Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente
.
La disponibilidad de recurso hídrico de calidad es un factor de gran interés científico, debido a la gran carga de contaminantes de origen antrópico presente en las fuentes de agua, siendo los metales, de especial atención por la bioacumulación y lamtoxicidad. En el presente artículo, se estudia la adsorción de Cromo hexavalente, usando cáscara de cacao, como material adsorbente, así como dos tratamientos químicos a la misma, con hidróxido de sodio y ácido clorhídrico, evaluando su efecto en la remoción del ión metálico. La medición del metal en solución, se hizo mediante espectroscopia UV-Vis, usando el reactivo difenilcarbazida. Se estudió el efecto del tamaño de partícula en el proceso y el ajuste de la cinética, se hizo con los modelos... Ver más
0123-4226
2619-2551
20
2017-06-30
139
147
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_71 |
---|---|
record_format |
ojs |
spelling |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente Removing of hexavalent chromium on chemically pretreated cacao waste La disponibilidad de recurso hídrico de calidad es un factor de gran interés científico, debido a la gran carga de contaminantes de origen antrópico presente en las fuentes de agua, siendo los metales, de especial atención por la bioacumulación y lamtoxicidad. En el presente artículo, se estudia la adsorción de Cromo hexavalente, usando cáscara de cacao, como material adsorbente, así como dos tratamientos químicos a la misma, con hidróxido de sodio y ácido clorhídrico, evaluando su efecto en la remoción del ión metálico. La medición del metal en solución, se hizo mediante espectroscopia UV-Vis, usando el reactivo difenilcarbazida. Se estudió el efecto del tamaño de partícula en el proceso y el ajuste de la cinética, se hizo con los modelos de primer orden, segundo orden, Elovich y difusión. Se encontró que el modelo que mejor se ajustó a los datos experimentales fue el de Elovich, mientras que la isoterma de Freundlich describe mejor el proceso de adsorción; de este modo, se establece que la superficie catalítica del bioadsorbente es heterogénea, exhibiendo diferentes energías de activación. Además, se observó que la modificación con ácido clorhídrico mejoró la capacidad de adsorción del material. The availability of quality water resources is a factor of great scientific interest because of the high burden of anthropic contaminants in water sources, with particular attention to metals due to their bioaccumulation and toxicity. In this research the adsorption of hexavalent chromium using cocoa shell as adsorbent material, as well as two chemical treatments with sodium hydroxide and hydrochloric acid was studied. The effect of removing this metal-ion was evaluated. Measurement of this metal in aqueous solution was realized by UV-Vis spectroscopy using diphenylcarbazide reagent. The effect of particle size in the process was studied and the adjustment of the kinetics was done with models of first order, second order, Elovich and diffusion It was found that the model with the best fit to the experimental data was Elovich, while Freundlich´s isotherm describes the adsorption process in a better way. Thereby it was established that the catalytic surface of this bioadsorbent is heterogeneous, exhibiting different energies of activation. Furthermore it was observed that the modification with hydrochloric acid improved the adsorption capacity of this material. Tejada Tovar, Candelaria Villabona Ortiz, Ángel Jiménez Villadiego, María Adsorción biomaterial Cromo (VI) tratamiento químico Adsorption biomaterial Chromium (VI) chemical treatment 20 1 Núm. 1 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero - Junio Artículo de revista Journal article 2017-06-30T00:00:00Z 2017-06-30T00:00:00Z 2017-06-30 application/pdf text/html Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/71 10.31910/rudca.v20.n1.2017.71 https://doi.org/10.31910/rudca.v20.n1.2017.71 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ 139 147 ABDOLALI, A.; NGO, H.H.; GUO, W.; ZHOU, J.; DU, B.; WEI, Q.; WANG, X.C.; DAN NGUYEN, P; 2015. Characterization of a multi-metal bindingbiosorbent: Chemical modification and desorption studies. Biores. Technol. 193:477-487. AHMAD, F.; ASHRI, W.; RADZI, R. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by CO2activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies. Chem. Eng. Res. Design. 90(10):1480-1490. ALTUN, T.; PEHLIVAN, E. 2012; Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chemistry. 132:693-700. ALVES, L.V.; GIL, L.F. 2009; Adsorption of Cu (II), Cd(II) and Pb (II) from aqueous single metal solutions by succiny lated twice-mercerized sugarcane bagasse functionalized with tri ethylen etetramine. Water Research. 3(18):4479-4488. AMEL, K.; ABDESLAM, M.; KERROUM, D. 2012. Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia. 19:286-295. ASASIAN, N.; KAGHAZCHI, T.; FARAMARZI, A.; HAKIMI- SIBONI, A.; ASADI-KESHEH, R.; KAVAND, M.; MOHTASHAMI, S. 2014. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. J. Taiwan Inst. Chem. Eng. 45(4):1588-1596. BABEL, T.; KURNIAWAN, A. 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54:951–967. CHEN, G.; FAN, J.; LIU, R.; ZENG, G.; CHEN, A.; ZOU, Z. 2012. Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by Phanerochaete chrysosporium. Environ. Technol. 33(23):2653-2659. CHIENG, H.I.; LIM, L.B.L.; PRIYANTHA, N. 2015. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ. Technol. 36(1):86-97. EL-SHAFEY, E. 2005. Behaviour of reduction–sorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water Air Soil Pollut. 163:81-102. FEIZI, M.; JALALI, M. 2015. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J. Taiwan Inst. Chem. Eng. 54:125-136. GUO, Z.; FAN, J.; ZHANG, J.; KANG, Y.; LIU, H.; JIANG, L.; ZHANG, C. 2016. Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation. J. Taiwan Inst. Chem. Eng. 58:290-296. HAMZA, I.A.A.; MARTINCIGH, B.S.; NGILA, J.C.; NYAMORI, V.O. 2013. Adsorption studies of aqueous Pb (II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth. 66:157-166. IGWE, J.; ABIA, A. 2006. Sorption Kinetics and Intraparticulate diffusivity of As (III) bioremediation from aqueous solution, using modified and unmodified coconut fiber. Ecl. Quim. Sao Paulo. 31(3): 23-29. INGOLE, N.W.; DHARPAL, S.V. 2012. State of art of biosorption technique for treatment of heavy metals bearing wastes. Int. J. Adv. Eng. Technol. 3(2):143-153. ISLAM, S.; AHMED, K.; RAKNUZZAMAN, M.; AL-MAMUN, H.; ISLAM, M.K. 2015. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological indicators. 48:282-291. ISMAIEL, A.A.; AROUA, M.K.; YUSOFF, R. 2013. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem. Eng. J. 225:306-314. LARGITTE, L.; BRUDEY, T.; TANT, T.; COUESPEL DUMESNIL, P.; LODEWYCKX, P. 2016.Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Micropor. Mesopor. Mat. 219:265-275. LAVADO-MEZA, C.; SUN KOU, M.; RECUAY-ARANA, N. 2012. Remoción de Cr(VI) empleando carbones preparados por activación química a partir de las astillas de eucalipto. Rev. Soc. Quim. 78(1):14-26. LIU, W.; SUN, W.; HANB, Y.; AHMAD, M.; NI, J. 2014. Adsorption of Cu (II) and Cd (II) on titanatena nomaterials synthesis via hydrothermal method under different NaOH concentrations: Role of sodium content. Colloids and Surfaces A: Physicochem. Eng. Aspects.452:138-147. MA, F.; ZHANG, Z.; JIANG, J.; HU, J. 2015. Chromium (VI) potentiates the DNA adducts (O6-methylguanine) formation of N-nitroso dimethyl amine in rat: Implication on carcinogenic risk. Chemosphere. 139:256-259. MÄDLER, S.; SUN, F.; TAT, C.; SUDAKOVA, N.; DROUIN, P.; TOOLEY, R.J.; REINER, E.; SWITZER, T.; DYER, R.; KINGSTON, H.M.S.; PAMUKU, M.; FURDUI, V.I. 2016. Trace-Level Analysis of Hexavalent Chromium in Lake Sediment Samples Using Ion Chromatography Tandem Mass Spectrometry. J. Environ. Prot. 7:422-434. MOMČILOVIĆ, M.; PURENOVIĆ, M.; BOJIĆ, A.; ZARUBICA, A.; RANĐELOVIĆ, M. 2011. Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination. 276:53-59. OMIDVAR, B.; PIRSAHEB, M.; VOSOUGHI, M.; KHOSRAVI, R.; KAKAVANDI, B.; ZARE, M.; ASADI, A. 2016. Batch and column studies for the adsorption of chromium (VI) on low-cost Hibiscus cannabinus kenaf, a green adsorbent. J. Taiwan Institute of Chemical Engineers. 68:80-89. OWALUDE, S.; TELLA, A. 2016. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-suef university journal of basic and applied sciences. 5:377-388. OZDES, D.; GUNDOGDU, A.; KEMER, B.; DURAN, C.; KUCUK, M.; SOYLAK, M. 2014. Assessment of kinetics, thermodynamics and equilibrium parameters of Cr (VI) biosorption onto Pinus brutia Ten. Can. J. Chem. Eng. 92:139-147. SAHA, R.; MUKHERJEE, K.; SAHA, I.; GHOSH, A.; GHOSH, S.; SAHA, B. 2013. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res. Chem. Intermed. 39:2245- 57. SALA, E.; GRANHEN, C.; TAVARES, M. 2005. Biosorption Chromium (III) by Sargassum sp. Biomass. Electron. J. Biotechnol. 5:1-7. TEJADA, C.; QUIÑONEZ, E.; TEJEDA, L.; MARIMÓN, W. 2015a. Absorción de cromo hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis). Producción + Limpia. 10(1):9-21. TEJADA, C.; VILLABONA, A.; GARCÉS, L. 2015b. Kinetics of adsorption in mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ing. Univ. 19(2):283-289. TEJADA, C.; VILLABONA, A.; RUIZ, E. 2015c. Cinética de adsorción de Cr (VI) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo. Rev. ION. 28(1):29-41. TORAB-MOSTAEDI, M.; ASADOLLAHZADEH, M.; HEMMATI, A.; KHOSRAVI, A. 2013. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 44(2):295-302. WU, Y.; LUO, H.; WANG, H.; WANG, C.; ZHANG, J.; ZHANG, Z. 2013. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyl trimethyl ammonium bromide. J. Colloid Interface Sci. 394:183-191. https://revistas.udca.edu.co/index.php/ruadc/article/download/71/41 https://revistas.udca.edu.co/index.php/ruadc/article/download/71/1372 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
spellingShingle |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente Tejada Tovar, Candelaria Villabona Ortiz, Ángel Jiménez Villadiego, María Adsorción biomaterial Cromo (VI) tratamiento químico Adsorption biomaterial Chromium (VI) chemical treatment |
title_short |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
title_full |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
title_fullStr |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
title_full_unstemmed |
Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
title_sort |
remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente |
title_eng |
Removing of hexavalent chromium on chemically pretreated cacao waste |
description |
La disponibilidad de recurso hídrico de calidad es un factor de gran interés científico, debido a la gran carga de contaminantes de origen antrópico presente en las fuentes de agua, siendo los metales, de especial atención por la bioacumulación y lamtoxicidad. En el presente artículo, se estudia la adsorción de Cromo hexavalente, usando cáscara de cacao, como material adsorbente, así como dos tratamientos químicos a la misma, con hidróxido de sodio y ácido clorhídrico, evaluando su efecto en la remoción del ión metálico. La medición del metal en solución, se hizo mediante espectroscopia UV-Vis, usando el reactivo difenilcarbazida. Se estudió el efecto del tamaño de partícula en el proceso y el ajuste de la cinética, se hizo con los modelos de primer orden, segundo orden, Elovich y difusión. Se encontró que el modelo que mejor se ajustó a los datos experimentales fue el de Elovich, mientras que la isoterma de Freundlich describe mejor el proceso de adsorción; de este modo, se establece que la superficie catalítica del bioadsorbente es heterogénea, exhibiendo diferentes energías de activación. Además, se observó que la modificación con ácido clorhídrico mejoró la capacidad de adsorción del material.
|
description_eng |
The availability of quality water resources is a factor of great scientific interest because of the high burden of anthropic contaminants in water sources, with particular attention to metals due to their bioaccumulation and toxicity. In this research the adsorption of hexavalent chromium using cocoa shell as adsorbent material, as well as two chemical treatments with sodium hydroxide and hydrochloric acid was studied. The effect of removing this metal-ion was evaluated. Measurement of this metal in aqueous solution was realized by UV-Vis spectroscopy using diphenylcarbazide reagent. The effect of particle size in the process was studied and the adjustment of the kinetics was done with models of first order, second order, Elovich and diffusion It was found that the model with the best fit to the experimental data was Elovich, while Freundlich´s isotherm describes the adsorption process in a better way. Thereby it was established that the catalytic surface of this bioadsorbent is heterogeneous, exhibiting different energies of activation. Furthermore it was observed that the modification with hydrochloric acid improved the adsorption capacity of this material.
|
author |
Tejada Tovar, Candelaria Villabona Ortiz, Ángel Jiménez Villadiego, María |
author_facet |
Tejada Tovar, Candelaria Villabona Ortiz, Ángel Jiménez Villadiego, María |
topicspa_str_mv |
Adsorción biomaterial Cromo (VI) tratamiento químico |
topic |
Adsorción biomaterial Cromo (VI) tratamiento químico Adsorption biomaterial Chromium (VI) chemical treatment |
topic_facet |
Adsorción biomaterial Cromo (VI) tratamiento químico Adsorption biomaterial Chromium (VI) chemical treatment |
citationvolume |
20 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero - Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/71 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ABDOLALI, A.; NGO, H.H.; GUO, W.; ZHOU, J.; DU, B.; WEI, Q.; WANG, X.C.; DAN NGUYEN, P; 2015. Characterization of a multi-metal bindingbiosorbent: Chemical modification and desorption studies. Biores. Technol. 193:477-487. AHMAD, F.; ASHRI, W.; RADZI, R. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by CO2activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies. Chem. Eng. Res. Design. 90(10):1480-1490. ALTUN, T.; PEHLIVAN, E. 2012; Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chemistry. 132:693-700. ALVES, L.V.; GIL, L.F. 2009; Adsorption of Cu (II), Cd(II) and Pb (II) from aqueous single metal solutions by succiny lated twice-mercerized sugarcane bagasse functionalized with tri ethylen etetramine. Water Research. 3(18):4479-4488. AMEL, K.; ABDESLAM, M.; KERROUM, D. 2012. Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia. 19:286-295. ASASIAN, N.; KAGHAZCHI, T.; FARAMARZI, A.; HAKIMI- SIBONI, A.; ASADI-KESHEH, R.; KAVAND, M.; MOHTASHAMI, S. 2014. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. J. Taiwan Inst. Chem. Eng. 45(4):1588-1596. BABEL, T.; KURNIAWAN, A. 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54:951–967. CHEN, G.; FAN, J.; LIU, R.; ZENG, G.; CHEN, A.; ZOU, Z. 2012. Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by Phanerochaete chrysosporium. Environ. Technol. 33(23):2653-2659. CHIENG, H.I.; LIM, L.B.L.; PRIYANTHA, N. 2015. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ. Technol. 36(1):86-97. EL-SHAFEY, E. 2005. Behaviour of reduction–sorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water Air Soil Pollut. 163:81-102. FEIZI, M.; JALALI, M. 2015. Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J. Taiwan Inst. Chem. Eng. 54:125-136. GUO, Z.; FAN, J.; ZHANG, J.; KANG, Y.; LIU, H.; JIANG, L.; ZHANG, C. 2016. Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation. J. Taiwan Inst. Chem. Eng. 58:290-296. HAMZA, I.A.A.; MARTINCIGH, B.S.; NGILA, J.C.; NYAMORI, V.O. 2013. Adsorption studies of aqueous Pb (II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth. 66:157-166. IGWE, J.; ABIA, A. 2006. Sorption Kinetics and Intraparticulate diffusivity of As (III) bioremediation from aqueous solution, using modified and unmodified coconut fiber. Ecl. Quim. Sao Paulo. 31(3): 23-29. INGOLE, N.W.; DHARPAL, S.V. 2012. State of art of biosorption technique for treatment of heavy metals bearing wastes. Int. J. Adv. Eng. Technol. 3(2):143-153. ISLAM, S.; AHMED, K.; RAKNUZZAMAN, M.; AL-MAMUN, H.; ISLAM, M.K. 2015. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological indicators. 48:282-291. ISMAIEL, A.A.; AROUA, M.K.; YUSOFF, R. 2013. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem. Eng. J. 225:306-314. LARGITTE, L.; BRUDEY, T.; TANT, T.; COUESPEL DUMESNIL, P.; LODEWYCKX, P. 2016.Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Micropor. Mesopor. Mat. 219:265-275. LAVADO-MEZA, C.; SUN KOU, M.; RECUAY-ARANA, N. 2012. Remoción de Cr(VI) empleando carbones preparados por activación química a partir de las astillas de eucalipto. Rev. Soc. Quim. 78(1):14-26. LIU, W.; SUN, W.; HANB, Y.; AHMAD, M.; NI, J. 2014. Adsorption of Cu (II) and Cd (II) on titanatena nomaterials synthesis via hydrothermal method under different NaOH concentrations: Role of sodium content. Colloids and Surfaces A: Physicochem. Eng. Aspects.452:138-147. MA, F.; ZHANG, Z.; JIANG, J.; HU, J. 2015. Chromium (VI) potentiates the DNA adducts (O6-methylguanine) formation of N-nitroso dimethyl amine in rat: Implication on carcinogenic risk. Chemosphere. 139:256-259. MÄDLER, S.; SUN, F.; TAT, C.; SUDAKOVA, N.; DROUIN, P.; TOOLEY, R.J.; REINER, E.; SWITZER, T.; DYER, R.; KINGSTON, H.M.S.; PAMUKU, M.; FURDUI, V.I. 2016. Trace-Level Analysis of Hexavalent Chromium in Lake Sediment Samples Using Ion Chromatography Tandem Mass Spectrometry. J. Environ. Prot. 7:422-434. MOMČILOVIĆ, M.; PURENOVIĆ, M.; BOJIĆ, A.; ZARUBICA, A.; RANĐELOVIĆ, M. 2011. Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination. 276:53-59. OMIDVAR, B.; PIRSAHEB, M.; VOSOUGHI, M.; KHOSRAVI, R.; KAKAVANDI, B.; ZARE, M.; ASADI, A. 2016. Batch and column studies for the adsorption of chromium (VI) on low-cost Hibiscus cannabinus kenaf, a green adsorbent. J. Taiwan Institute of Chemical Engineers. 68:80-89. OWALUDE, S.; TELLA, A. 2016. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-suef university journal of basic and applied sciences. 5:377-388. OZDES, D.; GUNDOGDU, A.; KEMER, B.; DURAN, C.; KUCUK, M.; SOYLAK, M. 2014. Assessment of kinetics, thermodynamics and equilibrium parameters of Cr (VI) biosorption onto Pinus brutia Ten. Can. J. Chem. Eng. 92:139-147. SAHA, R.; MUKHERJEE, K.; SAHA, I.; GHOSH, A.; GHOSH, S.; SAHA, B. 2013. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res. Chem. Intermed. 39:2245- 57. SALA, E.; GRANHEN, C.; TAVARES, M. 2005. Biosorption Chromium (III) by Sargassum sp. Biomass. Electron. J. Biotechnol. 5:1-7. TEJADA, C.; QUIÑONEZ, E.; TEJEDA, L.; MARIMÓN, W. 2015a. Absorción de cromo hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis). Producción + Limpia. 10(1):9-21. TEJADA, C.; VILLABONA, A.; GARCÉS, L. 2015b. Kinetics of adsorption in mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ing. Univ. 19(2):283-289. TEJADA, C.; VILLABONA, A.; RUIZ, E. 2015c. Cinética de adsorción de Cr (VI) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo. Rev. ION. 28(1):29-41. TORAB-MOSTAEDI, M.; ASADOLLAHZADEH, M.; HEMMATI, A.; KHOSRAVI, A. 2013. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 44(2):295-302. WU, Y.; LUO, H.; WANG, H.; WANG, C.; ZHANG, J.; ZHANG, Z. 2013. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyl trimethyl ammonium bromide. J. Colloid Interface Sci. 394:183-191. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2017-06-30 |
date_accessioned |
2017-06-30T00:00:00Z |
date_available |
2017-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/71 |
url_doi |
https://doi.org/10.31910/rudca.v20.n1.2017.71 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v20.n1.2017.71 |
citationstartpage |
139 |
citationendpage |
147 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/71/41 |
url3_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/71/1372 |
_version_ |
1811201119527895040 |