Optimización robusta de portafolio empleando métodos Bayesianos
.
En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios.... Ver más
1794-1113
2346-2140
2022-12-14
81
104
Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_uexternado_revistaodeon_39_article_8490 |
---|---|
record_format |
ojs |
spelling |
Optimización robusta de portafolio empleando métodos Bayesianos Robust portfolio optimization using Bayesian methods En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios. In this paper we implemented a Bayesian robust optimization model to select an optimal investment portfolio. To do that, we extended the model developed by Meucci, which consists of incorporating the Bayesian approach into the robust portfolio model in order to define an ellipsoidal-type uncertainty set under an Inverse Wishart Distribution. Thus, the uncertainty of the estimated parameters for create the robust counterpart in the portfolio model. The proposed model uses a Gamma distribution function, as a generalization of the Wishart function. Results confirm Meucci’s conclusions and, it corroborates the properties attributed to those portfolios. Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta 21 Núm. 21 , Año 2021 : Julio-Diciembre Artículo de revista Journal article 2022-12-14T10:23:26Z 2022-12-14T10:23:26Z 2022-12-14 application/pdf text/html Universidad Externado de Colombia ODEON 1794-1113 2346-2140 https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490 10.18601/17941113.n21.05 https://doi.org/10.18601/17941113.n21.05 spa http://creativecommons.org/licenses/by-nc-sa/4.0 Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. 81 104 Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4 Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980 Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28 Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons. Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5 Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003 Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397 Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260 Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772 Hoffman, M., Brochu, E. y De Freitas, N. (2011). Portfolio allocation for ayesian optimi-zation. En Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar¬tificial Intelligence, 327-336. https://dl.acm.org/doi/abs/10.5555/3020548.3020587 Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6 Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons. Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1 Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0 Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press. Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer. Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553 Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press. Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28. Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM. Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046 Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed Williams, J. (1938). The Theory of Investment Value. Harvard University Press. Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04 https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13487 https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13488 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/redcol/resource_type/ARTREF info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EXTERNADO DE COLOMBIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEXTERNADODECOLOMBIA/logo.png |
country_str |
Colombia |
collection |
Revista ODEON |
title |
Optimización robusta de portafolio empleando métodos Bayesianos |
spellingShingle |
Optimización robusta de portafolio empleando métodos Bayesianos Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta |
title_short |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_full |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_fullStr |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_full_unstemmed |
Optimización robusta de portafolio empleando métodos Bayesianos |
title_sort |
optimización robusta de portafolio empleando métodos bayesianos |
title_eng |
Robust portfolio optimization using Bayesian methods |
description |
En este artículo se implementa un modelo de optimización robusta bayesiana para la selección óptima de un portafolio de inversión. Para ello, se extiende el modelo desarrollado por Meucci, que consiste en la incorporación del enfoque bayesiano al modelo de portafolio robusto para definir el conjunto de incertidumbre de tipo elipsoidal, bajo una distribución Wishart inversa. De esta forma, se incorpora la incertidumbre de los parámetros estimados para crear la contraparte robusta en el modelo de portafolio. El modelo propuesto utiliza una función de distribución Gamma, como generalización de la función Wishart. Los resultados confirman las conclusiones de Meucci y corroboran las propiedades atribuidas a este tipo de portafolios.
|
description_eng |
In this paper we implemented a Bayesian robust optimization model to select an optimal investment portfolio. To do that, we extended the model developed by Meucci, which consists of incorporating the Bayesian approach into the robust portfolio model in order to define an ellipsoidal-type uncertainty set under an Inverse Wishart Distribution. Thus, the uncertainty of the estimated parameters for create the robust counterpart in the portfolio model. The proposed model uses a Gamma distribution function, as a generalization of the Wishart function. Results confirm Meucci’s conclusions and, it corroborates the properties attributed to those portfolios.
|
author |
Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan |
author_facet |
Carmona Espejo, Diego Felipe Gamboa Hidalgo, Jhonatan |
topic |
Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta |
topic_facet |
Optimal portfolio; Bayesian methods; robust optimization portafolio óptimo; métodos bayesianos; optimización robusta |
topicspa_str_mv |
portafolio óptimo; métodos bayesianos; optimización robusta |
citationissue |
21 |
citationedition |
Núm. 21 , Año 2021 : Julio-Diciembre |
publisher |
Universidad Externado de Colombia |
ispartofjournal |
ODEON |
source |
https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc-sa/4.0 Diego Felipe Carmona Espejo, Jhonatan Gamboa Hidalgo - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Avramov, D. y Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25-47. https://faculty.runi.ac.il/davramov/paper10.pdf Bade, A., Frahm, G. y Jaekel, U. (2009). A general approach to Bayesian portfolio optimization. Mathematical Methods of Operations Research, 70(2), 337-356. https://doi.org/10.1007/s00186-008-0271-4 Best, M. y Grauer, R. (1991). Sensitivity analysis for mean-variance portfolio problems. Management Science, 37(8), 980-989. https://doi.org/10.1287/mnsc.37.8.980 Black, F. y Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43. https://doi.org/10.2469/faj.v48.n5.28 Fabozzi, F., Focardi, S., Kolm, P. y Pachamanova, D. (2007). Robust portfolio optimi¬zation and management. John Wiley & Sons. Fama, E. y French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. https://doi.org/10.1016/0304- 405X(93)90023-5 Garlappi, L., Uppal, R. y Wang, T. (2007). Portfolio selection with parameter and mo¬del uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-81. https://doi.org/10.1093/rfs/hhl003 Georgantas, A. (2020). Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis. Working paper. https://arxiv.org/ abs/2010.13397 Goldfarb, D. e Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), 1-38. https://doi.org/10.1287/moor.28.1.1.14260 Halldórsson, B. y Tütüncü, R. H. (2003). An interior-point method for a class of saddle-point problems. Journal of Optimization Theory and Applications, 116(3), 559-590. https://doi.org/10.1023/A:1023065319772 Hoffman, M., Brochu, E. y De Freitas, N. (2011). Portfolio allocation for ayesian optimi-zation. En Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar¬tificial Intelligence, 327-336. https://dl.acm.org/doi/abs/10.5555/3020548.3020587 Kim, W. C., Kim, J. H., Ahn, S. H. y Fabozzi, F. J. (2013). What do robust equity port¬folio models really do? Annals of Operations Research, 205(1), 141-168. https:// doi.org/10.1007/s10479-012-1247-6 Kim, W. C., Kim, J. H. y Fabozzi, F. J. (2015). Robust Equity Portfolio Management: Formulations, Implementations, and Properties Using MATLAB. John Wiley & Sons. Kim, J. H., Kim, W. C., Kwon, D. G. y Fabozzi, F. J. (2018). Robust equity portfo¬lio performance. Annals of Operations Research, 266(1), 293-312. https://doi. org/10.1007/s10479-017-2739-1 Lobo, M. S., Vandenberghe, L., Boyd, S. y Lebret, H. (1998). Applications of second-order cone programming. Linear Algebra and its Applications, 284(1-3), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0 Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New Heaven: Yale university Press. Meucci, A. (2005). Risk and asset allocation (vol. 1). Springer. Meucci, A. (2011). Robust Bayesian Allocation. ssrn Working paper 681553. https:// papers.ssrn.com/sol3/papers.cfm?abstract_id=681553 Michaud, R. (1998). Efficient asset management: A practical guide to stock portfolio optimization and asset allocation. Oxford University Press. Michaud, R. y Michaud, R. (2008). Estimation error and portfolio optimization: A resampling solution. Journal of Investment Management, 6(1), 8-28. Nesterov, Y. y Nemirovsky, A. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM. Pachamanova, D. y Fabozzi, F. (2012). Equity portfolio selection models in practice. En-cyclopedia of Financial Models, 1(1), 61-87. https://doi.org/10.1002/9781118182635. efm0046 Tütüncü, R. y Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1), 157-187. https://doi.org/10.1023/b:anor.0000045281.41041.ed Williams, J. (1938). The Theory of Investment Value. Harvard University Press. Zapata, C. (2021). Optimización robusta de portafolios: conjuntos de incertidumbre y contrapartes robustas. odeon, 20, 93-121. https://doi.org/10.18601/17941113.n20.04 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-12-14 |
date_accessioned |
2022-12-14T10:23:26Z |
date_available |
2022-12-14T10:23:26Z |
url |
https://revistas.uexternado.edu.co/index.php/odeon/article/view/8490 |
url_doi |
https://doi.org/10.18601/17941113.n21.05 |
issn |
1794-1113 |
eissn |
2346-2140 |
doi |
10.18601/17941113.n21.05 |
citationstartpage |
81 |
citationendpage |
104 |
url2_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13487 |
url3_str_mv |
https://revistas.uexternado.edu.co/index.php/odeon/article/download/8490/13488 |
_version_ |
1811199265643429888 |