Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable
.
Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %.... Ver más
0123-4226
2619-2551
26
2023-12-31
Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_2398 |
---|---|
record_format |
ojs |
spelling |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable Structural, thermal and morphological characterization of Crescentia cujete (totumo) with potential use as biodegradable polymer Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %. Se determinó que la estabilidad térmica de este material alcanza los 175 °C, con la pérdida de humedad, siendo la única observación hasta esta temperatura. Se confirmó la presencia de hemicelulosa y celulosa a temperaturas superiores y su posterior descomposición. El estudio de biodegradabilidad indicó la presencia de un ataque microbiano a las 72 horas de monitoreo, evidenciado por la aparición de un hongo en la superficie del material, lo que causó cambios en la emisión de dióxido de carbono y monóxido de carbono. Después de 200 horas se observó una disminución del volumen del hongo, lo que sugiere que este se propagó al interior del material, dando origen puntos negros de descomposición en la superficie de las muestras. Así, el totumo se podría considerar como una alternativa de material lignocelulósico, para la preparación de materiales poliméricos biodegradables. Currently, it is recognized that plastics derived from petrochemicals are one of the biggest social and environmental problems due to their excessive use and difficulty in decomposition, which has increased the concern to find alternatives to these materials. This study characterizes the fruit of Crescentia cujete (calabash tree) as a biodegradable polymer through DRX, FTIR, DSC, TGA, and qualitative biodegradability analysis. The structural characterization revealed a semi-crystalline material composed mainly of type I cellulose, with a crystallinity of 29 %. The material's thermal stability was determined to be up to 175 °C, with moisture loss being the only observation at this temperature. The presence of hemicellulose and cellulose at higher temperatures and their subsequent decomposition were confirmed. The biodegradability study indicated the presence of microbial attack at 72 hours of monitoring, evidenced by the appearance of a fungus on the material surface, causing changes in CO2 and CO emissions. After 200 hours, a decrease in the volume of the fungus was observed, suggesting that it spread inside the material, giving rise to black spots of decomposition on the surface of the samples. Thus, calabash tree could be considered as an alternative lignocellulosic material for the preparation of biodegradable polymeric materials. Sánchez-Aguilar, Raúl Fernando Castillo, Yineer Alexis Ibarra-Sanchez, Sandro Alberto Muñoz-Chaves, Javier Andres Bioplástico Celulosa Materiales alternativos Polímeros biodegradables Residuo lignocelulósico Alternative materials Biodegradable polymer Bio-plastic Cellulose Lignocellulosic waste 26 2 Núm. 2 , Año 2023 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2023-12-31T00:00:00Z 2023-12-31T00:00:00Z 2023-12-31 text/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/2398 10.31910/rudca.v26.n2.2023.2398 https://doi.org/10.31910/rudca.v26.n2.2023.2398 spa http://creativecommons.org/licenses/by-nc/4.0 Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. ACQUAVIA, M.A.; PASCALE, R.; MARTELLI, G.; BONDONI, M.; BIANCO, G. 2021. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers. 13(1):1-39. https://doi.org/10.3390/polym13010158 AHVENAINEN, P.; KONTRO, I.; SVEDSTRÖM, K. 2016. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 23(2):1073-1086. https://doi.org/10.1007/s10570-016-0881-6 ALEMDAR, A.; SAIN, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology. 68(2):557–565. https://doi.org/10.1016/j.compscitech.2007.05.044 ÁLZATE CARVAJAL, E.; QUINTERO CASTAÑO, V.D.; LUCAS AGUIRRE, J.C. 2013. Determinación de las propiedades térmicas y composicionales de la harina y almidón de chachafruto (Erytina edulis Triana ex Micheli). Temas Agrarios. 18(2):21-35. https://doi.org/10.21897/rta.v18i2.714 AMALRAJ, A.; GOPI, S.; THOMAS, S.; HAPONIUK, J.T. 2018. Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review. Macromolecular Symposia. 380(1):1-9. https://doi.org/10.1002/masy.201800115 AMERICAN SOCIETY FOR TESTING AND MATERIALS, ASTM. 1994. Standard test method for determination of relative haze of high-transmission plastics (ASTM D5488-94). ARANGO-ULLOA, J.; BOHORQUEZ, A.; DUQUE, M.C.; MAASS, B.L. 2009. Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agroforestry Systems. 76(3):543-553. https://doi.org/10.1007/s10457-009-9207-0 ARAÚJO, D.; CASTRO, M.C.R.; FIGUEIREDO, A.; VILARINHO, M.; MACHADO, A. 2020. Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts. Journal of Cleaner Production. 260:120865 https://doi.org/10.1016/j.jclepro.2020.120865 BAHLOUL, A.; KASSAB, Z.; EL BOUCHTI, M.; HANNACHE, H.; QAISS, A.E.K.; OUMAM, M.; EL ACHABY, M. 2021. Micro- and nano-structures of cellulose from eggplant plant Solanum melongena L agricultural residue. Carbohydrate Polymers. 253:117311 https://doi.org/10.1016/j.carbpol.2020.117311 BALOGUN, F.O.; SABIU, S. 2021. A Review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia cujete L. (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine. 2021:6683708. https://doi.org/10.1155/2021/6683708 CAMPOS DE BOMFIM, A.S.; DE OLIVEIRA, D.M.; WALLING, E.; BABIN, A.; HERSANT, G.; VANEECKHAUTE, C.; DUMONT, M.J.; RODRIGUE, D. 2022. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste. 1(1):220. https://doi.org/10.3390/waste1010002 DE DIOS NARANJO, C.; ALAMILLA-BELTRÁN, L.; GUTIÉRREZ-LOPEZ, G.F.; TERRES-ROJAS, E.; SOLORZA-FERIA, J.; YEE-MADEIRA, H.T.; FLORES-MORALES, A.; MORA-ESCOBEDO, R. 2017. Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali. Revista Mexicana de Ciencias Agrícolas. 7(1):31-43. DE OLIVEIRA, J.P.; BRUNI, G.P.; MELLO EL HALAL, S.L.; BERTOLDI, F.C.; GUERRA DIAS, A.R.; ZAVAREZE, E. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 124:175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205 DEBIAGI, F.; FARIA-TISCHER, P.C.S.; MALI, S. 2020. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose. 27(4):1975-1988. https://doi.org/10.1007/s10570-019-02893-0 EL ACHABY, M.; KASSAB, Z.; BARAKAT, A.; ABOULKAS, A. 2018. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products. 112:499-510. https://doi.org/10.1016/j.indcrop.2017.12.049 ESPITIA-BAENA, J.E.; DURAN-SANDOVAL, H.R.; FANDIÑO-FRANKY, J.; DÍAZ-CASTILLO, F.; GÓMEZ-ESTRADA, H.A. 2011. Química y biología del extracto etanólico del epicarpio de Crescentia cujete L. (totumo). Revista Cubana de Plantas Medicinales. 16(4):337-346. FROSCHAUER, C.; HUMMEL, M.; IAKOVLEV, M.; ROSELLI, A.; SCHOTTENBERGER, H.; SIXTA, H. 2013. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules. 14(6):1741-1750. https://doi.org/10.1021/bm400106h GARCÍA, R.; GULIYEV, V.; TANUNCHAI, B.; UDOVENKO, M.; MENYAILO, O.; GLASER, B.; PURAHONG, W.; BUSCOT, F.; BLAGODATSKAYA, E. 2023. Degradation of bio-based and biodegradable plastic and its contribution to soil organic carbon stock. Polymers. 15(3):660 https://doi.org/10.3390/polym15030660 HAFID, H.S.; OMAR, F.N.; ZHU, J.; WAKISAKA, M. 2021. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate Polymers. 260:117789. https://doi.org/10.1016/j.carbpol.2021.117789 HERRERA, M.; SINCHE, L.; BONILLA, O. 2019. Obtención de Nanocelulosa a partir de Celulosa de Puntas de Abacá. Afinidad. 76(586). ILYAS, R.A.; SAPUAN, S.M.; ISHAK, M.R. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers. 181:1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045 JOHARI, A.P.; KURMVANSHI, S.K.; MOHANTY, S.; NAYAK, S.K. 2016. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). International Journal of Biological Macromolecules. 84:329-339. https://doi.org/10.1016/j.ijbiomac.2015.12.038 KASSAB, Z.; ABDELLAOUI, Y.; SALIM, M.H.; EL ACHABY, M. 2020a. Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters. 280:128539 https://doi.org/10.1016/j.matlet.2020.128539 KASSAB, Z.; KASSEM, I.; HANNACHE, H.; BOUHFID, R.; QAISS, A.E.K.; EL ACHABY, M. 2020b. Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose. 27(8)4287-4303. https://doi.org/10.1007/s10570-020-03097-7 KASSAB, Z.; SYAFRI, E.; TAMRAOUI, Y.; HANNACHE, H.; EL KACEM QAISS, A.; EL ACHABY, M. 2020c. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules. 154:1419-1425. https://doi.org/10.1016/j.ijbiomac.2019.11.023 LAM, N.T.; CHOLLAKUP, R.; SMITTHIPONG, W.; NIMCHUA, T.; SUKYAI, P. 2017. Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech. 19(5):539-552. https://doi.org/10.1007/s12355-016-0507-1 LIN, Q.; HUANG, Y.; YU, W. 2020. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment. Carbohydrate Polymers. 241:116412. https://doi.org/10.1016/j.carbpol.2020.116412 LONG, D.A. 2004. Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy. 35(10):905-905. https://doi.org/10.1002/jrs.1238 MENESES, J.; CORRALES, C.; VALENCIA, M. 2007. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. Revista EIA. 8(5):57-67. NKOSIVELE, Z.; MZIMELA, T.; LINGANISO, L.Z.; REVAPRASADU, N.; MOTAUNG, T.E. 2018. Comparison of Cellulose Extraction from Sugarcane Bagasse Through Alkali 3 . Results and Discussion. Materials Research. 21(6):7. https://doi.org/10.1590/1980-5373-MR-2017-0750 ORGANIZACIÓN DE LAS NACIONES UNIDAS, ONU. 2018. O nos divorciamos del plástico, o nos olvidamos del planeta. Noticias ONU. Disponible desde Internet en: https://news.un.org/es/story/2018/06/1435111 OVALLE-SERRANO, S.A.; BLANCO-TIRADO, C.; COMBARIZA, M.Y. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose. 25(1):51-165. https://doi.org/10.1007/s10570-017-1599-9 PECH-COHUO, S.C.; CANCHE-ESCAMILLA, G.; VALADEZ-GONZÁLEZ, A.; FERNÁNDEZ-ESCAMILLA, V.V.A.; URIBE-CALDERON, J. 2018. Production and Modification of Cellulose Nanocrystals from Agave tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901 PELISSARI, F.M.; DO AMARAL SOBRAL, P.J.; MENEGALLI, F.C. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose. 21(1):417-432. https://doi.org/10.1007/s10570-013-0138-6 PESCOD, M.B.; DENNY, P. 2010. Environmental management for cocoa production: a training manual for cocoa farmers. Environmental Science and Health, Part B. 45:48-56. https://doi.org/10.1080/03601230903400602 PRABHAVATHI, N.; RAMAKRISHNA PARAMA, V.R. 2019. Effect of sugar industry solid waste pressmud and bio compost on soil physical and chemical properties at different intervals during finger millet crop. Journal of Pharmacognosy and Phytochemistry Pressmud. 8(3):3038-3042. PUTTASWAMY, M.; SRINIKETHAN, G.; SHETTY, V.K. 2017. Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering. 5(2):1990-1997. https://doi.org/10.1016/j.jece.2017.04.004 RODRIGUEZ, A. 2012. Biodegradabilidad de materiales bioplásticos. Ciencia y Tecnología de Alimentos. 22(3):69-72. ROSA, M.F.; MEDEIROS, E.S.; MALMONGE, J. A.; GREGORSKI, K.S.; WOOD, D.F.; MATTOSO, L.H.C.; GLENN, G.; ORTS, W.J.; IMAM, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 81(1):83-92. https://doi.org/10.1016/j.carbpol.2010.01.059 SANDOVAL ARREOLA, M.M.; GALEANA GONZÁLEZ, E.J.; ROQUE BARBOSA, L.E.; ORTIZ RODRÍGUEZ, G. 2022. Extracción y caracterización de celulosa a partir de la planta del plátano. Brazilian Journal of Development. 8(12):78810-78819. https://doi.org/10.34117/bjdv8n12-130 SEDDIQI, H.; OLIAEI, E.; HONARKAR, H.; JIN, J.; GEONZON, L.C.; BACABAC, R.G.; KLEIN-NULEND, J. 2021. Cellulose and its derivatives: towards biomedical applications. In Cellulose. 28(4):1893-1931. https://doi.org/10.1007/s10570-020-03674-w SHAFAWATI, S.N.; SIDDIQUEE, S. 2013. Composting of oil palm fibres and Trichoderma spp. As the biological control agent: A review. International Biodeterioration and Biodegradation. 85:243-253. https://doi.org/10.1016/j.ibiod.2013.08.005 TANPICHAI, S.; WITAYAKRAN, S.; BOONMAHITTHISUD, A. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering. 7(1):102836. https://doi.org/10.1016/j.jece.2018.102836 THI THUY VAN, N.; GASPILLO, PAG-ASA.; THANH, H.G.T.; NHI, N.H.T.; LONG, H.N.; TRI, N.; THI TRUC VAN, N.; NGUYEN, TIEN-THANH.; KY PHUONG HA, H. 2022. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon. 8(12):e11845. https://doi.org/10.1016/j.heliyon.2022.e11845 YUNUS, M.A. 2019. Extraction cellulose from rice husk. Jurnal Akta Kimia Indonesia. 12(2):79. https://doi.org/10.20956/ica.v12i2.6559 ZIELIŃSKA, D.; SZENTNER, K.; WAŚKIEWICZ, A.; BORYSIAK, S. 2021. Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials. 14(9):2124. https://doi.org/10.3390/ma14092124 ZHANG, J.; LUO, N.; WAN, J.; XIA, G.; YU, J.; HE, J.; ZHANG, J. 2017. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chemistry & Engineering. 5(6):5127-5133. https://doi.org/10.1021/acssuschemeng.7b00488 https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2803 https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2821 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable |
spellingShingle |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable Sánchez-Aguilar, Raúl Fernando Castillo, Yineer Alexis Ibarra-Sanchez, Sandro Alberto Muñoz-Chaves, Javier Andres Bioplástico Celulosa Materiales alternativos Polímeros biodegradables Residuo lignocelulósico Alternative materials Biodegradable polymer Bio-plastic Cellulose Lignocellulosic waste |
title_short |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable |
title_full |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable |
title_fullStr |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable |
title_full_unstemmed |
Caracterización estructural, térmica y morfológica de Crescentia cujete (totumo) con potencial uso como polímero biodegradable |
title_sort |
caracterización estructural, térmica y morfológica de crescentia cujete (totumo) con potencial uso como polímero biodegradable |
title_eng |
Structural, thermal and morphological characterization of Crescentia cujete (totumo) with potential use as biodegradable polymer |
description |
Actualmente, se reconoce que los plásticos derivados de productos petroquímicos son uno de los mayores problemas sociales y ambientales, debido al uso excesivo y a la dificultad de su descomposición, lo que ha aumentado la preocupación por encontrar alternativas a estos materiales. De esta forma, este trabajo se centra en la caracterización por medio de DRX, FRX FTIR, DSC, TGA y análisis cualitativo de biodegradabilidad del fruto de Crescentia cujete (totumo), a fin de establecer bases para ser considerado una alternativa de uso, como polímero biodegradable. Los resultados de la caracterización estructural evidenciaron que se trata de un material semicristalino, compuesto, principalmente, de celulosa tipo I, con una cristalinidad del 29 %. Se determinó que la estabilidad térmica de este material alcanza los 175 °C, con la pérdida de humedad, siendo la única observación hasta esta temperatura. Se confirmó la presencia de hemicelulosa y celulosa a temperaturas superiores y su posterior descomposición. El estudio de biodegradabilidad indicó la presencia de un ataque microbiano a las 72 horas de monitoreo, evidenciado por la aparición de un hongo en la superficie del material, lo que causó cambios en la emisión de dióxido de carbono y monóxido de carbono. Después de 200 horas se observó una disminución del volumen del hongo, lo que sugiere que este se propagó al interior del material, dando origen puntos negros de descomposición en la superficie de las muestras. Así, el totumo se podría considerar como una alternativa de material lignocelulósico, para la preparación de materiales poliméricos biodegradables.
|
description_eng |
Currently, it is recognized that plastics derived from petrochemicals are one of the biggest social and environmental problems due to their excessive use and difficulty in decomposition, which has increased the concern to find alternatives to these materials. This study characterizes the fruit of Crescentia cujete (calabash tree) as a biodegradable polymer through DRX, FTIR, DSC, TGA, and qualitative biodegradability analysis. The structural characterization revealed a semi-crystalline material composed mainly of type I cellulose, with a crystallinity of 29 %. The material's thermal stability was determined to be up to 175 °C, with moisture loss being the only observation at this temperature. The presence of hemicellulose and cellulose at higher temperatures and their subsequent decomposition were confirmed. The biodegradability study indicated the presence of microbial attack at 72 hours of monitoring, evidenced by the appearance of a fungus on the material surface, causing changes in CO2 and CO emissions. After 200 hours, a decrease in the volume of the fungus was observed, suggesting that it spread inside the material, giving rise to black spots of decomposition on the surface of the samples. Thus, calabash tree could be considered as an alternative lignocellulosic material for the preparation of biodegradable polymeric materials.
|
author |
Sánchez-Aguilar, Raúl Fernando Castillo, Yineer Alexis Ibarra-Sanchez, Sandro Alberto Muñoz-Chaves, Javier Andres |
author_facet |
Sánchez-Aguilar, Raúl Fernando Castillo, Yineer Alexis Ibarra-Sanchez, Sandro Alberto Muñoz-Chaves, Javier Andres |
topicspa_str_mv |
Bioplástico Celulosa Materiales alternativos Polímeros biodegradables Residuo lignocelulósico |
topic |
Bioplástico Celulosa Materiales alternativos Polímeros biodegradables Residuo lignocelulósico Alternative materials Biodegradable polymer Bio-plastic Cellulose Lignocellulosic waste |
topic_facet |
Bioplástico Celulosa Materiales alternativos Polímeros biodegradables Residuo lignocelulósico Alternative materials Biodegradable polymer Bio-plastic Cellulose Lignocellulosic waste |
citationvolume |
26 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2023 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2398 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Raúl Fernando Sánchez-Aguilar, Yineer Alexis Castillo, Sandro Alberto Ibarra-Sanchez, Javier Andres Muñoz-Chaves - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ACQUAVIA, M.A.; PASCALE, R.; MARTELLI, G.; BONDONI, M.; BIANCO, G. 2021. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers. 13(1):1-39. https://doi.org/10.3390/polym13010158 AHVENAINEN, P.; KONTRO, I.; SVEDSTRÖM, K. 2016. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 23(2):1073-1086. https://doi.org/10.1007/s10570-016-0881-6 ALEMDAR, A.; SAIN, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology. 68(2):557–565. https://doi.org/10.1016/j.compscitech.2007.05.044 ÁLZATE CARVAJAL, E.; QUINTERO CASTAÑO, V.D.; LUCAS AGUIRRE, J.C. 2013. Determinación de las propiedades térmicas y composicionales de la harina y almidón de chachafruto (Erytina edulis Triana ex Micheli). Temas Agrarios. 18(2):21-35. https://doi.org/10.21897/rta.v18i2.714 AMALRAJ, A.; GOPI, S.; THOMAS, S.; HAPONIUK, J.T. 2018. Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review. Macromolecular Symposia. 380(1):1-9. https://doi.org/10.1002/masy.201800115 AMERICAN SOCIETY FOR TESTING AND MATERIALS, ASTM. 1994. Standard test method for determination of relative haze of high-transmission plastics (ASTM D5488-94). ARANGO-ULLOA, J.; BOHORQUEZ, A.; DUQUE, M.C.; MAASS, B.L. 2009. Diversity of the calabash tree (Crescentia cujete L.) in Colombia. Agroforestry Systems. 76(3):543-553. https://doi.org/10.1007/s10457-009-9207-0 ARAÚJO, D.; CASTRO, M.C.R.; FIGUEIREDO, A.; VILARINHO, M.; MACHADO, A. 2020. Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts. Journal of Cleaner Production. 260:120865 https://doi.org/10.1016/j.jclepro.2020.120865 BAHLOUL, A.; KASSAB, Z.; EL BOUCHTI, M.; HANNACHE, H.; QAISS, A.E.K.; OUMAM, M.; EL ACHABY, M. 2021. Micro- and nano-structures of cellulose from eggplant plant Solanum melongena L agricultural residue. Carbohydrate Polymers. 253:117311 https://doi.org/10.1016/j.carbpol.2020.117311 BALOGUN, F.O.; SABIU, S. 2021. A Review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia cujete L. (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine. 2021:6683708. https://doi.org/10.1155/2021/6683708 CAMPOS DE BOMFIM, A.S.; DE OLIVEIRA, D.M.; WALLING, E.; BABIN, A.; HERSANT, G.; VANEECKHAUTE, C.; DUMONT, M.J.; RODRIGUE, D. 2022. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste. 1(1):220. https://doi.org/10.3390/waste1010002 DE DIOS NARANJO, C.; ALAMILLA-BELTRÁN, L.; GUTIÉRREZ-LOPEZ, G.F.; TERRES-ROJAS, E.; SOLORZA-FERIA, J.; YEE-MADEIRA, H.T.; FLORES-MORALES, A.; MORA-ESCOBEDO, R. 2017. Aislamiento y caracterización de celulosas obtenidas de fibras de Agave salmiana aplicando dos métodos de extracción ácido-alcali. Revista Mexicana de Ciencias Agrícolas. 7(1):31-43. DE OLIVEIRA, J.P.; BRUNI, G.P.; MELLO EL HALAL, S.L.; BERTOLDI, F.C.; GUERRA DIAS, A.R.; ZAVAREZE, E. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules. 124:175-184. https://doi.org/10.1016/j.ijbiomac.2018.11.205 DEBIAGI, F.; FARIA-TISCHER, P.C.S.; MALI, S. 2020. Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose. 27(4):1975-1988. https://doi.org/10.1007/s10570-019-02893-0 EL ACHABY, M.; KASSAB, Z.; BARAKAT, A.; ABOULKAS, A. 2018. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products. 112:499-510. https://doi.org/10.1016/j.indcrop.2017.12.049 ESPITIA-BAENA, J.E.; DURAN-SANDOVAL, H.R.; FANDIÑO-FRANKY, J.; DÍAZ-CASTILLO, F.; GÓMEZ-ESTRADA, H.A. 2011. Química y biología del extracto etanólico del epicarpio de Crescentia cujete L. (totumo). Revista Cubana de Plantas Medicinales. 16(4):337-346. FROSCHAUER, C.; HUMMEL, M.; IAKOVLEV, M.; ROSELLI, A.; SCHOTTENBERGER, H.; SIXTA, H. 2013. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromolecules. 14(6):1741-1750. https://doi.org/10.1021/bm400106h GARCÍA, R.; GULIYEV, V.; TANUNCHAI, B.; UDOVENKO, M.; MENYAILO, O.; GLASER, B.; PURAHONG, W.; BUSCOT, F.; BLAGODATSKAYA, E. 2023. Degradation of bio-based and biodegradable plastic and its contribution to soil organic carbon stock. Polymers. 15(3):660 https://doi.org/10.3390/polym15030660 HAFID, H.S.; OMAR, F.N.; ZHU, J.; WAKISAKA, M. 2021. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate Polymers. 260:117789. https://doi.org/10.1016/j.carbpol.2021.117789 HERRERA, M.; SINCHE, L.; BONILLA, O. 2019. Obtención de Nanocelulosa a partir de Celulosa de Puntas de Abacá. Afinidad. 76(586). ILYAS, R.A.; SAPUAN, S.M.; ISHAK, M.R. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers. 181:1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045 JOHARI, A.P.; KURMVANSHI, S.K.; MOHANTY, S.; NAYAK, S.K. 2016. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid). International Journal of Biological Macromolecules. 84:329-339. https://doi.org/10.1016/j.ijbiomac.2015.12.038 KASSAB, Z.; ABDELLAOUI, Y.; SALIM, M.H.; EL ACHABY, M. 2020a. Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters. 280:128539 https://doi.org/10.1016/j.matlet.2020.128539 KASSAB, Z.; KASSEM, I.; HANNACHE, H.; BOUHFID, R.; QAISS, A.E.K.; EL ACHABY, M. 2020b. Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose. 27(8)4287-4303. https://doi.org/10.1007/s10570-020-03097-7 KASSAB, Z.; SYAFRI, E.; TAMRAOUI, Y.; HANNACHE, H.; EL KACEM QAISS, A.; EL ACHABY, M. 2020c. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules. 154:1419-1425. https://doi.org/10.1016/j.ijbiomac.2019.11.023 LAM, N.T.; CHOLLAKUP, R.; SMITTHIPONG, W.; NIMCHUA, T.; SUKYAI, P. 2017. Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech. 19(5):539-552. https://doi.org/10.1007/s12355-016-0507-1 LIN, Q.; HUANG, Y.; YU, W. 2020. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment. Carbohydrate Polymers. 241:116412. https://doi.org/10.1016/j.carbpol.2020.116412 LONG, D.A. 2004. Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy. 35(10):905-905. https://doi.org/10.1002/jrs.1238 MENESES, J.; CORRALES, C.; VALENCIA, M. 2007. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. Revista EIA. 8(5):57-67. NKOSIVELE, Z.; MZIMELA, T.; LINGANISO, L.Z.; REVAPRASADU, N.; MOTAUNG, T.E. 2018. Comparison of Cellulose Extraction from Sugarcane Bagasse Through Alkali 3 . Results and Discussion. Materials Research. 21(6):7. https://doi.org/10.1590/1980-5373-MR-2017-0750 ORGANIZACIÓN DE LAS NACIONES UNIDAS, ONU. 2018. O nos divorciamos del plástico, o nos olvidamos del planeta. Noticias ONU. Disponible desde Internet en: https://news.un.org/es/story/2018/06/1435111 OVALLE-SERRANO, S.A.; BLANCO-TIRADO, C.; COMBARIZA, M.Y. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose. 25(1):51-165. https://doi.org/10.1007/s10570-017-1599-9 PECH-COHUO, S.C.; CANCHE-ESCAMILLA, G.; VALADEZ-GONZÁLEZ, A.; FERNÁNDEZ-ESCAMILLA, V.V.A.; URIBE-CALDERON, J. 2018. Production and Modification of Cellulose Nanocrystals from Agave tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901 PELISSARI, F.M.; DO AMARAL SOBRAL, P.J.; MENEGALLI, F.C. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose. 21(1):417-432. https://doi.org/10.1007/s10570-013-0138-6 PESCOD, M.B.; DENNY, P. 2010. Environmental management for cocoa production: a training manual for cocoa farmers. Environmental Science and Health, Part B. 45:48-56. https://doi.org/10.1080/03601230903400602 PRABHAVATHI, N.; RAMAKRISHNA PARAMA, V.R. 2019. Effect of sugar industry solid waste pressmud and bio compost on soil physical and chemical properties at different intervals during finger millet crop. Journal of Pharmacognosy and Phytochemistry Pressmud. 8(3):3038-3042. PUTTASWAMY, M.; SRINIKETHAN, G.; SHETTY, V.K. 2017. Biocomposite composed of PVA reinforced with cellulose microfibers isolated from biofuel industrial dissipate: Jatropha Curcus L. seed shell. Journal of Environmental Chemical Engineering. 5(2):1990-1997. https://doi.org/10.1016/j.jece.2017.04.004 RODRIGUEZ, A. 2012. Biodegradabilidad de materiales bioplásticos. Ciencia y Tecnología de Alimentos. 22(3):69-72. ROSA, M.F.; MEDEIROS, E.S.; MALMONGE, J. A.; GREGORSKI, K.S.; WOOD, D.F.; MATTOSO, L.H.C.; GLENN, G.; ORTS, W.J.; IMAM, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers. 81(1):83-92. https://doi.org/10.1016/j.carbpol.2010.01.059 SANDOVAL ARREOLA, M.M.; GALEANA GONZÁLEZ, E.J.; ROQUE BARBOSA, L.E.; ORTIZ RODRÍGUEZ, G. 2022. Extracción y caracterización de celulosa a partir de la planta del plátano. Brazilian Journal of Development. 8(12):78810-78819. https://doi.org/10.34117/bjdv8n12-130 SEDDIQI, H.; OLIAEI, E.; HONARKAR, H.; JIN, J.; GEONZON, L.C.; BACABAC, R.G.; KLEIN-NULEND, J. 2021. Cellulose and its derivatives: towards biomedical applications. In Cellulose. 28(4):1893-1931. https://doi.org/10.1007/s10570-020-03674-w SHAFAWATI, S.N.; SIDDIQUEE, S. 2013. Composting of oil palm fibres and Trichoderma spp. As the biological control agent: A review. International Biodeterioration and Biodegradation. 85:243-253. https://doi.org/10.1016/j.ibiod.2013.08.005 TANPICHAI, S.; WITAYAKRAN, S.; BOONMAHITTHISUD, A. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering. 7(1):102836. https://doi.org/10.1016/j.jece.2018.102836 THI THUY VAN, N.; GASPILLO, PAG-ASA.; THANH, H.G.T.; NHI, N.H.T.; LONG, H.N.; TRI, N.; THI TRUC VAN, N.; NGUYEN, TIEN-THANH.; KY PHUONG HA, H. 2022. Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon. 8(12):e11845. https://doi.org/10.1016/j.heliyon.2022.e11845 YUNUS, M.A. 2019. Extraction cellulose from rice husk. Jurnal Akta Kimia Indonesia. 12(2):79. https://doi.org/10.20956/ica.v12i2.6559 ZIELIŃSKA, D.; SZENTNER, K.; WAŚKIEWICZ, A.; BORYSIAK, S. 2021. Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials. 14(9):2124. https://doi.org/10.3390/ma14092124 ZHANG, J.; LUO, N.; WAN, J.; XIA, G.; YU, J.; HE, J.; ZHANG, J. 2017. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chemistry & Engineering. 5(6):5127-5133. https://doi.org/10.1021/acssuschemeng.7b00488 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2023-12-31 |
date_accessioned |
2023-12-31T00:00:00Z |
date_available |
2023-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2398 |
url_doi |
https://doi.org/10.31910/rudca.v26.n2.2023.2398 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v26.n2.2023.2398 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2803 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2398/2821 |
_version_ |
1811201191639515136 |