Titulo:

Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
.

Sumario:

La presencia de metales pesados, como el plomo (Pb+2), en los cuerpos de agua genera alteraciones sobre la calidad ambiental y la salud pública, debido a su solubilidad y su capacidad de acumulación en la cadena trófica, problemática que se puede incrementar por la acumulación de Eichhornia crassipes, una maleza acuática con alta capacidad invasora, cuya presencia en los ecosistemas acuáticos favorece los procesos de eutrofización y crecimiento de microorganismos patógenos, vectores de enfermedades. Como alternativa para la eliminación de metales pesados y el aprovechamiento de tallos TEC y hojas HEC de E. crassipes, se evaluó la capacidad de adsorción y de eficiencia de remoción de Pb+2 en solución acuosa, de dicha biomasa. Inicialmente, s... Ver más

Guardado en:

0123-4226

2619-2551

20

2017-12-31

435

444

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_400
record_format ojs
spelling Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
Adsorption of lead (II) with stems and leaves of Eichhornia crassipes in aqueous solution
La presencia de metales pesados, como el plomo (Pb+2), en los cuerpos de agua genera alteraciones sobre la calidad ambiental y la salud pública, debido a su solubilidad y su capacidad de acumulación en la cadena trófica, problemática que se puede incrementar por la acumulación de Eichhornia crassipes, una maleza acuática con alta capacidad invasora, cuya presencia en los ecosistemas acuáticos favorece los procesos de eutrofización y crecimiento de microorganismos patógenos, vectores de enfermedades. Como alternativa para la eliminación de metales pesados y el aprovechamiento de tallos TEC y hojas HEC de E. crassipes, se evaluó la capacidad de adsorción y de eficiencia de remoción de Pb+2 en solución acuosa, de dicha biomasa. Inicialmente, se realizaron ensayos batch, para analizar la influencia de la dosis de adsorbente, tiempo de contacto y pH de la solución. Como método de disposición final, se analizó la calcinación, a temperaturas de 700 y 800°C. Los datos experimentales de equilibrio fueron correlacionados, utilizando los modelos de Langmuir y Freundlich. El modelo que mejor se ajustó fue el de Langmuir, con R2 = 0,9816 TEC y R2 = 0,9854 HEC, lográndose una máxima capacidad de adsorción de 172,41mg/g TEC y 131,58mg/g HEC, con 0,2g de biomasa/200mL, pH 5,5 y 3h de contacto. En todos los ensayos, se lograron remociones de Pb+2 superiores al 97%. Los ensayos de calcinación indican que, a temperaturas ≥800°C, es posible estabilizar la biomasa residual, impidiendo que los cationes metálicos removidos sean liberados de la matriz biológica, por efectos de soluciones lixiviantes de bajo pH.
The presence of heavy metals such as lead (Pb+2) in water bodies causes alterations in environmental quality and public health due to their solubility and capacity of accumulation in the food chain. Problems that can be increased by the accumulation of Eichhornia crassipes an aquatic weed with high invasive capacity whose presence in the aquatic ecosystems favors the processes of eutrophication and growth of pathogenic microorganisms vectors of diseases. As an alternative for the removal of heavy metals and the use of TEC stems and HEC leaves of E. crassipes, the adsorption capacity and removal efficiency of Pb+2 in aqueous solution of this biomass were evaluated. Initially batch tests were performed to analyze the influence of the adsorbent dose, contact time and solution pH. As final disposal method, the calcination was analyzed at temperatures of 700 and 800°C. The equilibrium experimental data were correlated using the Langmuir and Freundlich models. The best fit model was the Langmuir model with R2=0.9816 TEC and R2=0.9854 HEC, achieving a maximum adsorption capacity of 172.41mg/g TEC and 131.58mg/g HEC with 0.2 g Of biomass/200mL, pH 5.5 and 3h of contact. Pb+2 removals above 97% were achieved in all tests. Calcination tests indicate that at temperatures ≥800°C it is possible to stabilize the residual biomass by preventing the removed metal cations from being released from the biological matrix by the effects of low pH leaching solutions.
Vizcaíno Mendoza, Lissette
Fuentes Molina, Natalia
González Fragozo, Harold
Biosorción
Buchón de agua
isoterma de Langmuir
isoterma de Freundlich
metales pesados
Biosorption
water buffer
Langmuir isotherms
Freundlich isotherms
heavy metals
20
2
Núm. 2 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
Artículo de revista
Journal article
2017-12-31T00:00:00Z
2017-12-31T00:00:00Z
2017-12-31
application/pdf
text/html
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/400
10.31910/rudca.v20.n2.2017.400
https://doi.org/10.31910/rudca.v20.n2.2017.400
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
435
444
ABDEL-GHANI, N.; EL-CHAGHABY, G. 2014. Biosorption for metal ions removal from aqueous solution: A review of recent studies. Int. J. Latest Res. Scienc. Techn. 3(1):24-42.
ATEHORTÚA, E.; GARTNER, C. 2013. Estudios preliminares de la biomasa seca de Eichhornia crassipes como adsorbente de plomo y cromo en aguas. Rev. Col. Materiales. 4:81-92.
CÁRDENAS, J.; MOCTEZUMA, M.; ACOSTA, I.; MARTÍNEZ, V. 2013. Biosorción de Plomo (II) en solución por diferentes biomasas fungicas. Rev. Latinoam. Recursos Naturales (México). 9(1):57-61.
CHUQUILIN, R.; ROSALES, D. 2016. Estudio de la biosorción de Cd (II) Y Pb (II) usando como adsorbente Nostoc sphaericum Vaucher. Rev. Soc. Quím. Perú. 81(1):49-60.
CUIZANO, N.; NAVARRO, A. 2008. Biosorcion de metales pesados: Posible solución a la contaminacion a bajas concentraciones. An. Quim.(España). 104(2):120-125.
DELGADILLO, A.; GONZALEZ, C.; PRIETO, F.; VILLA-GOMEZ, J.; ACEVEDO, O. 2011. Fitorremediación: una alternativa para eliminar la contaminación. Trop. subtrop. agroecosyt, 14(2): 597-612.
DÍAZ, A.; ARIAS, J.; GELVES, G.; MALDONADO, A.; LAVERDE, D.; PEDRAZA, J.; ESCALANTE, H. 2003. Biosorción de Fe, Al y Mn de drenajes ácidos de mina de carbón empleando algas marinas Sargassum sp. en procesos continuos. Rev. Fac. Ingenieria UdeA. (Colombia). (30):34-48.
GARCÍA, V.; BORJA, N.; GUZMAN, E.; YIPMANTIN, A.; MALDONADO, H. 2013. equilibrio de biosorción de plomo (II) y caracterizacion mediante FT-IR y SEMEDAX en pectina reticulada proveniente de cáscaras de naranja. Rev. Soc. Quím. Perú. 79(3):256-264.
GUO, X.; SHAN, X.; ZHANG, S. 2007. Adsorption of metal ions on lignin. J. Hazardous Materials. 151(1):134-142.
LAVADO, C.; SUN KOU, M.; BENDEZÚ, S. 2010. Adsorción de plomo de efluentes industriales usando carbones activados con H3PO4. Rev. Soc. Quím. Perú. 76(2):165-178. Disponible desde Internet en: http://www.redalyc.org/pdf/3719/371937617008.pdf (con acceso 25/07/2017).
LODEIRO, P.; BARRIADA, J.; HERRERO, R.; SASTRE DE VICENTE, M. 2006. The marine macroalga Cystoseira baccata as biosorbent for caadmium(II) and lead(II) removal: Kinetic and equilibrium studies. Environmental Pollution. 142(2):264-273. Disponible desde Internet en: https://doi.org/10.1016/j.envpol.2005.10.001 (con acceso 25/07/2017).
MALDONADO, A.; LUQUE, C.; URQUIZO, D. 2012. Biosorcion de plomo de aguas contaminadas utilizando Pennisetum clandestinum Hochst (kikuyo). Rev. Latinoam. Metal. Mat (Venezuela). 4:52-57.
MCCABE, W.; SMITH, J.; HARRIOTT, P. 1998. Operaciones Unitarias en ingenieria quimica. (Cuarta edicion ed.). Madrid (España): Mc Graw Hill. 1095p.
MURITHI, G.; ONINDO, C.; WAMBU, E.W.; MUTHAKIAC, G.K. 2014. Removal of Cadmium(II) Ions from Water by Adsorption using Water Hyacinth (Eichhornia crassipes) Biomass. BioResources. 9(2):3613-3631.
NAVARRO, A.; RAMOS, K.; CAMPOS, K.; MALDONADO, H. 2006. Elucidacion del efecto del pH en la adsorción de metales pesados mediante biopolimeros naturales: Cationes divalentes y superficies activas. Rev. Iberoam. Polímeros (País Vasco). 7(2):113-126. Disponible desde Internet en: http://www.reviberpol.iibcaudo.com.ve/pdf/MAY06/navarro.pdf (con acceso 25/07/2017).
ÓRE, F.; LAVADO, C.; BENDEZU, S. 2015. Biosorción de Pb (II) de aguas residuales de mina usando el marlo de maiz (Zea mays). Rev Soc. Quím. Perú. 81(2):122-134.
RAMÍREZ, J.; ENRÍQUEZ, M. 2015. Remoción de plomo (II) usando lignina obtenida a partir del procesamiento del seudotallo de plátano. Acta Agronómica. 64(3):209-213.
RUBIO, C.; GUTIÉRREZ, A.; MARTÍN IZQUIERDO, R.; REVERT, C.; LOZANO, G.; HARDISSON, A. 2004. El plomo como contaminante alimentario. Rev. Toxicología (España). 21:72-80. Disponible desde Internet en: http://www.fmed.uba.ar/depto/toxico1/articulos/7.pdf (con acceso 25/07/2017).
SUN-KOU, M.; OBREGON, D.; PINEDO, A.; PAREDES, A.; AYLAS, J. 2014. Adsorción de metales pesados empleando carbones activados preparados a partir de semillas de aguaje. Rev Soc Quím Perú. 80(4):225-236.
TEJADA, C.; MONTIEL, Z.; ACEVEDO, D. 2016. Aprovechamiento de cáscaras de yuca y ñame para el tratamiento de aguas residuales contaminadas con Pb(II). Inf. tecnol (Chile). 27(1):9-20. Disponible desde Internet en: http://www.scielo.cl/pdf/infotec/v27n1/art03.pdf (con acceso 25/07/2017).
TEJADA, C.; RUIZ, E.; GALLO, J.; MOSCOTE, J. 2015. Evaluación de la biosorción con bagazo de palma africana para la eliminación de Pb(II) en solución. Prospect. (Colombia). 13(1):59-67. Disponible desde Internet en: http://dx.doi.org/10.15665/rp.v13i1.360 (con acceso 25/07/2017).
TELLO, W.; SALVATIERRA, L.; PÉREZ, L. 2015. Evaluación de los mecanismos de eliminación de Pb2+ en sistemas de fitorremediación en lotes operados con Salvinia biloba raddi (acordeón de agua). Energeia. 13(13): 10-17.
VERA, K.; RAMOS, K.; CAMARGO, E.; ANDRADE, C.; NUÑEZ, M.; DELGADO, J.; MORALES, E. 2016. Fitorremediación de aguas residuales con alto contenido de plomo utilizando Typha dominguensis y Canna generalis. Rev. Téc. Ing. Univ. Zulia. 39(2):88-95.
VIZCAINO, L.; FUENTES, N. 2015. Biosorción de Cd, Pb y Zn por biomasa pretratada de algas roja, cáscara de naranja y tuna. Ciencia Ingeniería Neogranadina (Colombia). 25(1):43-60.
https://revistas.udca.edu.co/index.php/ruadc/article/download/400/341
https://revistas.udca.edu.co/index.php/ruadc/article/download/400/1497
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
spellingShingle Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
Vizcaíno Mendoza, Lissette
Fuentes Molina, Natalia
González Fragozo, Harold
Biosorción
Buchón de agua
isoterma de Langmuir
isoterma de Freundlich
metales pesados
Biosorption
water buffer
Langmuir isotherms
Freundlich isotherms
heavy metals
title_short Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
title_full Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
title_fullStr Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
title_full_unstemmed Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes
title_sort adsorción de plomo (ii) en solución acuosa con tallos y hojas de eichhornia crassipes
title_eng Adsorption of lead (II) with stems and leaves of Eichhornia crassipes in aqueous solution
description La presencia de metales pesados, como el plomo (Pb+2), en los cuerpos de agua genera alteraciones sobre la calidad ambiental y la salud pública, debido a su solubilidad y su capacidad de acumulación en la cadena trófica, problemática que se puede incrementar por la acumulación de Eichhornia crassipes, una maleza acuática con alta capacidad invasora, cuya presencia en los ecosistemas acuáticos favorece los procesos de eutrofización y crecimiento de microorganismos patógenos, vectores de enfermedades. Como alternativa para la eliminación de metales pesados y el aprovechamiento de tallos TEC y hojas HEC de E. crassipes, se evaluó la capacidad de adsorción y de eficiencia de remoción de Pb+2 en solución acuosa, de dicha biomasa. Inicialmente, se realizaron ensayos batch, para analizar la influencia de la dosis de adsorbente, tiempo de contacto y pH de la solución. Como método de disposición final, se analizó la calcinación, a temperaturas de 700 y 800°C. Los datos experimentales de equilibrio fueron correlacionados, utilizando los modelos de Langmuir y Freundlich. El modelo que mejor se ajustó fue el de Langmuir, con R2 = 0,9816 TEC y R2 = 0,9854 HEC, lográndose una máxima capacidad de adsorción de 172,41mg/g TEC y 131,58mg/g HEC, con 0,2g de biomasa/200mL, pH 5,5 y 3h de contacto. En todos los ensayos, se lograron remociones de Pb+2 superiores al 97%. Los ensayos de calcinación indican que, a temperaturas ≥800°C, es posible estabilizar la biomasa residual, impidiendo que los cationes metálicos removidos sean liberados de la matriz biológica, por efectos de soluciones lixiviantes de bajo pH.
description_eng The presence of heavy metals such as lead (Pb+2) in water bodies causes alterations in environmental quality and public health due to their solubility and capacity of accumulation in the food chain. Problems that can be increased by the accumulation of Eichhornia crassipes an aquatic weed with high invasive capacity whose presence in the aquatic ecosystems favors the processes of eutrophication and growth of pathogenic microorganisms vectors of diseases. As an alternative for the removal of heavy metals and the use of TEC stems and HEC leaves of E. crassipes, the adsorption capacity and removal efficiency of Pb+2 in aqueous solution of this biomass were evaluated. Initially batch tests were performed to analyze the influence of the adsorbent dose, contact time and solution pH. As final disposal method, the calcination was analyzed at temperatures of 700 and 800°C. The equilibrium experimental data were correlated using the Langmuir and Freundlich models. The best fit model was the Langmuir model with R2=0.9816 TEC and R2=0.9854 HEC, achieving a maximum adsorption capacity of 172.41mg/g TEC and 131.58mg/g HEC with 0.2 g Of biomass/200mL, pH 5.5 and 3h of contact. Pb+2 removals above 97% were achieved in all tests. Calcination tests indicate that at temperatures ≥800°C it is possible to stabilize the residual biomass by preventing the removed metal cations from being released from the biological matrix by the effects of low pH leaching solutions.
author Vizcaíno Mendoza, Lissette
Fuentes Molina, Natalia
González Fragozo, Harold
author_facet Vizcaíno Mendoza, Lissette
Fuentes Molina, Natalia
González Fragozo, Harold
topicspa_str_mv Biosorción
Buchón de agua
isoterma de Langmuir
isoterma de Freundlich
metales pesados
topic Biosorción
Buchón de agua
isoterma de Langmuir
isoterma de Freundlich
metales pesados
Biosorption
water buffer
Langmuir isotherms
Freundlich isotherms
heavy metals
topic_facet Biosorción
Buchón de agua
isoterma de Langmuir
isoterma de Freundlich
metales pesados
Biosorption
water buffer
Langmuir isotherms
Freundlich isotherms
heavy metals
citationvolume 20
citationissue 2
citationedition Núm. 2 , Año 2017 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/400
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references ABDEL-GHANI, N.; EL-CHAGHABY, G. 2014. Biosorption for metal ions removal from aqueous solution: A review of recent studies. Int. J. Latest Res. Scienc. Techn. 3(1):24-42.
ATEHORTÚA, E.; GARTNER, C. 2013. Estudios preliminares de la biomasa seca de Eichhornia crassipes como adsorbente de plomo y cromo en aguas. Rev. Col. Materiales. 4:81-92.
CÁRDENAS, J.; MOCTEZUMA, M.; ACOSTA, I.; MARTÍNEZ, V. 2013. Biosorción de Plomo (II) en solución por diferentes biomasas fungicas. Rev. Latinoam. Recursos Naturales (México). 9(1):57-61.
CHUQUILIN, R.; ROSALES, D. 2016. Estudio de la biosorción de Cd (II) Y Pb (II) usando como adsorbente Nostoc sphaericum Vaucher. Rev. Soc. Quím. Perú. 81(1):49-60.
CUIZANO, N.; NAVARRO, A. 2008. Biosorcion de metales pesados: Posible solución a la contaminacion a bajas concentraciones. An. Quim.(España). 104(2):120-125.
DELGADILLO, A.; GONZALEZ, C.; PRIETO, F.; VILLA-GOMEZ, J.; ACEVEDO, O. 2011. Fitorremediación: una alternativa para eliminar la contaminación. Trop. subtrop. agroecosyt, 14(2): 597-612.
DÍAZ, A.; ARIAS, J.; GELVES, G.; MALDONADO, A.; LAVERDE, D.; PEDRAZA, J.; ESCALANTE, H. 2003. Biosorción de Fe, Al y Mn de drenajes ácidos de mina de carbón empleando algas marinas Sargassum sp. en procesos continuos. Rev. Fac. Ingenieria UdeA. (Colombia). (30):34-48.
GARCÍA, V.; BORJA, N.; GUZMAN, E.; YIPMANTIN, A.; MALDONADO, H. 2013. equilibrio de biosorción de plomo (II) y caracterizacion mediante FT-IR y SEMEDAX en pectina reticulada proveniente de cáscaras de naranja. Rev. Soc. Quím. Perú. 79(3):256-264.
GUO, X.; SHAN, X.; ZHANG, S. 2007. Adsorption of metal ions on lignin. J. Hazardous Materials. 151(1):134-142.
LAVADO, C.; SUN KOU, M.; BENDEZÚ, S. 2010. Adsorción de plomo de efluentes industriales usando carbones activados con H3PO4. Rev. Soc. Quím. Perú. 76(2):165-178. Disponible desde Internet en: http://www.redalyc.org/pdf/3719/371937617008.pdf (con acceso 25/07/2017).
LODEIRO, P.; BARRIADA, J.; HERRERO, R.; SASTRE DE VICENTE, M. 2006. The marine macroalga Cystoseira baccata as biosorbent for caadmium(II) and lead(II) removal: Kinetic and equilibrium studies. Environmental Pollution. 142(2):264-273. Disponible desde Internet en: https://doi.org/10.1016/j.envpol.2005.10.001 (con acceso 25/07/2017).
MALDONADO, A.; LUQUE, C.; URQUIZO, D. 2012. Biosorcion de plomo de aguas contaminadas utilizando Pennisetum clandestinum Hochst (kikuyo). Rev. Latinoam. Metal. Mat (Venezuela). 4:52-57.
MCCABE, W.; SMITH, J.; HARRIOTT, P. 1998. Operaciones Unitarias en ingenieria quimica. (Cuarta edicion ed.). Madrid (España): Mc Graw Hill. 1095p.
MURITHI, G.; ONINDO, C.; WAMBU, E.W.; MUTHAKIAC, G.K. 2014. Removal of Cadmium(II) Ions from Water by Adsorption using Water Hyacinth (Eichhornia crassipes) Biomass. BioResources. 9(2):3613-3631.
NAVARRO, A.; RAMOS, K.; CAMPOS, K.; MALDONADO, H. 2006. Elucidacion del efecto del pH en la adsorción de metales pesados mediante biopolimeros naturales: Cationes divalentes y superficies activas. Rev. Iberoam. Polímeros (País Vasco). 7(2):113-126. Disponible desde Internet en: http://www.reviberpol.iibcaudo.com.ve/pdf/MAY06/navarro.pdf (con acceso 25/07/2017).
ÓRE, F.; LAVADO, C.; BENDEZU, S. 2015. Biosorción de Pb (II) de aguas residuales de mina usando el marlo de maiz (Zea mays). Rev Soc. Quím. Perú. 81(2):122-134.
RAMÍREZ, J.; ENRÍQUEZ, M. 2015. Remoción de plomo (II) usando lignina obtenida a partir del procesamiento del seudotallo de plátano. Acta Agronómica. 64(3):209-213.
RUBIO, C.; GUTIÉRREZ, A.; MARTÍN IZQUIERDO, R.; REVERT, C.; LOZANO, G.; HARDISSON, A. 2004. El plomo como contaminante alimentario. Rev. Toxicología (España). 21:72-80. Disponible desde Internet en: http://www.fmed.uba.ar/depto/toxico1/articulos/7.pdf (con acceso 25/07/2017).
SUN-KOU, M.; OBREGON, D.; PINEDO, A.; PAREDES, A.; AYLAS, J. 2014. Adsorción de metales pesados empleando carbones activados preparados a partir de semillas de aguaje. Rev Soc Quím Perú. 80(4):225-236.
TEJADA, C.; MONTIEL, Z.; ACEVEDO, D. 2016. Aprovechamiento de cáscaras de yuca y ñame para el tratamiento de aguas residuales contaminadas con Pb(II). Inf. tecnol (Chile). 27(1):9-20. Disponible desde Internet en: http://www.scielo.cl/pdf/infotec/v27n1/art03.pdf (con acceso 25/07/2017).
TEJADA, C.; RUIZ, E.; GALLO, J.; MOSCOTE, J. 2015. Evaluación de la biosorción con bagazo de palma africana para la eliminación de Pb(II) en solución. Prospect. (Colombia). 13(1):59-67. Disponible desde Internet en: http://dx.doi.org/10.15665/rp.v13i1.360 (con acceso 25/07/2017).
TELLO, W.; SALVATIERRA, L.; PÉREZ, L. 2015. Evaluación de los mecanismos de eliminación de Pb2+ en sistemas de fitorremediación en lotes operados con Salvinia biloba raddi (acordeón de agua). Energeia. 13(13): 10-17.
VERA, K.; RAMOS, K.; CAMARGO, E.; ANDRADE, C.; NUÑEZ, M.; DELGADO, J.; MORALES, E. 2016. Fitorremediación de aguas residuales con alto contenido de plomo utilizando Typha dominguensis y Canna generalis. Rev. Téc. Ing. Univ. Zulia. 39(2):88-95.
VIZCAINO, L.; FUENTES, N. 2015. Biosorción de Cd, Pb y Zn por biomasa pretratada de algas roja, cáscara de naranja y tuna. Ciencia Ingeniería Neogranadina (Colombia). 25(1):43-60.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2017-12-31
date_accessioned 2017-12-31T00:00:00Z
date_available 2017-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/400
url_doi https://doi.org/10.31910/rudca.v20.n2.2017.400
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v20.n2.2017.400
citationstartpage 435
citationendpage 444
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/400/341
url3_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/400/1497
_version_ 1811201127351320576