Titulo:

Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
.

Sumario:

Las demandas actuales de las industrias hacen necesario recurrir a nuevas herramientas para la generación de desarrollo e innovación tecnológica, por lo cual, se ha identificado la necesidad de implementar tecnologías en la búsqueda de tendencias en el campo de los procesos de modificación de los materiales amiláceos. Este estudio tuvo por objetivo determinar la dinámica de producción científica, por medio de herramientas de innovación, como la vigilancia científica en la modificación de almidones por hidrólisis enzimática, asistida por tecnologías emergentes. Para ello, se realizó un análisis cuantitativo de los resultados, a partir de recopilaciones de datos derivados de bases científicas, reportados en clústeres y mapas de tendencias, co... Ver más

Guardado en:

0123-4226

2619-2551

27

2024-06-30

Nedys Acevedo-Viloria, Manuel Cervera-Ricardo, Jorge Figueroa-Flórez , Jairo Salcedo-Mendoza, Veronica Ramos-Villacob - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_2416
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
spellingShingle Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
Acevedo-Viloria, Nedys
Cervera-Ricardo, Manuel
Figueroa-Flórez , Jorge
Salcedo-Mendoza, Jairo
Ramos-Villacob, Veronica
Agroindustria
Almidón nativo
Desarrollo tecnológico
Enzimólisis
Inteligencia competitiva
Agroindustry
Competitive intelligence
Enzymolysis
Native starch
Technology development
title_short Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
title_full Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
title_fullStr Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
title_full_unstemmed Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
title_sort vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
title_eng Scientific and technological watch on physical-enzymatic modification processes in starch granules
description Las demandas actuales de las industrias hacen necesario recurrir a nuevas herramientas para la generación de desarrollo e innovación tecnológica, por lo cual, se ha identificado la necesidad de implementar tecnologías en la búsqueda de tendencias en el campo de los procesos de modificación de los materiales amiláceos. Este estudio tuvo por objetivo determinar la dinámica de producción científica, por medio de herramientas de innovación, como la vigilancia científica en la modificación de almidones por hidrólisis enzimática, asistida por tecnologías emergentes. Para ello, se realizó un análisis cuantitativo de los resultados, a partir de recopilaciones de datos derivados de bases científicas, reportados en clústeres y mapas de tendencias, con información sobre las principales revistas, autores, línea de tiempo, entidades y áreas de conocimiento en la modificación físico-enzimática del almidón. Esta vigilancia permitió identificar que las investigaciones se están orientando a las modificaciones duales y la aplicación de tecnologías emergentes (campos eléctricos, ultrasonido y microondas), como métodos alternativos en la modificación del almidón de cereales y tubérculos.
description_eng The current demands of the industries make it necessary to resort to new tools for the generation of technological development and innovation, therefore, the need to implement technologies in the search for trends in the field of starch modification processes has been identified. The objective of this study was to determine the dynamics of scientific production by means of innovation tools such as scientific surveillance in starch modification by enzymatic hydrolysis assisted by emerging technologies. For this purpose, a quantitative analysis of the results was carried out based on compilations of data derived from scientific databases reported in clusters and trend maps with information on the main journals, authors, timelines, entities, and areas of knowledge in starch physico-enzymatic modification. This monitoring allowed the identification that research is being oriented to dual modifications and the application of emerging technologies (electric fields, ultrasound, and microwaves) as alternative methods in the modification of cereal and tuber starch.
author Acevedo-Viloria, Nedys
Cervera-Ricardo, Manuel
Figueroa-Flórez , Jorge
Salcedo-Mendoza, Jairo
Ramos-Villacob, Veronica
author_facet Acevedo-Viloria, Nedys
Cervera-Ricardo, Manuel
Figueroa-Flórez , Jorge
Salcedo-Mendoza, Jairo
Ramos-Villacob, Veronica
topicspa_str_mv Agroindustria
Almidón nativo
Desarrollo tecnológico
Enzimólisis
Inteligencia competitiva
topic Agroindustria
Almidón nativo
Desarrollo tecnológico
Enzimólisis
Inteligencia competitiva
Agroindustry
Competitive intelligence
Enzymolysis
Native starch
Technology development
topic_facet Agroindustria
Almidón nativo
Desarrollo tecnológico
Enzimólisis
Inteligencia competitiva
Agroindustry
Competitive intelligence
Enzymolysis
Native starch
Technology development
citationvolume 27
citationissue 1
citationedition Núm. 1 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/2416
language spa
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Nedys Acevedo-Viloria, Manuel Cervera-Ricardo, Jorge Figueroa-Flórez , Jairo Salcedo-Mendoza, Veronica Ramos-Villacob - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references AMINI, A.M.; RAZAVI, S.M.A.; MORTAZAVI, S.A. 2015. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers. 122:282-292. https://doi.org/10.1016/j.carbpol.2015.01.020 ANDRADE, J.M.; RAMÍREZ PLAZAS, E.; QUINTERO, A. 2017. Vigilancia tecnológica del sector agroindustrial. Entornos. 30(2):23-35. https://doi.org/10.25054/01247905.1404 ARROYO-DAGOBETH, E.D.; FIGUEROA-FLOREZ, J.A.; CADENA-CHAMORRO, E.; RODRIGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CERVERA-RICARDO, M.A. 2023. Structural, physicochemical, and psating properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana. 41(3):1-12. https://doi.org/10.15446/agron.colomb.v41n3.110111 BAI, T.G.; ZHANG, L.; QIAN, J.Y.; JIANG, W.; WU, M.; RAO, S.Q.; LI, Q.; ZHANG, C.; WU, C. 2021. Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT. 13:110650. https://doi.org/10.1016/j.lwt.2020.110650 BARUA, S.; TUDU, K.; RAKSHIT, M.; SRIVASTAV, P.P.; 2021. Characterization and digestogram modeling of modified elephant foot yam (Amorphophallus paeoniifolius) starch using ultrasonic pretreated autoclaving. Journal of Food Process Engineering. 44(11):e13841. https://doi.org/10.1111/JFPE.13841 CAO, M.; GAO, Q. 2020. Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules. 150:637-643. https://doi.org/10.1016/j.ijbiomac.2020.02.008 CHAKRABORTY, I.; GOVINDARAJU, I.; RONGPIPI, S.; MAHATO, K.K.; MAZUMDER, N. 2021. Effects of hydrothermal treatments on physicochemical properties and in vitro digestion of starch. Food Biophysics. 16(4):544-554. https://doi.org/10.1007/S11483-021-09687-7/TABLES/5 CHANG, R.; LU, H.; BIAN, X.; TIAN, Y.; JIN, Z. 2021. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids. 110:106141. https://doi.org/10.1016/j.foodhyd.2020.106141 CHEN, B.R.; WANG, Z.M.; LIN, J.W.; WEN, Q.H.; XU, F.Y.; LI, J.; WANG, R.; ZENG, X.A. 2022. Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids. 129:107655. https://doi.org/10.1016/j.foodhyd.2022.107655 CHI, C.; YANG, Y.; LI, S.; SHEN, X.; WANG, M.; ZHANG, Y.; ZHENG, X.; WENG, L. 2023. Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment. International Journal of Biological Macromolecules. 240:124297. https://doi.org/10.1016/j.ijbiomac.2023.124297 DUDU, O.E.; OYEDEJI, A.B.; OYEYINKA, S.A.; MA, Y. 2019. Impact of steam-heat-moisture treatment on structural and functional properties of cassava flour and starch. International Journal of Biological Macromolecules. 126:1056-1064. https://doi.org/10.1016/j.ijbiomac.2018.12.210 DUYEN, T.T.M.; HUONG, N.T.M.; PHI, N.T.L.; VAN HUNG, P. 2020. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. International Journal of Biological Macromolecules. 164:651-658. https://doi.org/10.1016/j.ijbiomac.2020.07.187 FIGUEROA-FLÓREZ, J.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H. 2023a. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon. 9(7). https://doi.org/10.1016/j.heliyon.2023.e17742 FIGUEROA-FLÓREZ, J.A.; ARROYO-DAGOBETH, E.D.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CIRO-VELÁSQUEZ, H.J. 2023b. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana. 41(1):1-11. https://doi.org/10.15446/agron.colomb.v41n1.105089 FIGUEROA-FLÓREZ, J.A.; CADENA-CHAMORRO, E.M.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H.J. 2019. Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA (Colombia). 86(208):162-170. https://doi.org/10.15446/dyna.v86n208.72976 GUO, L.; LI, J.; GUI, Y.; ZHU, Y.; YU, B.; TAN, C.; FANG, Y.; CUI, B. 2020. Porous starches modified with double enzymes: Structure and adsorption properties. International Journal of Biological Macromolecules. 164:1758-1765. https://doi.org/10.1016/j.ijbiomac.2020.07.323 GUO, L.; LI, H.; LU, L.; ZOU, F.; TAO, H.; CUI, B. 2019. The role of sequential enzyme treatments on structural and physicochemical properties of cassava starch granules. Starch/Stärke. 71(7-8):1800258. https://doi.org/10.1002/star.201800258 HAN, Z.; HAN, Y.; WANG, J.; LIU, Z.; BUCKOW, R.; CHENG, J. 2020. Effects of pulsed electric field treatment on the preparation and physicochemical properties of porous corn starch derived from enzymolysis. Journal of Food Processing and Preservation. 44(3):e14353. https://doi.org/10.1111/jfpp.14353 HENNING, F.G.; SCHNITZLER, E.; DEMIATE, I.M.; LACERDA, L.G.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A. 2019. Fortified rice starches: The role of hydrothermal treatments in zinc entrapment. Starch – Stärke. 71(1-2):1800130. https://doi.org/10.1002/STAR.201800130 HONG, J.; AN, D.; ZENG, X.A.; HAN, Z.; ZHENG, X.; CAI, M.; BIAN, K.; AADIL, R.M. 2020. Behaviors of large A-type and small B-type wheat starch granules esterified by conventional and pulsed electric fields assisted methods. International Journal of Biological Macromolecules. 155:516-523. https://doi.org/10.1016/j.ijbiomac.2020.03.184 HU, A.; LI, Y.; ZHENG, J. 2019. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt. 106(29):254-262. https://doi.org/10.1016/j.lwt.2019.02.040 KLEIN, B.; PINTO, V Z.; VANIER, N.L.; ZAVAREZE, E.D.R.; COLUSSI, R.; DO EVANGELHO, J.A.; GUTKOSKI, L.C.; DIAS, A.R.G. 2013. Effect of single and dual heat-moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers. 98(2):1578-1584. https://doi.org/10.1016/j.carbpol.2013.07.036 LI, D.; HUANG, Y.; TAO, Y.; XU, E.; ZHANG, R.; HAN, Y. 2020a. Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Research International. 137:09707. https://doi.org/10.1016/J.FOODRES.2020.109707 LI, D.; JIANG, L.; HAN, Y.; TAO, Y.; HOU, V.; DENG, J.; LI, M.; YANG, N.; XU, X. 2020b. Method for preparing porous starch by using alternating electric field (China. Patent No. CN110734569B). Nanjing Agricultural University. https://app.patentinspiration.com/#report/89C245B876e7/filter/patents/CN110734569A?inventor=5784482%2C4916522 LI, D.; JIANG, L.; TAO, Y.; YANG, N.; HAN, Y. 2021a. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field. LWT. 143:111190. https://doi.org/10.1016/J.LWT.2021.111190 LI, D.; TAO, Y.; SHI, Y.; WU, Z.; XU, E.; CUI, B.; HAN, Y. 2021b. Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lwt. 137:110449. https://doi.org/10.1016/j.lwt.2020.110449 LI, D.; WU, Z.; WANG, P.; XU, E.; CUI, B.; HAN, Y.; TAO, Y. 2022. Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocolloids. 122:107120. https://doi.org/10.1016/j.foodhyd.2021.107120 LI, Y.; HU, A.; ZHENG, J.; WANG, X. 2019. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. International Journal of Biological Macromolecules, 141:76-84. https://doi.org/10.1016/j.ijbiomac.2019.08.218 MANIGLIA, B.C.; CASTANHA, N.; ROJAS, M.L.; AUGUSTO, P.E. 2021a. Emerging technologies to enhance starch performance. Current Opinion in Food Science. 37:26-36. https://doi.org/10.1016/j.cofs.2020.09.003 MANIGLIA, B.C.; PATARO, G.; FERRARI, G.; AUGUSTO, P.E.D.; LE-BAIL, P.; LE-BAIL, A. 2021b. Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: Effect on structure, properties, and functionality of wheat and cassava starches. Innovative Food Science and Emerging Technologies. 68:102602. https://doi.org/10.1016/j.ifset.2021.102602 MARTINS, A.; BENINCA, C.; BET, C.D.; BISINELLA, R.Z.B.; DE OLIVEIRA, C.S.; HORNUNG, P.S.; SCHNITZLER, E. 2020. Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry. 142(2):819-828. https://doi.org/10.1007/S10973-020-09298-3 OCHOA-MARTÍNEZ, L.A.; LUNA-SOLÍS, H.A.; BERMÚDEZ-QUIÑONES, G. 2021. Almidón de camote: Modificaciones enzimáticas, físicas y químicas: Una revisión. Tecnociencia Chihuahua. 15(3):221-233. https://doi.org/10.54167/tecnociencia.v15i3.854 OLAYO-CONTRERAS, V.M.; ALEMÁN-CASTILLO, S.J.; RODRÍGUEZ-CASTILLEJOS, G.; CASTILLO-RUIZ, O. 2022. Almidón resistente como prebiótico y sus beneficios en el organismo humano. TIP Revista Especializada en Ciencias Químico-Biológicas. 24:1-7. https://doi.org/10.22201/fesz.23958723e.2021.406 ORJUELA-GARZÓN, W.A.; ARAQUE E.W.A.; CABRERA P.R.A. 2020. Identificación de tecnologías y métodos para la detección temprana del Huanglongbing (HLB) a través de cienciometría en artículos científicos y patentes. Ciencia & Tecnología Agropecuaria. 21(2):1-24. https://doi.org/10.21930/rcta.vol21_num2_art:1208 PANG, L.; LU, G.; CHENG, J.; LU, X.; MA, D.; LI, Q.; LI, Z.; ZHENG, J.; ZHANG, C.; PAN, S. 2021. Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology. 180:111619. https://doi.org/10.1016/J.POSTHARVBIO.2021.111619 RAHAMAN, A.; KUMARI, A.; ZENG, XIN-AN.; FAROOQ, A.M.; SIDDIQUE, R.; KHALIFA, I.; SIDDEEG, A.; ALI, M.; MANZOOR, M.F. 2021. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry. 80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795 REN, X.; LIANG, Q.; MA, H.; YANG, X.; CHEN, X.; TANG, J.; LIU Y. 2021. Method for preparing arrowhead resistant starch by ultrasound synergistic pullulanase (China. Patent No. WO2021114694A1). Universidad Jiangsu. https://patents.google.com/patent/WO2021114694A1/en?oq=WO2021114694A1 ROSTAMABADI, H.; ROHIT, T.; KARACA, A.; NOWACKA, M.; COLUSSI, R.; FEKSA S.; AALIYA, B.; VALIYAPEEDIYEKKAL, K.; REZA, S. 2022. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science & Technology. 128(1):217-237. https://doi.org/10.1016/j.tifs.2022.08.009 SALCEDO-MENDOZA, J.; PATERNINA-URZOLA, S.; LUJAN-RHENALS, D.; FIGUEROA-FLÓREZ, J. 2018. Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA (Colombia). 85(204):223-230. https://doi.org/10.15446/dyna.v85n204.66620 SOTO, I.L.; LUJAN, R.D.; SALCEDO, J.; TORRES, R. 2018. Evaluation of physical, physico-chemical and sensorial properties of cottage diabolines and diabolines obtained under standard conditions of process. Advance Journal of Food Science and Technology. 16:5965. https://doi.org/10.19026/ajfst.16.5965 THOMAZ, L.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A.; DEMIATE, I.M.; BET, C.D.; MARINHO, M.T.; SCHNITZLER, E.; LACERDA, L.G. 2020. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L.) starch. Journal of Thermal Analysis and Calorimetry. 139(5):312-3132. https://doi.org/10.1007/S10973-019-08728-1 VELASCO, R.J.; LUNA, W.A.; MERA, J.A.; VILLADA, H.S. 2008. Producción de dextrinas a partir de almidón nativo de yuca por ruta seca en una agroindustria rural. Información Tecnológica. 19(2):15-22. http://dx.doi.org/10.4067/S0718-07642008000200003 VILLARROEL, P.; GÓMEZ, C.; VERA, C.; TORRES, J. 2018. Almidón resistente: características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición. 45:8. https://doi.org/10.4067/s0717-75182018000400271 WANG, D.; HOU, F.; MA, X.; CHEN, W.; YAN, L.; DING, T.; YE, X.; LIU, D. 2020. Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. International Journal of Biological Macromolecules. 148:493-500. https://doi.org/10.1016/j.ijbiomac.2020.01.064 WANG, L.; WANG, M.; ZHOU, Y.; WU, Y.; OUYANG, J. 2022. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry. 377:131990. https://doi.org/10.1016/j.foodchem.2021.131990 XIE, Y.; LI, M.N.; CHEN, H.Q.; ZHANG, B. 2019. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry. 274:351-359. https://doi.org/10.1016/j.foodchem.2018.09.034 YANG, W.; KONG, X.; ZHENG, Y.; SUN, W.; CHEN, S.; LIU, D.; ZHANG, H.; FANG, H.; TIAN, J.; YE, X. 2019. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry. 59:104709. https://doi.org/10.1016/J.ULTSONCH.2019.104709 YILMAZ, A.; TUGRUL, N. 2023. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. Ultrasonics Sonochemistry. 98:106516. https://doi.org/10.1016/j.ultsonch.2023.106516 YU, B.; LI, J.; TAO, H.; ZHAO, H.; LIU, P.; CUI, B. 2021. Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. International Journal of Biological Macromolecules. 176:177-185. https://doi.org/10.1016/j.ijbiomac.2021.02.064 ZHANG, K.; ZHAO, D.; GUO, D.; TONG, X.; ZHANG, Y.; WANG, L. 2021. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. International Journal of Biological Macromolecules. 183:481-489. https://doi.org/10.1016/J.IJBIOMAC.2021.04.180
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-06-30
date_accessioned 2024-06-30T00:00:00Z
date_available 2024-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/2416
url_doi https://doi.org/10.31910/rudca.v27.n1.2024.2416
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v27.n1.2024.2416
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2416/2983
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2416/2986
_version_ 1811201191996030976
spelling Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón
Scientific and technological watch on physical-enzymatic modification processes in starch granules
Las demandas actuales de las industrias hacen necesario recurrir a nuevas herramientas para la generación de desarrollo e innovación tecnológica, por lo cual, se ha identificado la necesidad de implementar tecnologías en la búsqueda de tendencias en el campo de los procesos de modificación de los materiales amiláceos. Este estudio tuvo por objetivo determinar la dinámica de producción científica, por medio de herramientas de innovación, como la vigilancia científica en la modificación de almidones por hidrólisis enzimática, asistida por tecnologías emergentes. Para ello, se realizó un análisis cuantitativo de los resultados, a partir de recopilaciones de datos derivados de bases científicas, reportados en clústeres y mapas de tendencias, con información sobre las principales revistas, autores, línea de tiempo, entidades y áreas de conocimiento en la modificación físico-enzimática del almidón. Esta vigilancia permitió identificar que las investigaciones se están orientando a las modificaciones duales y la aplicación de tecnologías emergentes (campos eléctricos, ultrasonido y microondas), como métodos alternativos en la modificación del almidón de cereales y tubérculos.
The current demands of the industries make it necessary to resort to new tools for the generation of technological development and innovation, therefore, the need to implement technologies in the search for trends in the field of starch modification processes has been identified. The objective of this study was to determine the dynamics of scientific production by means of innovation tools such as scientific surveillance in starch modification by enzymatic hydrolysis assisted by emerging technologies. For this purpose, a quantitative analysis of the results was carried out based on compilations of data derived from scientific databases reported in clusters and trend maps with information on the main journals, authors, timelines, entities, and areas of knowledge in starch physico-enzymatic modification. This monitoring allowed the identification that research is being oriented to dual modifications and the application of emerging technologies (electric fields, ultrasound, and microwaves) as alternative methods in the modification of cereal and tuber starch.
Acevedo-Viloria, Nedys
Cervera-Ricardo, Manuel
Figueroa-Flórez , Jorge
Salcedo-Mendoza, Jairo
Ramos-Villacob, Veronica
Agroindustria
Almidón nativo
Desarrollo tecnológico
Enzimólisis
Inteligencia competitiva
Agroindustry
Competitive intelligence
Enzymolysis
Native starch
Technology development
27
1
Núm. 1 , Año 2024 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
Artículo de revista
Journal article
2024-06-30T00:00:00Z
2024-06-30T00:00:00Z
2024-06-30
text/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/2416
10.31910/rudca.v27.n1.2024.2416
https://doi.org/10.31910/rudca.v27.n1.2024.2416
spa
http://creativecommons.org/licenses/by-nc/4.0
Nedys Acevedo-Viloria, Manuel Cervera-Ricardo, Jorge Figueroa-Flórez , Jairo Salcedo-Mendoza, Veronica Ramos-Villacob - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
AMINI, A.M.; RAZAVI, S.M.A.; MORTAZAVI, S.A. 2015. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers. 122:282-292. https://doi.org/10.1016/j.carbpol.2015.01.020 ANDRADE, J.M.; RAMÍREZ PLAZAS, E.; QUINTERO, A. 2017. Vigilancia tecnológica del sector agroindustrial. Entornos. 30(2):23-35. https://doi.org/10.25054/01247905.1404 ARROYO-DAGOBETH, E.D.; FIGUEROA-FLOREZ, J.A.; CADENA-CHAMORRO, E.; RODRIGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CERVERA-RICARDO, M.A. 2023. Structural, physicochemical, and psating properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana. 41(3):1-12. https://doi.org/10.15446/agron.colomb.v41n3.110111 BAI, T.G.; ZHANG, L.; QIAN, J.Y.; JIANG, W.; WU, M.; RAO, S.Q.; LI, Q.; ZHANG, C.; WU, C. 2021. Pulsed electric field pretreatment modifying digestion, texture, structure and flavor of rice. LWT. 13:110650. https://doi.org/10.1016/j.lwt.2020.110650 BARUA, S.; TUDU, K.; RAKSHIT, M.; SRIVASTAV, P.P.; 2021. Characterization and digestogram modeling of modified elephant foot yam (Amorphophallus paeoniifolius) starch using ultrasonic pretreated autoclaving. Journal of Food Process Engineering. 44(11):e13841. https://doi.org/10.1111/JFPE.13841 CAO, M.; GAO, Q. 2020. Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules. 150:637-643. https://doi.org/10.1016/j.ijbiomac.2020.02.008 CHAKRABORTY, I.; GOVINDARAJU, I.; RONGPIPI, S.; MAHATO, K.K.; MAZUMDER, N. 2021. Effects of hydrothermal treatments on physicochemical properties and in vitro digestion of starch. Food Biophysics. 16(4):544-554. https://doi.org/10.1007/S11483-021-09687-7/TABLES/5 CHANG, R.; LU, H.; BIAN, X.; TIAN, Y.; JIN, Z. 2021. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids. 110:106141. https://doi.org/10.1016/j.foodhyd.2020.106141 CHEN, B.R.; WANG, Z.M.; LIN, J.W.; WEN, Q.H.; XU, F.Y.; LI, J.; WANG, R.; ZENG, X.A. 2022. Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocolloids. 129:107655. https://doi.org/10.1016/j.foodhyd.2022.107655 CHI, C.; YANG, Y.; LI, S.; SHEN, X.; WANG, M.; ZHANG, Y.; ZHENG, X.; WENG, L. 2023. Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment. International Journal of Biological Macromolecules. 240:124297. https://doi.org/10.1016/j.ijbiomac.2023.124297 DUDU, O.E.; OYEDEJI, A.B.; OYEYINKA, S.A.; MA, Y. 2019. Impact of steam-heat-moisture treatment on structural and functional properties of cassava flour and starch. International Journal of Biological Macromolecules. 126:1056-1064. https://doi.org/10.1016/j.ijbiomac.2018.12.210 DUYEN, T.T.M.; HUONG, N.T.M.; PHI, N.T.L.; VAN HUNG, P. 2020. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. International Journal of Biological Macromolecules. 164:651-658. https://doi.org/10.1016/j.ijbiomac.2020.07.187 FIGUEROA-FLÓREZ, J.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H. 2023a. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon. 9(7). https://doi.org/10.1016/j.heliyon.2023.e17742 FIGUEROA-FLÓREZ, J.A.; ARROYO-DAGOBETH, E.D.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.G.; CIRO-VELÁSQUEZ, H.J. 2023b. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana. 41(1):1-11. https://doi.org/10.15446/agron.colomb.v41n1.105089 FIGUEROA-FLÓREZ, J.A.; CADENA-CHAMORRO, E.M.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J.; CIRO-VELÁSQUEZ, H.J. 2019. Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA (Colombia). 86(208):162-170. https://doi.org/10.15446/dyna.v86n208.72976 GUO, L.; LI, J.; GUI, Y.; ZHU, Y.; YU, B.; TAN, C.; FANG, Y.; CUI, B. 2020. Porous starches modified with double enzymes: Structure and adsorption properties. International Journal of Biological Macromolecules. 164:1758-1765. https://doi.org/10.1016/j.ijbiomac.2020.07.323 GUO, L.; LI, H.; LU, L.; ZOU, F.; TAO, H.; CUI, B. 2019. The role of sequential enzyme treatments on structural and physicochemical properties of cassava starch granules. Starch/Stärke. 71(7-8):1800258. https://doi.org/10.1002/star.201800258 HAN, Z.; HAN, Y.; WANG, J.; LIU, Z.; BUCKOW, R.; CHENG, J. 2020. Effects of pulsed electric field treatment on the preparation and physicochemical properties of porous corn starch derived from enzymolysis. Journal of Food Processing and Preservation. 44(3):e14353. https://doi.org/10.1111/jfpp.14353 HENNING, F.G.; SCHNITZLER, E.; DEMIATE, I.M.; LACERDA, L.G.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A. 2019. Fortified rice starches: The role of hydrothermal treatments in zinc entrapment. Starch – Stärke. 71(1-2):1800130. https://doi.org/10.1002/STAR.201800130 HONG, J.; AN, D.; ZENG, X.A.; HAN, Z.; ZHENG, X.; CAI, M.; BIAN, K.; AADIL, R.M. 2020. Behaviors of large A-type and small B-type wheat starch granules esterified by conventional and pulsed electric fields assisted methods. International Journal of Biological Macromolecules. 155:516-523. https://doi.org/10.1016/j.ijbiomac.2020.03.184 HU, A.; LI, Y.; ZHENG, J. 2019. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt. 106(29):254-262. https://doi.org/10.1016/j.lwt.2019.02.040 KLEIN, B.; PINTO, V Z.; VANIER, N.L.; ZAVAREZE, E.D.R.; COLUSSI, R.; DO EVANGELHO, J.A.; GUTKOSKI, L.C.; DIAS, A.R.G. 2013. Effect of single and dual heat-moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers. 98(2):1578-1584. https://doi.org/10.1016/j.carbpol.2013.07.036 LI, D.; HUANG, Y.; TAO, Y.; XU, E.; ZHANG, R.; HAN, Y. 2020a. Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Research International. 137:09707. https://doi.org/10.1016/J.FOODRES.2020.109707 LI, D.; JIANG, L.; HAN, Y.; TAO, Y.; HOU, V.; DENG, J.; LI, M.; YANG, N.; XU, X. 2020b. Method for preparing porous starch by using alternating electric field (China. Patent No. CN110734569B). Nanjing Agricultural University. https://app.patentinspiration.com/#report/89C245B876e7/filter/patents/CN110734569A?inventor=5784482%2C4916522 LI, D.; JIANG, L.; TAO, Y.; YANG, N.; HAN, Y. 2021a. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field. LWT. 143:111190. https://doi.org/10.1016/J.LWT.2021.111190 LI, D.; TAO, Y.; SHI, Y.; WU, Z.; XU, E.; CUI, B.; HAN, Y. 2021b. Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lwt. 137:110449. https://doi.org/10.1016/j.lwt.2020.110449 LI, D.; WU, Z.; WANG, P.; XU, E.; CUI, B.; HAN, Y.; TAO, Y. 2022. Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocolloids. 122:107120. https://doi.org/10.1016/j.foodhyd.2021.107120 LI, Y.; HU, A.; ZHENG, J.; WANG, X. 2019. Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. International Journal of Biological Macromolecules, 141:76-84. https://doi.org/10.1016/j.ijbiomac.2019.08.218 MANIGLIA, B.C.; CASTANHA, N.; ROJAS, M.L.; AUGUSTO, P.E. 2021a. Emerging technologies to enhance starch performance. Current Opinion in Food Science. 37:26-36. https://doi.org/10.1016/j.cofs.2020.09.003 MANIGLIA, B.C.; PATARO, G.; FERRARI, G.; AUGUSTO, P.E.D.; LE-BAIL, P.; LE-BAIL, A. 2021b. Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: Effect on structure, properties, and functionality of wheat and cassava starches. Innovative Food Science and Emerging Technologies. 68:102602. https://doi.org/10.1016/j.ifset.2021.102602 MARTINS, A.; BENINCA, C.; BET, C.D.; BISINELLA, R.Z.B.; DE OLIVEIRA, C.S.; HORNUNG, P.S.; SCHNITZLER, E. 2020. Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry. 142(2):819-828. https://doi.org/10.1007/S10973-020-09298-3 OCHOA-MARTÍNEZ, L.A.; LUNA-SOLÍS, H.A.; BERMÚDEZ-QUIÑONES, G. 2021. Almidón de camote: Modificaciones enzimáticas, físicas y químicas: Una revisión. Tecnociencia Chihuahua. 15(3):221-233. https://doi.org/10.54167/tecnociencia.v15i3.854 OLAYO-CONTRERAS, V.M.; ALEMÁN-CASTILLO, S.J.; RODRÍGUEZ-CASTILLEJOS, G.; CASTILLO-RUIZ, O. 2022. Almidón resistente como prebiótico y sus beneficios en el organismo humano. TIP Revista Especializada en Ciencias Químico-Biológicas. 24:1-7. https://doi.org/10.22201/fesz.23958723e.2021.406 ORJUELA-GARZÓN, W.A.; ARAQUE E.W.A.; CABRERA P.R.A. 2020. Identificación de tecnologías y métodos para la detección temprana del Huanglongbing (HLB) a través de cienciometría en artículos científicos y patentes. Ciencia & Tecnología Agropecuaria. 21(2):1-24. https://doi.org/10.21930/rcta.vol21_num2_art:1208 PANG, L.; LU, G.; CHENG, J.; LU, X.; MA, D.; LI, Q.; LI, Z.; ZHENG, J.; ZHANG, C.; PAN, S. 2021. Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology. 180:111619. https://doi.org/10.1016/J.POSTHARVBIO.2021.111619 RAHAMAN, A.; KUMARI, A.; ZENG, XIN-AN.; FAROOQ, A.M.; SIDDIQUE, R.; KHALIFA, I.; SIDDEEG, A.; ALI, M.; MANZOOR, M.F. 2021. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry. 80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795 REN, X.; LIANG, Q.; MA, H.; YANG, X.; CHEN, X.; TANG, J.; LIU Y. 2021. Method for preparing arrowhead resistant starch by ultrasound synergistic pullulanase (China. Patent No. WO2021114694A1). Universidad Jiangsu. https://patents.google.com/patent/WO2021114694A1/en?oq=WO2021114694A1 ROSTAMABADI, H.; ROHIT, T.; KARACA, A.; NOWACKA, M.; COLUSSI, R.; FEKSA S.; AALIYA, B.; VALIYAPEEDIYEKKAL, K.; REZA, S. 2022. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science & Technology. 128(1):217-237. https://doi.org/10.1016/j.tifs.2022.08.009 SALCEDO-MENDOZA, J.; PATERNINA-URZOLA, S.; LUJAN-RHENALS, D.; FIGUEROA-FLÓREZ, J. 2018. Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA (Colombia). 85(204):223-230. https://doi.org/10.15446/dyna.v85n204.66620 SOTO, I.L.; LUJAN, R.D.; SALCEDO, J.; TORRES, R. 2018. Evaluation of physical, physico-chemical and sensorial properties of cottage diabolines and diabolines obtained under standard conditions of process. Advance Journal of Food Science and Technology. 16:5965. https://doi.org/10.19026/ajfst.16.5965 THOMAZ, L.; ITO, V.C.; MALUCELLI, L.C.; DA SILVA CARVALHO FILHO, M.A.; DEMIATE, I.M.; BET, C.D.; MARINHO, M.T.; SCHNITZLER, E.; LACERDA, L.G. 2020. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L.) starch. Journal of Thermal Analysis and Calorimetry. 139(5):312-3132. https://doi.org/10.1007/S10973-019-08728-1 VELASCO, R.J.; LUNA, W.A.; MERA, J.A.; VILLADA, H.S. 2008. Producción de dextrinas a partir de almidón nativo de yuca por ruta seca en una agroindustria rural. Información Tecnológica. 19(2):15-22. http://dx.doi.org/10.4067/S0718-07642008000200003 VILLARROEL, P.; GÓMEZ, C.; VERA, C.; TORRES, J. 2018. Almidón resistente: características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición. 45:8. https://doi.org/10.4067/s0717-75182018000400271 WANG, D.; HOU, F.; MA, X.; CHEN, W.; YAN, L.; DING, T.; YE, X.; LIU, D. 2020. Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. International Journal of Biological Macromolecules. 148:493-500. https://doi.org/10.1016/j.ijbiomac.2020.01.064 WANG, L.; WANG, M.; ZHOU, Y.; WU, Y.; OUYANG, J. 2022. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry. 377:131990. https://doi.org/10.1016/j.foodchem.2021.131990 XIE, Y.; LI, M.N.; CHEN, H.Q.; ZHANG, B. 2019. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry. 274:351-359. https://doi.org/10.1016/j.foodchem.2018.09.034 YANG, W.; KONG, X.; ZHENG, Y.; SUN, W.; CHEN, S.; LIU, D.; ZHANG, H.; FANG, H.; TIAN, J.; YE, X. 2019. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry. 59:104709. https://doi.org/10.1016/J.ULTSONCH.2019.104709 YILMAZ, A.; TUGRUL, N. 2023. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. Ultrasonics Sonochemistry. 98:106516. https://doi.org/10.1016/j.ultsonch.2023.106516 YU, B.; LI, J.; TAO, H.; ZHAO, H.; LIU, P.; CUI, B. 2021. Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. International Journal of Biological Macromolecules. 176:177-185. https://doi.org/10.1016/j.ijbiomac.2021.02.064 ZHANG, K.; ZHAO, D.; GUO, D.; TONG, X.; ZHANG, Y.; WANG, L. 2021. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. International Journal of Biological Macromolecules. 183:481-489. https://doi.org/10.1016/J.IJBIOMAC.2021.04.180
https://revistas.udca.edu.co/index.php/ruadc/article/download/2416/2983
https://revistas.udca.edu.co/index.php/ruadc/article/download/2416/2986
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication