcal food poisoning in Tshwane Metropole, South Africa. Food Control. 2014;45:87–94. https://doi.org/10.1016/j.foodcont.2014.04.026
Grace D. Food safety in low and middle income countries. Int J Environ Res Public Health. 2015;12(9):10490–507. https://doi.org/10.3390/ijerph120910490
Zweifel C, Capek M, Stephan R. Microbiological contamination of cattle carcasses at different stages of slaughter in two abattoirs. Meat Sci. 2014;98(2):198–202. https://doi.org/10.1016/j.meatsci.2014.05.029
Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157(2):130–41. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
Hessain AM, Al-Arfaj AA, Zakri AM, El-Jakee JK, Al-Zogibi OG, Hemeg HA, et al. Molecular characterization of Escherichia coli O157: H7 recovered from meat and meat products relevant to human health in Riyadh, Saudi Arabia. Saudi J Biol Sci. 2015;22(6):725–9. https://doi.org/10.1016/j.sjbs.2015.06.009
Jindal BAK, Pandya MK, Khan MID. Antimicrobial resistance: A public health challenge. Med J Armed Forces India. 2015;71(2):178–81. https://doi.org/10.1016/j.mjafi.2014.04.011
Iwu C, Iweriebor B, Obi L, Basson A, Okoh A. Multidrug-Resistant Salmonella Isolates from Swine in the Eastern Cape Province, South Africa. J Food Prot [Internet]. 2016;79(7):1234–9. https://doi.org/10.4315/0362-028X.JFP-15-224
FAO: Organización de las Naciones Unidas para la Alimentación. Expert Consultation on Community-based Veterinary. FAO Animal production and health. [Internet]. 2004;1:1-111. Available from: https://www.fao.org/docrep/016/y5405e/y5405e00.htm
INVIMA: Instituto Nacional de Vigilancia de Medicamento. [Internet].Bogotá, Colombia; [julio 6 de 2017; citado 30 enero 2019]. ABECÉ de la inocuidad de alimentos. [aprox. 5 pantallas]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc-inocuidad.pdf
Ministerio de Salud y Protección Social. [Internet].Bogotá, Colombia; [julio 25 de 2013; citado 30 enero 2019]. RESOLUCIÓN 2674 DE 2013 [aprox. 10 pantallas]. Available from: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=54030
Incontec. NTC 1325. Productos carnicos procesados no enlatados. Icontec. 2008
Terentjeva, M., Avsejenko, J., Streikiša, M., Utināne, A., Kovaļenko, K., & Bērziņš, A. Prevalence and antimicrobial resistance of Salmonella in meat and meat products in Latvia. Ann Agric Environ Med. 2017; 24(2), 317-321. https://doi.org/10.5604/12321966.1235180
Li, L., Ye, L., Zhang, S., & Meng, H. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. Journal of Food Science. 2016 81(6), M1480–M1484. https://doi.org/10.1111/1750-3841.13318
Schwaiger K, Huther S, Hölzel C, Kämpf P, Bauer J. Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol. 2012;154(3):206–11. https://doi.org/10.1016/j.ijfoodmicro.2011.12.014
Ojer-Usoz E, González D, Vitas AI, Leiva J, García-Jalón I, Febles-Casquero A, et al. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain. Meat Sci. 2013;93(2):316–21. https://doi.org/10.1016/j.meatsci.2012.09.009
Gwida M, Hotzel H, Geue L, Tomaso H. Occurrence of Enterobacteriaceae in Raw Meat and in Human Samples from Egyptian Retail Sellers. Int Sch Res Not [Internet]. 2014;2014:1–6. http://dx.doi.org/10.1155/2014/565671
Arriaga RF, Rojas MT, Navarrete J V, Vargas ES, Castillo AG. Presence of class I integrons in Escherichia coli isolated from meat products in Federal Inspection Type (TIF) plants in the Estado de Mexico. Vet Mex. 2013;44(1):23–30.
Anaya PAF, Medina LMR, Ugarriza MEO, Gutiérrez LAL. Determinación de Escherichia coli e identificación del serotipo O157: H7 en carne de cerdo comercializada en los principales supermercados de la ciudad de Cartagena. Rev Lasallista Investig. 2013;10(1):91–100.
Rúgeles LC, Bai J, Martínez AJ, Vanegas MC, Gómez-Duarte OG. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia. Int J Food Microbiol. 2010;138(3):282–6. https://doi.org/10.1016/j.ijfoodmicro.2010.01.034
Herrera A F, Suárez Q W. Isolation and identification of Listeria spp. from fresh fish samples, marketed in Pamplona (Norte de Santander). Rev UDCA Actual Divulg Cient. 2012;15:257–65.
Shawish RR, Al-Humam NA. Contamination of beef products with staphylococcal classical enterotoxins in Egypt and Saudi Arabia. GMS Hyg Infect Control. 2016;11:8. https://doi.org/10.3205/dgkh000268
Carrel M, Zhao C, Thapaliya D, Bitterman P, Kates AE, Hanson BM, et al. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-11423-6
Das P, Mazumder P. Prevalence of Staphylococcus in raw meat samples in Southern Assam, India. J Agric Vet Sci [Internet]. 2016;9(1):23–9. doi:10.9790/2380-09122329
Osman K, Badr J, Al-Maary KS, Moussa IMI, Hessain AM, Amin Girah ZMS, et al. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-staphylococcus in chicken meat retailed to consumers. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.01846
Moreno KM. Carbapenémicos: tipos y mecanismos de resistencia bacterianos. Rev Medica Costa Rica Y Centroam LXX [Internet]. 2013;608:599–605. Available from: https://www.binasss.sa.cr/revistas/rmcc/608/art8.pdf
Jans C, Sarno E, Collineau L, Meile L, Stärk KDC, Stephan R. Consumer exposure to antimicrobial resistant bacteria from food at Swiss retail level. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.00362
Yassin AK, Gong J, Kelly P, Lu G, Guardabassi L, Wei L, et al. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS One. 2017;12(9). https://doi.org/10.1371/journal.pone.0185326
Mateus-Vargas RH, Atanassova V, Reich F, Klein G. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiol. 2017;63:164–9. https://doi.org/10.1016/j.fm.2016.11.013
Buzón-Durán L, Capita R, Alonso-Calleja C. Microbial loads and antibiotic resistance patterns of Staphylococcus aureus in different types of raw poultry-based meat preparations. Poult Sci. 2017;96(11):4046–52. https://doi.org/10.3382/ps/pex200
Kim MS, Lim TH, Jang JH, Lee DH, Kim BY, Kwon JH, et al. Characteristics of the antimicrobial resistance of Staphylococcus aureus isolated from chicken meat produced by different integrated broiler operations in Korea. Poult Sci. 2018;97(3):962-969. https://doi.org/10.3382/ps/pey335
Baylis C, Uyttendaele M, Joosten H, Davies A, Heinz HJ. The Enterobacteriaceae and their significance to the food industry. ILSI Europe Report Series. 2011:1-48.
Fajardo-Zapata ÁL, Méndez-Casallas FJ, Molina LH. Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Univ Sci. 2011;16(1):77–91.
Aidara-Kane A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev Sci Tech [Internet]. 2012;31(1):277–87. Available from: https://doi.org/10.20506/rst.31.1.2115
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-07-26
date_accessioned 2019-07-26T00:00:00Z
date_available 2019-07-26T00:00:00Z
url https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/439
url_doi https://doi.org/10.24267/23897325.439
issn 2389-7325
eissn 2539-2018
doi 10.24267/23897325.439
citationstartpage 19
citationendpage 39
url2_str_mv https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/439/478
_version_ 1811200581478383616