Titulo:
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos
.
Sumario:
El vínculo materno es fundamental para el establecimiento y mantenimiento de las redes sinápticas, y el desarrollo morfofisiológico y emocional de los individuos. Los niños maltratados o rechazados son más propensos a desarrollar psicopatologías. Los modelos animales permiten una aproximación experimental a mecanismos involucrados en alteraciones ocasionadas por estrés temprano.
Guardado en:
2389-7325
2539-2018
1
2014-06-30
31
44
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_uniboyaca_revistainvestigacionensaluduniversidaddeboyaca_0_article_34 |
---|---|
record_format |
ojs |
spelling |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos El vínculo materno es fundamental para el establecimiento y mantenimiento de las redes sinápticas, y el desarrollo morfofisiológico y emocional de los individuos. Los niños maltratados o rechazados son más propensos a desarrollar psicopatologías. Los modelos animales permiten una aproximación experimental a mecanismos involucrados en alteraciones ocasionadas por estrés temprano. Patiño, Jenny Corredor, Laura Dueñas, Zulma 1 1 Núm. 1 , Año 2014 : Revista de Investigación en Salud Universidad de Boyacá Artículo de revista Journal article 2014-06-30T00:00:00Z 2014-06-30T00:00:00Z 2014-06-30 application/pdf Universidad de Boyacá Revista Investigación en Salud Universidad de Boyacá 2389-7325 2539-2018 https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/34 10.24267/23897325.34 https://doi.org/10.24267/23897325.34 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ 31 44 Neigh GN, Gillespie CF, Nemeroff CB. The neurobiological toll of child abuse and neglect. Trauma Violence Abuse. 2009;10:389-410. Cicchetti D, Manly JT. Operationalizing child maltreatment: Developmental processes and outcomes. Dev Psychopathol. 2001;13:755-7. Lai MC, Huang LT. Effects of early life stress on neuroendocrine andneurobehavior: Mechanisms and implications. PediatrNeonatol. 2011;52:122-9. Mesa-Gresa P, Moya-Albiol L. Neurobiology of child abuse: The cycle of violence. Rev Neurol. 2011;52:489-503. Moriceau S, Roth TL, Sullivan RM. Rodent model of infant attachment learning and stress. Dev Psychobiol. 2010;52:651-60. Lesch KP. When the serotonin transporter gene meets adversity: The contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience. Curr Top BehavNeurosci. 2011;7:251-80. Schmidt MV, Wang XD, Meijer OC. Early life stress paradigms in rodents: Potential animal models of depression? Psychopharmacology. 2011;214:131-40. Salzberg M, Kumar G, Supit L, Jones NC, Morris MJ, Rees S, et al. Early postnatal stress confers enduring vulnerability to limbic epileptogenesis. Epilepsia. 2007;48:2079-85. Duque A, Coman D, Carlyle BC, Bordner KA, George ED, Papademetris X, et al. Neuroanatomical changes in a mouse model of early life neglect. Brain StructFunct. 2011;217:459-72. Litvin Y, Tovote P, Pentkowski NS, Zeyda T, King LB, Vasconcellos AJ, et al. Maternal separation modulates short-term behavioral and physiological indices of the stress response. HormBehav. 2010;58:241-9. 13. McEwen B, Sapolsky R. Stress and cognitive function. CurrOpinNeurobiol. 1995;5:205-16. Cotella EM, Mestres I, Franchioni L, Levin GM, Suárez MM. Long-term effects of maternal separation on chronic stress response suppressed by amitriptyline treatment. Stress. 2013;16:477-81. Lajud N, Roque A, Cajero M, Gutiérrez-Ospina G, Torner L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology. 2012;37:410-20. Sigel E, Steinmann ME. Structure, function, and modulation of GABA (A)receptors. J Biol Chem. 2012;287:40224-31. Jacobson-Pick S, Richter-Levin G. Short- and long-term effects of juvenile stressor exposure on the expression of GABAA receptor subunits in rats. Stress. 2012;15:416-24. Siegel GJ. Basic neurochemistry: Molecular, cellular and medical aspect. Sixth edition. Philadelphia: Lippincott Williams & Wilkins Publishers; 1999. Hörtnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G. Patterns of mRNA and protein expression for 12 GABA A receptor subunits in the mouse brain. Neuroscience. 2013;236:345-72. Levy LM, Degnan AJ. GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol. 2013;34:259-65. Darlison M, Pahal I, Thode C. Consequences of the evolution of the GABAA receptor gene family. Cell MolNeurobiol. 2005;25:607-24. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA A receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101:815-50. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: A brief history. Br J Pharmacol. 2006;147:109-19. Enna SJ, Gallagher JP. Biochemical and electrophysiological characteristics of mammalian GABA receptors.Int Rev Neurobiol. 1983;24:181-212. Bäckberg M, Ultenius C, Fritschy JM, Meister B. Cellular localization of GABA A receptor α subunit inmunoreactivityin the rat hypothalamus Relationship with neurones containing orexigenic or anorexigenic peptides. J Neuroendocrinol. 2004;16:589-604. Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, et al. Subunitselective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry. 2008;165:1585-93. Möhler H. Molecular regulation of cognitive functions and developmental plasticity: Impact of GABAA. J Neurochem. 2007;102:1-12 Sun C, Sieghart W, Kapur J. Distribution of a1, a4, g2, and ψ subunits of GABA A receptors in hippocampal granule cells. Brain Res. 2004;1029:207-16. León-Rodríguez D, Dueñas Z. Effects of early maternal separation on the performance in the elevated plus maze in adult rats. ActaBiolColomb. 2012;17:129-42. Paxinos G, Watson C. The rat brain. In: Stereotaxic coordinates. Fourth edition. San Diego: Academic Press; 2004. Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implica-ted? Eur Arch Psychiatry ClinNeurosci. 2007;257:250-60. Shucard JL, Cox J, Shucard DW, Fetter H, Chung C, Ramasamy D, et al. Symptoms of posttraumatic stress disorder and exposure to traumatic stressors are related to brain structural volumes and behavioral measures of affective stimulus processing in police officers. Psychiatry Res. 2012;30;204:25-31. Pawluski JL, Valença A, Santos AI, Costa-Nunes JP, Steinbusch 37. HW, Strekalova T. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience. 2012; 227:201-10. Hsu FC, Zhang GJ, Raol YS, Valentino RJ, Coulter DA, Brooks-Kayal AR. Repeated neonatal handling with maternal separation permanently alters hippocampal GABA A receptors and behavioral stress responses. ProcNatlAcadSci U S A. 2003;100:12213-8. Aisa B, Tordera R, Lasheras B, Del Río J, Ramírez M. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007;32:256-66. Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch T. Specific GABA A circuits for visual cortical plasticity. Science. 2004;303:1681- 83. Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyrus. I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol. 1981;195:51-86. Enthoven L, de Kloet ER, Oitzl MS. Differential development of stress system (re)activity at weaning dependent on time of disruption of maternal care. Brain Res. 2008;1217:62-9. https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/34/52 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/redcol/resource_type/ARTREF info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE BOYACÁ |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDEBOYACA/logo.png |
country_str |
Colombia |
collection |
Revista Investigación en Salud Universidad de Boyacá |
title |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
spellingShingle |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos Patiño, Jenny Corredor, Laura Dueñas, Zulma |
title_short |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
title_full |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
title_fullStr |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
title_full_unstemmed |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
title_sort |
impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
title_eng |
Impacto de la separación materna durante la lactancia sobre el tamaño del cerebro y en otros aspectos morfofisiológicos |
description |
El vínculo materno es fundamental para el establecimiento y mantenimiento de las redes sinápticas, y el desarrollo morfofisiológico y emocional de los individuos. Los niños maltratados o rechazados son más propensos a desarrollar psicopatologías. Los modelos animales permiten una aproximación experimental a mecanismos involucrados en alteraciones ocasionadas por estrés temprano.
|
author |
Patiño, Jenny Corredor, Laura Dueñas, Zulma |
author_facet |
Patiño, Jenny Corredor, Laura Dueñas, Zulma |
citationvolume |
1 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2014 : Revista de Investigación en Salud Universidad de Boyacá |
publisher |
Universidad de Boyacá |
ispartofjournal |
Revista Investigación en Salud Universidad de Boyacá |
source |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/34 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Neigh GN, Gillespie CF, Nemeroff CB. The neurobiological toll of child abuse and neglect. Trauma Violence Abuse. 2009;10:389-410. Cicchetti D, Manly JT. Operationalizing child maltreatment: Developmental processes and outcomes. Dev Psychopathol. 2001;13:755-7. Lai MC, Huang LT. Effects of early life stress on neuroendocrine andneurobehavior: Mechanisms and implications. PediatrNeonatol. 2011;52:122-9. Mesa-Gresa P, Moya-Albiol L. Neurobiology of child abuse: The cycle of violence. Rev Neurol. 2011;52:489-503. Moriceau S, Roth TL, Sullivan RM. Rodent model of infant attachment learning and stress. Dev Psychobiol. 2010;52:651-60. Lesch KP. When the serotonin transporter gene meets adversity: The contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience. Curr Top BehavNeurosci. 2011;7:251-80. Schmidt MV, Wang XD, Meijer OC. Early life stress paradigms in rodents: Potential animal models of depression? Psychopharmacology. 2011;214:131-40. Salzberg M, Kumar G, Supit L, Jones NC, Morris MJ, Rees S, et al. Early postnatal stress confers enduring vulnerability to limbic epileptogenesis. Epilepsia. 2007;48:2079-85. Duque A, Coman D, Carlyle BC, Bordner KA, George ED, Papademetris X, et al. Neuroanatomical changes in a mouse model of early life neglect. Brain StructFunct. 2011;217:459-72. Litvin Y, Tovote P, Pentkowski NS, Zeyda T, King LB, Vasconcellos AJ, et al. Maternal separation modulates short-term behavioral and physiological indices of the stress response. HormBehav. 2010;58:241-9. 13. McEwen B, Sapolsky R. Stress and cognitive function. CurrOpinNeurobiol. 1995;5:205-16. Cotella EM, Mestres I, Franchioni L, Levin GM, Suárez MM. Long-term effects of maternal separation on chronic stress response suppressed by amitriptyline treatment. Stress. 2013;16:477-81. Lajud N, Roque A, Cajero M, Gutiérrez-Ospina G, Torner L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology. 2012;37:410-20. Sigel E, Steinmann ME. Structure, function, and modulation of GABA (A)receptors. J Biol Chem. 2012;287:40224-31. Jacobson-Pick S, Richter-Levin G. Short- and long-term effects of juvenile stressor exposure on the expression of GABAA receptor subunits in rats. Stress. 2012;15:416-24. Siegel GJ. Basic neurochemistry: Molecular, cellular and medical aspect. Sixth edition. Philadelphia: Lippincott Williams & Wilkins Publishers; 1999. Hörtnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G. Patterns of mRNA and protein expression for 12 GABA A receptor subunits in the mouse brain. Neuroscience. 2013;236:345-72. Levy LM, Degnan AJ. GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol. 2013;34:259-65. Darlison M, Pahal I, Thode C. Consequences of the evolution of the GABAA receptor gene family. Cell MolNeurobiol. 2005;25:607-24. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABA A receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101:815-50. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: A brief history. Br J Pharmacol. 2006;147:109-19. Enna SJ, Gallagher JP. Biochemical and electrophysiological characteristics of mammalian GABA receptors.Int Rev Neurobiol. 1983;24:181-212. Bäckberg M, Ultenius C, Fritschy JM, Meister B. Cellular localization of GABA A receptor α subunit inmunoreactivityin the rat hypothalamus Relationship with neurones containing orexigenic or anorexigenic peptides. J Neuroendocrinol. 2004;16:589-604. Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, et al. Subunitselective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry. 2008;165:1585-93. Möhler H. Molecular regulation of cognitive functions and developmental plasticity: Impact of GABAA. J Neurochem. 2007;102:1-12 Sun C, Sieghart W, Kapur J. Distribution of a1, a4, g2, and ψ subunits of GABA A receptors in hippocampal granule cells. Brain Res. 2004;1029:207-16. León-Rodríguez D, Dueñas Z. Effects of early maternal separation on the performance in the elevated plus maze in adult rats. ActaBiolColomb. 2012;17:129-42. Paxinos G, Watson C. The rat brain. In: Stereotaxic coordinates. Fourth edition. San Diego: Academic Press; 2004. Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implica-ted? Eur Arch Psychiatry ClinNeurosci. 2007;257:250-60. Shucard JL, Cox J, Shucard DW, Fetter H, Chung C, Ramasamy D, et al. Symptoms of posttraumatic stress disorder and exposure to traumatic stressors are related to brain structural volumes and behavioral measures of affective stimulus processing in police officers. Psychiatry Res. 2012;30;204:25-31. Pawluski JL, Valença A, Santos AI, Costa-Nunes JP, Steinbusch 37. HW, Strekalova T. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience. 2012; 227:201-10. Hsu FC, Zhang GJ, Raol YS, Valentino RJ, Coulter DA, Brooks-Kayal AR. Repeated neonatal handling with maternal separation permanently alters hippocampal GABA A receptors and behavioral stress responses. ProcNatlAcadSci U S A. 2003;100:12213-8. Aisa B, Tordera R, Lasheras B, Del Río J, Ramírez M. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007;32:256-66. Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch T. Specific GABA A circuits for visual cortical plasticity. Science. 2004;303:1681- 83. Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyrus. I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol. 1981;195:51-86. Enthoven L, de Kloet ER, Oitzl MS. Differential development of stress system (re)activity at weaning dependent on time of disruption of maternal care. Brain Res. 2008;1217:62-9. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2014-06-30 |
date_accessioned |
2014-06-30T00:00:00Z |
date_available |
2014-06-30T00:00:00Z |
url |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/34 |
url_doi |
https://doi.org/10.24267/23897325.34 |
issn |
2389-7325 |
eissn |
2539-2018 |
doi |
10.24267/23897325.34 |
citationstartpage |
31 |
citationendpage |
44 |
url2_str_mv |
https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/34/52 |
_version_ |
1811200577769570304 |