Titulo:

Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
.

Sumario:

Fotomorfogénesis es cualquier cambio de forma o de función en un organismo, que sucede en respuesta a las modificaciones en la luz ambiental. La calidad de la luz, se capta mediante receptores específicos para las diferentes longitudes de onda. En un ensayo factorial, se evaluó la influencia de la calidad de la luz sobre el crecimiento y la eficiencia fotoquímica del fotosistema II (PSII) en plantas de fresa (Fragaria sp., cv. Chandler), bajo invernadero, en Tunja, Colombia. Las plantas crecieron bajo diferente calidad de luz (amarilla, verde, azul, roja, transparente y el control sin cobertura), proporcionada por películas filtro de polipropileno. Se realizaron determinaciones de florescencia mínima (F0), máxima (Fm), variable... Ver más

Guardado en:

0123-4226

2619-2551

14

2011-12-31

45

53

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_774
record_format ojs
spelling Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
Growth and photochemical efficiency of photosystem II in strawberry plants (Fragaria sp.) Affected by the light quality: agronomic implications
Fotomorfogénesis es cualquier cambio de forma o de función en un organismo, que sucede en respuesta a las modificaciones en la luz ambiental. La calidad de la luz, se capta mediante receptores específicos para las diferentes longitudes de onda. En un ensayo factorial, se evaluó la influencia de la calidad de la luz sobre el crecimiento y la eficiencia fotoquímica del fotosistema II (PSII) en plantas de fresa (Fragaria sp., cv. Chandler), bajo invernadero, en Tunja, Colombia. Las plantas crecieron bajo diferente calidad de luz (amarilla, verde, azul, roja, transparente y el control sin cobertura), proporcionada por películas filtro de polipropileno. Se realizaron determinaciones de florescencia mínima (F0), máxima (Fm), variable (Fv), terminal (Ft) y la eficiencia fotoquímica máxima (Fv /Fm), en hojas adaptadas a la oscuridad, 32 semanas luego del trasplante. En relación con el crecimiento, las plantas control registraron los valores más altos de materia seca por planta y de peso específico de las hojas. Las plantas bajo el filtro rojo desarrollaron la mayor área foliar, mientras que el filtro verde redujo el crecimiento. Las películas de color modificaron el patrón de asignación de materia seca en los órganos de las plantas, especialmente, el filtro de color verde. La luz filtrada afectó todos los parámetros de la fluorescencia de la clorofila. En relación con las plantas control Fv , Fm y Ft fueron mayores en las plantas que crecieron bajo todas las coberturas. Mientras que F0 fue mayor bajo las coberturas amarilla y transparente, Fv /Fm fue menor bajo esas películas filtro. Los resultados se discuten en relación con sus posibles implicaciones sobre prácticas agronómicas apropiadas.
Photomorphogenesis is any change in form or function of an organism occurring in response to changes in the light environment. Light quality is mainly sensed by the presence of different light receptors specific for different wavelengths. The influence of light quality on the growth and photochemical efficiency of photosystem II (PSII) in strawberry plants (Fragaria sp., cv. Chandler) was examined in a factorial set up, under greenhouse in Tunja / Colombia. Plants grew under diverse light qualities (yellow, green, blue, red, transparent, and control without colored cover) provided by polypropylene filter films. Determinations of minimum (F0), maximum (Fm), variable (Fv), and terminal (Ft) fluorescence and maximum photochemical efficiency (Fv/Fm) of dark-adapted leaves were done 32 weeks after the transplant. Related to growth, control plants recorded highest dry matter and specific leaf weight. Plants growing under the red filter developed highest leaf area. The green film reduced the growth. The color films changed the dry matter partitioning patterns in the plants organs, specially the green filter. Filtered light affected the chlorophyll fluorescence variables, related to control plants. Regards to control plants, Fv , Fm and Ft were higher in plants growing under all covers. While F0 was higher under the transparent and yellow films, Fv /Fm was lower under these covers. The results were discussed in relation to possible implications for appropriate agronomic practices.
Casierra Posada, Fánor
Peña Olmos, Jaime
Ulrichs, Christian
Fotomorfogénesis
Material seca
Partición de biomasa
Luz coloreada
Fv /Fm
Fluorescencia mínima
Fluorescencia máxima
Photomorphogenesis
Dry matter
Biomass partitioning
Colored light
Fv /Fm
Minimal fluorescence
Maximal fluorescence
14
2
Núm. 2 , Año 2011 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
Artículo de revista
Journal article
2011-12-31T00:00:00Z
2011-12-31T00:00:00Z
2011-12-31
application/pdf
text/html
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/774
10.31910/rudca.v14.n2.2011.774
https://doi.org/10.31910/rudca.v14.n2.2011.774
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
45
53
BACARIN, M.A.; MOSQUIM, P.R. 2002. Cinética de emissão de fluorescência das clorofilas de dois genótipos de feijoeiro. Ciência e Agrotecnologia, Lavras. 26(4):705-710.
BAKER, N.R.; ROSENQVIST, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55(403):1607-1621.
BRADBURNE, J.A.; KASPERBAUER, M.J.; MATHIS, J.N. 1989. Reflected Far-Red light effects on cholorophyll and light-harvesting chlorophyll protein (LHCII) contents under field conditions. Plant Physiol. 91(3):800-803.
BRIANTAIS, J.M.; VERNOTTE, C.; KRAUSE, G.H.; WEIS, E. 1986. Chlorophyll fluorescence of higher plant chloroplasts and leaves. In: Govindjee, J.A.; Fork, D.C., Eds. Light emission by plants and photosynthetic bacteria. Academic Press, New York. p.539-577.
CASIERRA-POSADA, F.; ROJAS B., J.F. 2009. Efecto de la exposición del semillero a coberturas de colores sobre el desarrollo y productividad del brócoli (Brassica oleracea var. italica). Agr. Col. 27(1):49-55.
CASIERRA-POSADA, F.; PEÑA-OLMOS, J.E. 2011. Contenido de pigmentos en hojas de fresa (Fragaria sp) expuestas a diferente calidad espectral. Agr. Col. (en prensa).
CASIERRA-POSADA, F.; PEÑA-OLMOS, J.E.; ULRICHS, C. 2011. Análisis básico del crecimiento en plantas de fresa (Fragaria sp.) expuestas a diferente calidad de luz. Agr. Col. (en prensa).
CHEN, K.; HU, G.; KEUTGEN, K. 1999. Effects of NaCl and CO2 enrichment on pepino (Solanum muricatum Ait) II. Leaf photosynthetic properties and gas exchange. Sci. Hort. 81:43-56.
DECOTEAU, D.R. 2008. The emergence and early development of colored reflective plastic mulch technology in agriculture. En: Stevens, C.; Khan, V.A. (eds). Recent advances in agriculture. Research Signpost. Kerala, India. p.1-17.
DEMMIG-ADAMS, B.; ADAMS, III W.W. 1992. Photochemical and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:599-626.
EL-SHARKAWY, M.A. 2007. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 19(4):257-286.
F OLTA, K.M.; MARUHNICH, S.A. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099-3111.
F UKUDA, N.; FUJITAN, M.; OHTA, Y.; SASE, S.; NISHIMURA, S.; EZURA, H. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hort. 115:176-182.
GONÇALVES, J.F. de C.; MARENCO, R.A.; VIEIRA, G. 2001. Concentration of photosynthetic pigments and chlorophyll fluorescence of Mahogany and Tonka bean under two light environments. Rev. Bras. Fisiol. Veg. 13(2):149-157.
GONZÁLEZ M., S.; PERALES V, H.; SALCEDO A., M.O. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Rev. Educación Bioquímica. 27(4):119-129.
HALIAPAS, S.; YUPSANIS, T.A.; SYROS, T.D.; KOFIDIS, G.; ECONOMOU, A.S. 2008. Petunia x hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol. Plant. 30:807-815.
HIROSE, T. 1987. A vegetative plant growth model: adaptive significance of phenotypic plasticity in matter partitioning. Functional Ecol. 1:195-202.
IMAIZUMI, T.; TRAN, H.G.; SWARTZ, T.E.; BRIGGS, W.R.; KAY, S.A. 2003. FKF1 is essential for photoperiodicspecific light signalling in Arabidopsis. Nature. 426:302- 306.
JIAO, Y.; LAU, O.S.; DENG, X.W. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8:217-230.
LOUGHRIN, J.H.; KASPERBAUER, M.J. 2002. Aroma of fresh strawberries is enhanced by ripening over red versus black mulch. J. Agric. Food Chem. 50:161-165.
MANRIQUE, E. 2003. Los pigmentos fotosintéticos, algo más que la captación de luz. Ecosistemas 12(1). Disponible desde internet en: http://rua.ua.es/dspace/ bitstream/10045/8958/1/ECO_12%281%29_08.pdf. (con acceso 22/07/2011).
MIRANDA, J.H.; WILLIAMS, R. 2007. Developmental influence of in vitro light quality and carbon dioxide on photochemical efficiency of PS II of strawberry leaves (Fragaria x ananassa). J. Appl. Hort. 9(1):13-16.
MATHEWS, S. 2010. Evolutionary studies illuminate the structural–functional model of plant phytochromes. The Plant Cell. 22:4-16.
NIYOGI, K.K. 1999. Photoprotection revisited: Genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant Molec. Bio. 50:333-359.
PERCIVAL, G.C. 2004. Evaluation of physiological tests as predictors of young tree establishment and growth. J. Arboric. 30(2):80-92.
PERCIVAL, G.C.; HENDERSON, A. 2003. An assessment of the freezing tolerance of urban trees using chlorophyll fluorescence. J. Hortic. Sci. Biotech. 78(2):254-260.
REEKIE, E.G.; BAZZAZ, F.A. 1987. Reproductive effort in plants: effect of reproduction on vegetative activity. Am. Naturalist. 129:907-919.
SHAHAK, Y.; GAL, E.; OFFIR, Y.; BEN-YAKIR, D. 2008. Photoselective Shade Netting Integrated with Greenhouse Technologies for Improved Performance of Vegetable and Ornamental Crops. Acta Hort. 797:75-80.
STRASSER, B.; SÁNCHEZ-LAMAS, M.; YANOVSKY, M.J.; CASAL, J.J.; CERDÁN, P.D. 2010. Arabidopsis thaliana life without phytochromes. Proc. Nal. Acad. Sci. U.S.A. 107:4776-4781.
TERASHIMA, I.; HANDA, Y.T.; TAZOE, Y.; VYAS, P.; YANO, S. 2005. Irradiance and phenotype: comparative ecodevelopment of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. Phenothypic Plasticity and the Changing Environm. Special Issue. 57(2):343-354.
VALLADARES, F.; NIINEMETS, Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Ann. Rev. Ecol. Evolution and Systematics. 39:237-257.
VIEIRA, D.A. de P.; PORTES, T. de A.; STACCIARINISERAPHIN, E; TEIXEIRA, J.B. 2010. Fluorescência e teores de clorofilas em abacaxizeiro cv. pérola submetido a diferentes concentrações de sulfato de amônio. Rev. Bras. Frutic. 32(2):360-368.
WEINER, J. 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecol., Evol. and Systematics. 6(4):207-215.
WILLITS, D.H.; PEET, M.M. 2001. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta Hortic. 507:311315.
https://revistas.udca.edu.co/index.php/ruadc/article/download/774/849
https://revistas.udca.edu.co/index.php/ruadc/article/download/774/850
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
spellingShingle Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
Casierra Posada, Fánor
Peña Olmos, Jaime
Ulrichs, Christian
Fotomorfogénesis
Material seca
Partición de biomasa
Luz coloreada
Fv /Fm
Fluorescencia mínima
Fluorescencia máxima
Photomorphogenesis
Dry matter
Biomass partitioning
Colored light
Fv /Fm
Minimal fluorescence
Maximal fluorescence
title_short Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
title_full Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
title_fullStr Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
title_full_unstemmed Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) Afectadas por la calidad de la luz: implicaciones agronómicas
title_sort crecimiento y eficiencia fotoquímica del fotosistema ii en plantas de fresa (fragaria sp.) afectadas por la calidad de la luz: implicaciones agronómicas
title_eng Growth and photochemical efficiency of photosystem II in strawberry plants (Fragaria sp.) Affected by the light quality: agronomic implications
description Fotomorfogénesis es cualquier cambio de forma o de función en un organismo, que sucede en respuesta a las modificaciones en la luz ambiental. La calidad de la luz, se capta mediante receptores específicos para las diferentes longitudes de onda. En un ensayo factorial, se evaluó la influencia de la calidad de la luz sobre el crecimiento y la eficiencia fotoquímica del fotosistema II (PSII) en plantas de fresa (Fragaria sp., cv. Chandler), bajo invernadero, en Tunja, Colombia. Las plantas crecieron bajo diferente calidad de luz (amarilla, verde, azul, roja, transparente y el control sin cobertura), proporcionada por películas filtro de polipropileno. Se realizaron determinaciones de florescencia mínima (F0), máxima (Fm), variable (Fv), terminal (Ft) y la eficiencia fotoquímica máxima (Fv /Fm), en hojas adaptadas a la oscuridad, 32 semanas luego del trasplante. En relación con el crecimiento, las plantas control registraron los valores más altos de materia seca por planta y de peso específico de las hojas. Las plantas bajo el filtro rojo desarrollaron la mayor área foliar, mientras que el filtro verde redujo el crecimiento. Las películas de color modificaron el patrón de asignación de materia seca en los órganos de las plantas, especialmente, el filtro de color verde. La luz filtrada afectó todos los parámetros de la fluorescencia de la clorofila. En relación con las plantas control Fv , Fm y Ft fueron mayores en las plantas que crecieron bajo todas las coberturas. Mientras que F0 fue mayor bajo las coberturas amarilla y transparente, Fv /Fm fue menor bajo esas películas filtro. Los resultados se discuten en relación con sus posibles implicaciones sobre prácticas agronómicas apropiadas.
description_eng Photomorphogenesis is any change in form or function of an organism occurring in response to changes in the light environment. Light quality is mainly sensed by the presence of different light receptors specific for different wavelengths. The influence of light quality on the growth and photochemical efficiency of photosystem II (PSII) in strawberry plants (Fragaria sp., cv. Chandler) was examined in a factorial set up, under greenhouse in Tunja / Colombia. Plants grew under diverse light qualities (yellow, green, blue, red, transparent, and control without colored cover) provided by polypropylene filter films. Determinations of minimum (F0), maximum (Fm), variable (Fv), and terminal (Ft) fluorescence and maximum photochemical efficiency (Fv/Fm) of dark-adapted leaves were done 32 weeks after the transplant. Related to growth, control plants recorded highest dry matter and specific leaf weight. Plants growing under the red filter developed highest leaf area. The green film reduced the growth. The color films changed the dry matter partitioning patterns in the plants organs, specially the green filter. Filtered light affected the chlorophyll fluorescence variables, related to control plants. Regards to control plants, Fv , Fm and Ft were higher in plants growing under all covers. While F0 was higher under the transparent and yellow films, Fv /Fm was lower under these covers. The results were discussed in relation to possible implications for appropriate agronomic practices.
author Casierra Posada, Fánor
Peña Olmos, Jaime
Ulrichs, Christian
author_facet Casierra Posada, Fánor
Peña Olmos, Jaime
Ulrichs, Christian
topicspa_str_mv Fotomorfogénesis
Material seca
Partición de biomasa
Luz coloreada
Fv /Fm
Fluorescencia mínima
Fluorescencia máxima
topic Fotomorfogénesis
Material seca
Partición de biomasa
Luz coloreada
Fv /Fm
Fluorescencia mínima
Fluorescencia máxima
Photomorphogenesis
Dry matter
Biomass partitioning
Colored light
Fv /Fm
Minimal fluorescence
Maximal fluorescence
topic_facet Fotomorfogénesis
Material seca
Partición de biomasa
Luz coloreada
Fv /Fm
Fluorescencia mínima
Fluorescencia máxima
Photomorphogenesis
Dry matter
Biomass partitioning
Colored light
Fv /Fm
Minimal fluorescence
Maximal fluorescence
citationvolume 14
citationissue 2
citationedition Núm. 2 , Año 2011 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/774
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references BACARIN, M.A.; MOSQUIM, P.R. 2002. Cinética de emissão de fluorescência das clorofilas de dois genótipos de feijoeiro. Ciência e Agrotecnologia, Lavras. 26(4):705-710.
BAKER, N.R.; ROSENQVIST, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55(403):1607-1621.
BRADBURNE, J.A.; KASPERBAUER, M.J.; MATHIS, J.N. 1989. Reflected Far-Red light effects on cholorophyll and light-harvesting chlorophyll protein (LHCII) contents under field conditions. Plant Physiol. 91(3):800-803.
BRIANTAIS, J.M.; VERNOTTE, C.; KRAUSE, G.H.; WEIS, E. 1986. Chlorophyll fluorescence of higher plant chloroplasts and leaves. In: Govindjee, J.A.; Fork, D.C., Eds. Light emission by plants and photosynthetic bacteria. Academic Press, New York. p.539-577.
CASIERRA-POSADA, F.; ROJAS B., J.F. 2009. Efecto de la exposición del semillero a coberturas de colores sobre el desarrollo y productividad del brócoli (Brassica oleracea var. italica). Agr. Col. 27(1):49-55.
CASIERRA-POSADA, F.; PEÑA-OLMOS, J.E. 2011. Contenido de pigmentos en hojas de fresa (Fragaria sp) expuestas a diferente calidad espectral. Agr. Col. (en prensa).
CASIERRA-POSADA, F.; PEÑA-OLMOS, J.E.; ULRICHS, C. 2011. Análisis básico del crecimiento en plantas de fresa (Fragaria sp.) expuestas a diferente calidad de luz. Agr. Col. (en prensa).
CHEN, K.; HU, G.; KEUTGEN, K. 1999. Effects of NaCl and CO2 enrichment on pepino (Solanum muricatum Ait) II. Leaf photosynthetic properties and gas exchange. Sci. Hort. 81:43-56.
DECOTEAU, D.R. 2008. The emergence and early development of colored reflective plastic mulch technology in agriculture. En: Stevens, C.; Khan, V.A. (eds). Recent advances in agriculture. Research Signpost. Kerala, India. p.1-17.
DEMMIG-ADAMS, B.; ADAMS, III W.W. 1992. Photochemical and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:599-626.
EL-SHARKAWY, M.A. 2007. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 19(4):257-286.
F OLTA, K.M.; MARUHNICH, S.A. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099-3111.
F UKUDA, N.; FUJITAN, M.; OHTA, Y.; SASE, S.; NISHIMURA, S.; EZURA, H. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hort. 115:176-182.
GONÇALVES, J.F. de C.; MARENCO, R.A.; VIEIRA, G. 2001. Concentration of photosynthetic pigments and chlorophyll fluorescence of Mahogany and Tonka bean under two light environments. Rev. Bras. Fisiol. Veg. 13(2):149-157.
GONZÁLEZ M., S.; PERALES V, H.; SALCEDO A., M.O. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Rev. Educación Bioquímica. 27(4):119-129.
HALIAPAS, S.; YUPSANIS, T.A.; SYROS, T.D.; KOFIDIS, G.; ECONOMOU, A.S. 2008. Petunia x hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol. Plant. 30:807-815.
HIROSE, T. 1987. A vegetative plant growth model: adaptive significance of phenotypic plasticity in matter partitioning. Functional Ecol. 1:195-202.
IMAIZUMI, T.; TRAN, H.G.; SWARTZ, T.E.; BRIGGS, W.R.; KAY, S.A. 2003. FKF1 is essential for photoperiodicspecific light signalling in Arabidopsis. Nature. 426:302- 306.
JIAO, Y.; LAU, O.S.; DENG, X.W. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8:217-230.
LOUGHRIN, J.H.; KASPERBAUER, M.J. 2002. Aroma of fresh strawberries is enhanced by ripening over red versus black mulch. J. Agric. Food Chem. 50:161-165.
MANRIQUE, E. 2003. Los pigmentos fotosintéticos, algo más que la captación de luz. Ecosistemas 12(1). Disponible desde internet en: http://rua.ua.es/dspace/ bitstream/10045/8958/1/ECO_12%281%29_08.pdf. (con acceso 22/07/2011).
MIRANDA, J.H.; WILLIAMS, R. 2007. Developmental influence of in vitro light quality and carbon dioxide on photochemical efficiency of PS II of strawberry leaves (Fragaria x ananassa). J. Appl. Hort. 9(1):13-16.
MATHEWS, S. 2010. Evolutionary studies illuminate the structural–functional model of plant phytochromes. The Plant Cell. 22:4-16.
NIYOGI, K.K. 1999. Photoprotection revisited: Genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant Molec. Bio. 50:333-359.
PERCIVAL, G.C. 2004. Evaluation of physiological tests as predictors of young tree establishment and growth. J. Arboric. 30(2):80-92.
PERCIVAL, G.C.; HENDERSON, A. 2003. An assessment of the freezing tolerance of urban trees using chlorophyll fluorescence. J. Hortic. Sci. Biotech. 78(2):254-260.
REEKIE, E.G.; BAZZAZ, F.A. 1987. Reproductive effort in plants: effect of reproduction on vegetative activity. Am. Naturalist. 129:907-919.
SHAHAK, Y.; GAL, E.; OFFIR, Y.; BEN-YAKIR, D. 2008. Photoselective Shade Netting Integrated with Greenhouse Technologies for Improved Performance of Vegetable and Ornamental Crops. Acta Hort. 797:75-80.
STRASSER, B.; SÁNCHEZ-LAMAS, M.; YANOVSKY, M.J.; CASAL, J.J.; CERDÁN, P.D. 2010. Arabidopsis thaliana life without phytochromes. Proc. Nal. Acad. Sci. U.S.A. 107:4776-4781.
TERASHIMA, I.; HANDA, Y.T.; TAZOE, Y.; VYAS, P.; YANO, S. 2005. Irradiance and phenotype: comparative ecodevelopment of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. Phenothypic Plasticity and the Changing Environm. Special Issue. 57(2):343-354.
VALLADARES, F.; NIINEMETS, Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Ann. Rev. Ecol. Evolution and Systematics. 39:237-257.
VIEIRA, D.A. de P.; PORTES, T. de A.; STACCIARINISERAPHIN, E; TEIXEIRA, J.B. 2010. Fluorescência e teores de clorofilas em abacaxizeiro cv. pérola submetido a diferentes concentrações de sulfato de amônio. Rev. Bras. Frutic. 32(2):360-368.
WEINER, J. 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecol., Evol. and Systematics. 6(4):207-215.
WILLITS, D.H.; PEET, M.M. 2001. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta Hortic. 507:311315.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2011-12-31
date_accessioned 2011-12-31T00:00:00Z
date_available 2011-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/774
url_doi https://doi.org/10.31910/rudca.v14.n2.2011.774
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v14.n2.2011.774
citationstartpage 45
citationendpage 53
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/774/849
url3_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/774/850
_version_ 1811201149606297600