Titulo:

Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
.

Sumario:

En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de ma­chine learning no supervisado denominado K-means. Se obtienen clústeres de clientes que permiten identificar sus patrones de comportamiento.

Guardado en:

1794-1113

2346-2140

2023-07-04

7

37

Diego Barragán Garnica - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_uexternado_revistaodeon_39_article_8873
record_format ojs
spelling Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
Costumer behavior with credit cards with deterioration of the risk rating using K-means
En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de ma­chine learning no supervisado denominado K-means. Se obtienen clústeres de clientes que permiten identificar sus patrones de comportamiento.
This document presents the analysis of the behavior of cardholders of a Colombian financial institution based on their credit risk rating through the application of the unsupervised machine learning model called K-means. Clusters of clients are obtained that allow identifying their behavior.
Barragán Garnica, Diego
K-means;
machine learning;
credit cards;
credit score
modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
22
Núm. 22 , Año 2022 : Enero-Junio
Artículo de revista
Journal article
2023-07-04T13:39:59Z
2023-07-04T13:39:59Z
2023-07-04
application/pdf
text/html
Universidad Externado de Colombia
ODEON
1794-1113
2346-2140
https://revistas.uexternado.edu.co/index.php/odeon/article/view/8873
10.18601/17941113.n22.02
https://doi.org/10.18601/17941113.n22.02
spa
http://creativecommons.org/licenses/by-nc-sa/4.0
Diego Barragán Garnica - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
7
37
Accenture (2019). 2019 Global Financial Services Consumer Study. Accenture.
Adams, N. M., Hand, D. J. y Till, R. J. (2001). Mining for classes and patterns in be-havioural data. Journal of the Operational Research Society, 52 (9), 1017-1024.
Banco de la República (2020). Informe especial riesgo de mercado. Banrep.
Bakoben, M., Bellotti, T. y Adams, N. (2019). Identification of credit risk based on cluster analysis of account behaviours. Journal of the Operational Research Society, 0(0), 1-9. https://doi.org/10.1080/01605682.2019.1582586
Edelman, D. B. (1992). An application of cluster analysis in credit control. IMA Journal of Management Mathematics, 4(1), 81-87. https://doi.org/10.1093/imaman/4.1.81
Eduardo, C., López, B., Alfredo, J., García, J., Antonio, J. y López, V. (2019). Banca¬ria por métodos estadísticos y redes neuronales artificiales usando r. Resumen, 40(132), 43-63.
Fisher, L. y Ness, J. W. V. (1971). Admissible clustering procedures. Biometrika, 58 (1), 91-104.
Ge, Z., Member, S., Song, Z. y Ding, S. X. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning, IEEE access, 5.
Grosan, C. (2011). Evolution of Modern Computational. En Intelligent Systems, Springer. 1-11.
Hsieh, N. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27(4), 623-633. https://doi.org/10.1016/j.eswa.2004.06.007
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., y Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means q. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in neural information processing systems, 15.
Li, W., Wu, X., Sun, Y. y Zhang, Q. (2010). Credit card customer segmentation and target marketing based on data mining. Proceedings–2010 International Confe¬rence on Computational Intelligence and Security, cis 2010, 73-76. https://doi.org/10.1109/CIS.2010.23
Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. AAAI Publi¬cations, 53-60.
Martins, M. C. y Cardoso, M. (2012). Cross-validation of segments of credit card holders. Journal of Retailing and Consumer Services, 19(6), 629-636. https://doi.org/10.1016/j.jretconser.2012.08.004
Minskyt, M. (s. d.). Steps Toward Artificial Intelligence. Proceedings of the IRE.
Morissette, L. y Chartier, S. (2013). The k-means clustering technique: General consi-derations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15-24. https://doi.org/10.20982/tqmp.09.1.p015
Paõ, U., Paõ, U., Vasco, Â., Modron, J. I., Paõ, U. y Paõ, U. (1998). Clients’ characte¬ristics and marketing of products: Some evidence from a financial institution. https://doi.org/10.1108/02652320310488420
Pelleg, D. y Moore, A. W. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Icml, 1, 727-734.
Shefrin, H. y Nicols, C. M. (2014). Credit card behavior, financial styles, and heuris¬tics. Journal of Business Research, 67(8), 1679-1687. https://doi.org/10.1016/j.jbusres.2014.02.014
Scholkopf, B., Smola, A. y Muller, K. (1998). Non-linear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467
Soeini, R. A. y Rodpysh, K. V. (2012). Applying Data Mining to Insurance Customer Churn Management, 30, 82-92.
Soukal, I. y Hedvicaková, M. (2011). Procedia computer retail core banking services e-banking client cluster identification. Procedia Computer Science, 3, 1205-1210. https://doi.org/10.1016/j.procs.2010.12.195
Timón, C. E. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo–Herramientas Open Source que permiten su uso (trabajo de de grado).
Wallace, C. S. y Boulton, D. M. (1968). An information measure for classification. The Computer Journal, 11 (2), 185-194.
Wallace, C. S. y Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society: Series B (Methodological), 49 (3), 240- 252.
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14884
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14885
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EXTERNADO DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEXTERNADODECOLOMBIA/logo.png
country_str Colombia
collection Revista ODEON
title Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
spellingShingle Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
Barragán Garnica, Diego
K-means;
machine learning;
credit cards;
credit score
modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
title_short Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
title_full Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
title_fullStr Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
title_full_unstemmed Patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando K-means
title_sort patrones de comportamiento de clientes con tarjetas de crédito de consumo con deterioro de calificación por riesgo utilizando k-means
title_eng Costumer behavior with credit cards with deterioration of the risk rating using K-means
description En este documento se presenta el análisis del comportamiento de los clientes con tarjetas de crédito de una institución financiera colombiana con base en su calificación de riesgo de crédito, a través de la aplicación del modelo de ma­chine learning no supervisado denominado K-means. Se obtienen clústeres de clientes que permiten identificar sus patrones de comportamiento.
description_eng This document presents the analysis of the behavior of cardholders of a Colombian financial institution based on their credit risk rating through the application of the unsupervised machine learning model called K-means. Clusters of clients are obtained that allow identifying their behavior.
author Barragán Garnica, Diego
author_facet Barragán Garnica, Diego
topic K-means;
machine learning;
credit cards;
credit score
modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
topic_facet K-means;
machine learning;
credit cards;
credit score
modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
topicspa_str_mv modelo K-means;
machine learning;
tarjetas de crédito;
calificación de riesgo de crédito
citationissue 22
citationedition Núm. 22 , Año 2022 : Enero-Junio
publisher Universidad Externado de Colombia
ispartofjournal ODEON
source https://revistas.uexternado.edu.co/index.php/odeon/article/view/8873
language spa
format Article
rights http://creativecommons.org/licenses/by-nc-sa/4.0
Diego Barragán Garnica - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Accenture (2019). 2019 Global Financial Services Consumer Study. Accenture.
Adams, N. M., Hand, D. J. y Till, R. J. (2001). Mining for classes and patterns in be-havioural data. Journal of the Operational Research Society, 52 (9), 1017-1024.
Banco de la República (2020). Informe especial riesgo de mercado. Banrep.
Bakoben, M., Bellotti, T. y Adams, N. (2019). Identification of credit risk based on cluster analysis of account behaviours. Journal of the Operational Research Society, 0(0), 1-9. https://doi.org/10.1080/01605682.2019.1582586
Edelman, D. B. (1992). An application of cluster analysis in credit control. IMA Journal of Management Mathematics, 4(1), 81-87. https://doi.org/10.1093/imaman/4.1.81
Eduardo, C., López, B., Alfredo, J., García, J., Antonio, J. y López, V. (2019). Banca¬ria por métodos estadísticos y redes neuronales artificiales usando r. Resumen, 40(132), 43-63.
Fisher, L. y Ness, J. W. V. (1971). Admissible clustering procedures. Biometrika, 58 (1), 91-104.
Ge, Z., Member, S., Song, Z. y Ding, S. X. (2017). Data Mining and Analytics in the Process Industry: The Role of Machine Learning, IEEE access, 5.
Grosan, C. (2011). Evolution of Modern Computational. En Intelligent Systems, Springer. 1-11.
Hsieh, N. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27(4), 623-633. https://doi.org/10.1016/j.eswa.2004.06.007
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., y Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means q. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
Kleinberg, J. (2002). An impossibility theorem for clustering. Advances in neural information processing systems, 15.
Li, W., Wu, X., Sun, Y. y Zhang, Q. (2010). Credit card customer segmentation and target marketing based on data mining. Proceedings–2010 International Confe¬rence on Computational Intelligence and Security, cis 2010, 73-76. https://doi.org/10.1109/CIS.2010.23
Buchanan, B. G. (2005). A (Very) Brief History of Artificial Intelligence. AAAI Publi¬cations, 53-60.
Martins, M. C. y Cardoso, M. (2012). Cross-validation of segments of credit card holders. Journal of Retailing and Consumer Services, 19(6), 629-636. https://doi.org/10.1016/j.jretconser.2012.08.004
Minskyt, M. (s. d.). Steps Toward Artificial Intelligence. Proceedings of the IRE.
Morissette, L. y Chartier, S. (2013). The k-means clustering technique: General consi-derations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15-24. https://doi.org/10.20982/tqmp.09.1.p015
Paõ, U., Paõ, U., Vasco, Â., Modron, J. I., Paõ, U. y Paõ, U. (1998). Clients’ characte¬ristics and marketing of products: Some evidence from a financial institution. https://doi.org/10.1108/02652320310488420
Pelleg, D. y Moore, A. W. (2000). X-means: Extending k-means with efficient estimation of the number of clusters. Icml, 1, 727-734.
Shefrin, H. y Nicols, C. M. (2014). Credit card behavior, financial styles, and heuris¬tics. Journal of Business Research, 67(8), 1679-1687. https://doi.org/10.1016/j.jbusres.2014.02.014
Scholkopf, B., Smola, A. y Muller, K. (1998). Non-linear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467
Soeini, R. A. y Rodpysh, K. V. (2012). Applying Data Mining to Insurance Customer Churn Management, 30, 82-92.
Soukal, I. y Hedvicaková, M. (2011). Procedia computer retail core banking services e-banking client cluster identification. Procedia Computer Science, 3, 1205-1210. https://doi.org/10.1016/j.procs.2010.12.195
Timón, C. E. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo–Herramientas Open Source que permiten su uso (trabajo de de grado).
Wallace, C. S. y Boulton, D. M. (1968). An information measure for classification. The Computer Journal, 11 (2), 185-194.
Wallace, C. S. y Freeman, P. R. (1987). Estimation and inference by compact coding. Journal of the Royal Statistical Society: Series B (Methodological), 49 (3), 240- 252.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-07-04
date_accessioned 2023-07-04T13:39:59Z
date_available 2023-07-04T13:39:59Z
url https://revistas.uexternado.edu.co/index.php/odeon/article/view/8873
url_doi https://doi.org/10.18601/17941113.n22.02
issn 1794-1113
eissn 2346-2140
doi 10.18601/17941113.n22.02
citationstartpage 7
citationendpage 37
url2_str_mv https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14884
url3_str_mv https://revistas.uexternado.edu.co/index.php/odeon/article/download/8873/14885
_version_ 1811199265941225472