Do changes in the frequency of data affect the accuracy of estimation of the trend parameter in a jump diffusion process?
.
Este artículo explora el efecto que tiene la frecuencia de los datos en la precisión (medida por la varianza) del estimador de máxima verosimilitud (MLE - maximum likelihood estimator) del parámetro de tendencia μ en un proceso de difusión con salto a la Press (1967). Para ello, consideramos primero el caso sin saltos (es decir, el movimiento Browniano geométrico o GBM – geometric Brownian motion) como el modelo referencia, con el que se evidencia que la frecuencia de los datos es irrelevante. Acto seguido, consideramos el caso con saltos, en donde enfatizamos que las cosas son diferentes. Específicamente, observamos que en este caso la varianza asintótica del MLE del parámetro de tendencia es más alto que cuando no había saltos. Sin embarg... Ver más
1794-1113
2346-2140
2023-11-30
25
54
Carlos Armando Mejía Vega - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Sumario: | Este artículo explora el efecto que tiene la frecuencia de los datos en la precisión (medida por la varianza) del estimador de máxima verosimilitud (MLE - maximum likelihood estimator) del parámetro de tendencia μ en un proceso de difusión con salto a la Press (1967). Para ello, consideramos primero el caso sin saltos (es decir, el movimiento Browniano geométrico o GBM – geometric Brownian motion) como el modelo referencia, con el que se evidencia que la frecuencia de los datos es irrelevante. Acto seguido, consideramos el caso con saltos, en donde enfatizamos que las cosas son diferentes. Específicamente, observamos que en este caso la varianza asintótica del MLE del parámetro de tendencia es más alto que cuando no había saltos. Sin embargo, también observamos que cuando la frecuencia ocurre lo suficientemente seguido (alta frecuencia), es posible obtener la misma precisión para el MLE de μ que cuando se tiene el GBM, dado que para frecuencias más altas es más fácil “identificar” discontinuidades (saltos) en el precio para este modelo. Las pruebas matemáticas se llevan a cabo bajo el supuesto de que el MLE de μ se estima dados los demás parámetros, pero las simulaciones numéricas (Monte Carlo) demuestran que este es el caso también cuando todos los parámetros se estiman en conjunto.
|
---|---|
ISSN: | 1794-1113 |