Titulo:

Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
.

Sumario:

Este articulo analiza el concepto de probabilidad en la obra de Keynes y propone un metodo para formalizar la nocion de la incertidumbre en la Teoría general utilizando el teorema de Bayes y el principio de maxima entropia. Una de las principales conclusiones es que, a pesar de compartir su rechazo del enfoque frecuentista de la estadistica, es poco razonable pensar que no se pueden determinar probabilidades numericas, aunque se cumpla algun criterio de objetividad.

Guardado en:

0124-5996

2346-2450

23

2021-07-01

137

162

Juan Esteban Jacobo - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_uexternado_revistadeeconomiainstitucional_17_article_7338
record_format ojs
spelling Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
Uncertainty and probability in Keynes. A Bayesian-type review
Este articulo analiza el concepto de probabilidad en la obra de Keynes y propone un metodo para formalizar la nocion de la incertidumbre en la Teoría general utilizando el teorema de Bayes y el principio de maxima entropia. Una de las principales conclusiones es que, a pesar de compartir su rechazo del enfoque frecuentista de la estadistica, es poco razonable pensar que no se pueden determinar probabilidades numericas, aunque se cumpla algun criterio de objetividad.
This paper analyzes the concept of probability in Keynes’ work and proposes a method for formalizing the notion of uncertainty in the General Theory using Bayes’ theorem and the principle of maximum entropy. One of the main conclusions is that, despite sharing his rejection of the frequentist approach to statistics, it is unreasonable to think that numerical probabilities cannot be determined, even if some criterion of objectivity is met.
Jacobo, Juan Esteban
entropy, Bayes’ theorem, uncertainty, Keynes
B16, B31, C11
entropia, teorema de Bayes, incertidumbre, Keynes
B16, B31, C11
entropia, teorema de Bayes, incerteza, Keynes
B16, B31, C11
23
45
Núm. 45 , Año 2021 : Julio-diciembre
Artículo de revista
Journal article
2021-07-01T07:01:15Z
2021-07-01T07:01:15Z
2021-07-01
application/pdf
text/html
text/xml
Universidad Externado de Colombia
Revista de Economía Institucional
0124-5996
2346-2450
https://revistas.uexternado.edu.co/index.php/ecoins/article/view/7338
10.18601/01245996.v23n45.07
https://doi.org/10.18601/01245996.v23n45.07
spa
http://creativecommons.org/licenses/by-nc-sa/4.0
Juan Esteban Jacobo - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
137
162
<p>Bateman, B. (1987). Keynes’s changing conception of probability. Economics and Philosophy, 3(1), 97-119.<br>Bauwens, L., Lubrano, M. y Richard, J.-F. (2000). Bayesian inference in&nbsp;dynamic econometric models. Oxford: Oxford University Press.<br>Carabelli, A. (1988). On Keynes’s method. Nueva York: Palgrave Macmillan.<br>Cover, T. y Thomas, J. (2006). Elements of information theory. Hoboken: Wiley &amp; Sons.<br>Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.<br>Feduzi, A. (2007). On the relationship between Keynes’s conception of evidential weight and the Ellsberg Paradox. Journal of Economic Psychology, 28(5), 545-565.<br>Feduzi, A., Runde, J. y Zappia, C. (2013). De Finetti on Uncertainty. Cambridge Journal of Economics, 38(1), 1-21.<br>Jaynes, E. (1957). Information theory and statistical mechanics. The Physical Review, 106(4), 620-630.<br>Jaynes, E. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.<br>Keynes, J. M. (1921). A treatise on probability. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. VIII. Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1933). Essays in biography En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. X. Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1936). The general theory. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes (vol. VII). Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1973). The general theory and after: Part II. Defence and development. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. XIV. Cambridge: Cambridge University Press for the Royal Society.<br>Lindley, D. (1987). Using expert advice on a skew judgmental distribution. Operations Research, 35(5), 716-721.<br>Lindley, D. (2000). The philosophy of statistics. Journal of the Royal Society. Series D, 49(3), 293-337.<br>O’Donnel, R. (1989). Keynes: Philosophy, economics and politics. Nueva York: Palgrave Macmillan.<br>Patinkin, D. (1976). Keynes and econometrics: On the interaction between the macroeconomic revolutions of the interwar period. Econometrica, 44(6), 1091-1123.<br>Ramsey, F. (1960). Truth and probability [1926]. En R. Braithwaite, The foundations of mathematics and other logical essays. Londres: Littlefield, Adams &amp; Co.<br>Roncaglia, A. (2009). Keynes and probability: An assessment. The European Journal of the History of Economic Thought, 16(3), 489-510.<br>Samuelson, P. (1946). Lord Keynes and the General Theory. Econometrica, 14(3), 187-200.<br>Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Nueva York: Wiley.<br>Zellner, A. (1991). Bayesian methods and entropy in economics and econometrics. En W. Grandy e I. Shick, Maximum entropy and Bayesian methods. Fundamental theories of physics. Dordrecht: Springer.</p>
https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/10065
https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/13167
https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/13267
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EXTERNADO DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEXTERNADODECOLOMBIA/logo.png
country_str Colombia
collection Revista de Economía Institucional
title Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
spellingShingle Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
Jacobo, Juan Esteban
entropy, Bayes’ theorem, uncertainty, Keynes
B16, B31, C11
entropia, teorema de Bayes, incertidumbre, Keynes
B16, B31, C11
entropia, teorema de Bayes, incerteza, Keynes
B16, B31, C11
title_short Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
title_full Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
title_fullStr Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
title_full_unstemmed Probabilidad e incertidumbre en Keynes. Una revisión de tipo bayesiano
title_sort probabilidad e incertidumbre en keynes. una revisión de tipo bayesiano
title_eng Uncertainty and probability in Keynes. A Bayesian-type review
description Este articulo analiza el concepto de probabilidad en la obra de Keynes y propone un metodo para formalizar la nocion de la incertidumbre en la Teoría general utilizando el teorema de Bayes y el principio de maxima entropia. Una de las principales conclusiones es que, a pesar de compartir su rechazo del enfoque frecuentista de la estadistica, es poco razonable pensar que no se pueden determinar probabilidades numericas, aunque se cumpla algun criterio de objetividad.
description_eng This paper analyzes the concept of probability in Keynes’ work and proposes a method for formalizing the notion of uncertainty in the General Theory using Bayes’ theorem and the principle of maximum entropy. One of the main conclusions is that, despite sharing his rejection of the frequentist approach to statistics, it is unreasonable to think that numerical probabilities cannot be determined, even if some criterion of objectivity is met.
author Jacobo, Juan Esteban
author_facet Jacobo, Juan Esteban
topic entropy, Bayes’ theorem, uncertainty, Keynes
B16, B31, C11
entropia, teorema de Bayes, incertidumbre, Keynes
B16, B31, C11
entropia, teorema de Bayes, incerteza, Keynes
B16, B31, C11
topic_facet entropy, Bayes’ theorem, uncertainty, Keynes
B16, B31, C11
entropia, teorema de Bayes, incertidumbre, Keynes
B16, B31, C11
entropia, teorema de Bayes, incerteza, Keynes
B16, B31, C11
topicspa_str_mv entropia, teorema de Bayes, incertidumbre, Keynes
B16, B31, C11
entropia, teorema de Bayes, incerteza, Keynes
B16, B31, C11
citationvolume 23
citationissue 45
citationedition Núm. 45 , Año 2021 : Julio-diciembre
publisher Universidad Externado de Colombia
ispartofjournal Revista de Economía Institucional
source https://revistas.uexternado.edu.co/index.php/ecoins/article/view/7338
language spa
format Article
rights http://creativecommons.org/licenses/by-nc-sa/4.0
Juan Esteban Jacobo - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references <p>Bateman, B. (1987). Keynes’s changing conception of probability. Economics and Philosophy, 3(1), 97-119.<br>Bauwens, L., Lubrano, M. y Richard, J.-F. (2000). Bayesian inference in&nbsp;dynamic econometric models. Oxford: Oxford University Press.<br>Carabelli, A. (1988). On Keynes’s method. Nueva York: Palgrave Macmillan.<br>Cover, T. y Thomas, J. (2006). Elements of information theory. Hoboken: Wiley &amp; Sons.<br>Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.<br>Feduzi, A. (2007). On the relationship between Keynes’s conception of evidential weight and the Ellsberg Paradox. Journal of Economic Psychology, 28(5), 545-565.<br>Feduzi, A., Runde, J. y Zappia, C. (2013). De Finetti on Uncertainty. Cambridge Journal of Economics, 38(1), 1-21.<br>Jaynes, E. (1957). Information theory and statistical mechanics. The Physical Review, 106(4), 620-630.<br>Jaynes, E. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.<br>Keynes, J. M. (1921). A treatise on probability. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. VIII. Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1933). Essays in biography En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. X. Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1936). The general theory. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes (vol. VII). Cambridge: Cambridge University Press for the Royal Society.<br>Keynes, J. M. (1973). The general theory and after: Part II. Defence and development. En E. Johnson y D. Moggridge (eds.), The collected writings of John Maynard Keynes, v. XIV. Cambridge: Cambridge University Press for the Royal Society.<br>Lindley, D. (1987). Using expert advice on a skew judgmental distribution. Operations Research, 35(5), 716-721.<br>Lindley, D. (2000). The philosophy of statistics. Journal of the Royal Society. Series D, 49(3), 293-337.<br>O’Donnel, R. (1989). Keynes: Philosophy, economics and politics. Nueva York: Palgrave Macmillan.<br>Patinkin, D. (1976). Keynes and econometrics: On the interaction between the macroeconomic revolutions of the interwar period. Econometrica, 44(6), 1091-1123.<br>Ramsey, F. (1960). Truth and probability [1926]. En R. Braithwaite, The foundations of mathematics and other logical essays. Londres: Littlefield, Adams &amp; Co.<br>Roncaglia, A. (2009). Keynes and probability: An assessment. The European Journal of the History of Economic Thought, 16(3), 489-510.<br>Samuelson, P. (1946). Lord Keynes and the General Theory. Econometrica, 14(3), 187-200.<br>Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Nueva York: Wiley.<br>Zellner, A. (1991). Bayesian methods and entropy in economics and econometrics. En W. Grandy e I. Shick, Maximum entropy and Bayesian methods. Fundamental theories of physics. Dordrecht: Springer.</p>
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-07-01
date_accessioned 2021-07-01T07:01:15Z
date_available 2021-07-01T07:01:15Z
url https://revistas.uexternado.edu.co/index.php/ecoins/article/view/7338
url_doi https://doi.org/10.18601/01245996.v23n45.07
issn 0124-5996
eissn 2346-2450
doi 10.18601/01245996.v23n45.07
citationstartpage 137
citationendpage 162
url2_str_mv https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/10065
url3_str_mv https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/13167
url4_str_mv https://revistas.uexternado.edu.co/index.php/ecoins/article/download/7338/13267
_version_ 1811200107894276096