Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey)
.
Botrytis cinerea, el agente causal de la enfermedad del moho gris, es uno de los patógenos más destructivos del cultivo de fresa, tanto en el desarrollo vegetativo como en poscosecha. El control de este patógeno es complejo, debido a su agresividad y capacidad de atacar e infectar diversos tejidos de la planta y se basa, principalmente, en el control químico; sin embargo, el uso incorrecto de plaguicidas, principalmente por sobredosificación, provoca la presencia de trazas de estos agroquímicos en los frutos, así como la selección de resistencia del patógeno a los fungicidas, convirtiéndolo en un riesgo para la salud humana y el ambiente. El objetivo del estudio fue utilizar estrategias de regulación biológica, con la aplicación de consorci... Ver más
0123-4226
2619-2551
25
2022-12-31
Mario Alejandro Cano, Jairo Leonardo Cuervo, Aquiles Enrique Darghan - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_2312 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) |
spellingShingle |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) Cano, Mario Alejandro Cuervo, Jairo Leonardo Darghan, Aquiles Enrique Botrytis cinerea Regulación biológica Consorcios microbianos Micorrizas Bacterias antagonistas Trichoderma harzianum Botrytis cinerea Biological regulation Microbial consortia Mycorrhizae Antagonistic bacteria Trichoderma harzianum |
title_short |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) |
title_full |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) |
title_fullStr |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) |
title_full_unstemmed |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) |
title_sort |
influencia de consorcios microbianos en la incidencia del moho gris (botrytis cinerea) en fresa (variedad monterey) |
title_eng |
Influence of microbial consortia on the incidence of grey mold (Botrytis cinerea) in strawberry (Monterey variety) |
description |
Botrytis cinerea, el agente causal de la enfermedad del moho gris, es uno de los patógenos más destructivos del cultivo de fresa, tanto en el desarrollo vegetativo como en poscosecha. El control de este patógeno es complejo, debido a su agresividad y capacidad de atacar e infectar diversos tejidos de la planta y se basa, principalmente, en el control químico; sin embargo, el uso incorrecto de plaguicidas, principalmente por sobredosificación, provoca la presencia de trazas de estos agroquímicos en los frutos, así como la selección de resistencia del patógeno a los fungicidas, convirtiéndolo en un riesgo para la salud humana y el ambiente. El objetivo del estudio fue utilizar estrategias de regulación biológica, con la aplicación de consorcios microbianos, conformados por hongos micorrícicos, bacterias antagonistas y Trichoderma harzianum, como alternativa para el manejo del moho gris, en cultivos de fresa (variedad Monterey), en condiciones de campo. Los tratamientos T4 (hongos micorrízicos), T8 (hongos micorrízicos, bacterias antagonistas y T. harzianum) y T2 (T. harzianum) presentaron la menor incidencia del patógeno, con 2,6, 3,1 y 3,6 %, respectivamente, en comparación con las plantas control, con 16,6 %. La influencia de todos los tratamientos biológicos en la regulación de B. cinerea fue mayor respecto al control.
|
description_eng |
Botrytis cinerea, the causal agent of grey mold disease, is one of the most destructive pathogens of strawberry crops, both in vegetative development and postharvest. The control of this pathogen is complex due to its aggressiveness and ability to attack and infect various plant tissues and is mainly based on chemical control; however, the incorrect use of pesticides, mainly due to overdosing, causes the presence of traces of these agrochemicals in the fruits, as well as the selection of pathogen resistance to fungicides, making it a risk to human health and the environment. The objective of the study was to use biological regulation strategies, with the application of microbial consortia made up of mycorrhizal fungi, antagonistic bacteria and Trichoderma harzianum, as an alternative for the management of grey mold in strawberry crops (Monterey variety) under field conditions. Treatments T4 (mycorrhizal fungi), T8 (mycorrhizal fungi, antagonistic bacteria and T. harzianum) and T2 (T. harzianum) presented the lowest incidence of the pathogen with 2.6, 3.1 and 3.6 %, respectively, compared to control plants with 16.6%. The influence of all biological treatments on the regulation of B. cinerea was greater than the control.
|
author |
Cano, Mario Alejandro Cuervo, Jairo Leonardo Darghan, Aquiles Enrique |
author_facet |
Cano, Mario Alejandro Cuervo, Jairo Leonardo Darghan, Aquiles Enrique |
topicspa_str_mv |
Botrytis cinerea Regulación biológica Consorcios microbianos Micorrizas Bacterias antagonistas Trichoderma harzianum |
topic |
Botrytis cinerea Regulación biológica Consorcios microbianos Micorrizas Bacterias antagonistas Trichoderma harzianum Botrytis cinerea Biological regulation Microbial consortia Mycorrhizae Antagonistic bacteria Trichoderma harzianum |
topic_facet |
Botrytis cinerea Regulación biológica Consorcios microbianos Micorrizas Bacterias antagonistas Trichoderma harzianum Botrytis cinerea Biological regulation Microbial consortia Mycorrhizae Antagonistic bacteria Trichoderma harzianum |
citationvolume |
25 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2312 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Mario Alejandro Cano, Jairo Leonardo Cuervo, Aquiles Enrique Darghan - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
AVIS, T.J.; GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry. 40(7):1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013 2. BISUTTI, I.L.; PELZ, J.; BÜTTNER, C.; STEPHAN, D. 2017. Field assessment on the influence of RhizoVital® 42 fl. and Trichostar® on strawberries in the presence of soil-borne diseases. Crop Protection. 96:195-203. https://doi.org/10.1016/j.cropro.2017.02.004 3. BRIMNER, T.A.; BOLAND, G.J. 2003. A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment. 100(1):3-16. https://doi.org/10.1016/S0167-8809(03)00200-7 4. CANO, M.A. 2011. Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A Actualidad & Divulgación Científica. 14(2):15-31. https://doi.org/10.31910/rudca.v14.n2.2011.771 5. CAO, S.; HU, Z.; ZHENG, Y.; YANG, Z.; LU, B. 2011. Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit. Food Chemistry. 125(1):145-149. https://doi.org/10.1016/j.foodchem.2010.08.051 6. CHALFOUN, N.R.; CASTAGNARO, A.P.; DÍAZ RICCI, J.C. 2011. Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biological Control. 58(3):319-329. https://doi.org/10.1016/j.biocontrol.2011.05.007 7. COTES, A.M. 2014. Control biológico de enfermedades de plantas en Colombia. En: Bettiol, W.; Rivera, M.C.; Mondino, P.; Montealegre, J.R.; Colmenárez, Y.C. (eds). Control bilógico de enfermedades de plantas en América Latina y el Caribe. Universidad de la República. p.169-179. 8. FILLINGER, S.; LEROUX, P.; AUCLAIR, C.; BARREAU, C.; AL HAJJ, C.; DEBIEU, D. 2008. Genetic analysis of Fenhexamid-Resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrobial agents and chemotherapy. 52(11):3933-3940. https://doi.org/10.1128/aac.00615-08 9. FINLAY, R.D. 2004. Mycorrhizal fungi and their multifunctional roles. Mycologist. 18(2):91-96. https://doi.org/10.1017/S0269-915X(04)00205-8 10. FREEMAN, S.; KATAN, T. 1997. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology. 87(5):516-521. https://doi.org/10.1094/phyto.1997.87.5.516 11. FUNGICIDE RESISTANCE ACTION COMMITTEE, FRAC. 2013. List of plant pathogenic organisms resistant to disease control agents. FRAC. 71p. Disponible desde Internet en: https://www.frac.info/docs/default-source/working-groups/sdhi-fungicides/group/list-of-resistant-plant-pathogens_2012-edition.pdf 12. GUÉDEZ, C.; CAÑIZÁLEZ, L.; CASTILLO, C.; OLIVAR, R. 2009. Efecto antagónico de Trichoderma harzianum sobre algunos hongos patógenos postcosecha de la fresa (Fragaria spp.). Revista de la Sociedad Venezolana de Microbiología. 29(1):34-38. 13. HARMAN, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 96(2):190-194. https://doi.org/10.1094/phyto-96-0190 14. HARMAN, G.E.; PETZOLDT, R.; COMIS, A.; CHEN, J. 2004. Interactions Between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology. 94(2):147-153. https://doi.org/10.1094/phyto.2004.94.2.147 15. HAUSE, B.; MROSK, C.; ISAYENKOV, S.; STRACK, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry. 68(1):101-110. https://doi.org/10.1016/j.phytochem.2006.09.025 16. HAUSE, B.; SCHAARSCHMIDT, S. 2009. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry. 70(13-14):1589-1599. https://doi.org/10.1016/j.phytochem.2009.07.003 17. KAPOOR, R.; SHARMA, D.; BHATNAGAR, A.K. 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae. 116(3):227-239. https://doi.org/10.1016/j.scienta.2008.02.002 18. LANTZ, W.; SWARTZ, H.; DEMCHAK, K.; FRICK, S. 2010. Season-long strawberry production with ever bearers for northeastern producers. University of Maryland Extension. 70p. 19. LEROUX, P.; GREDT, M.; LEROCH, M.; WALKER, A.-S. 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology. 76(19):6615-6630. https://doi.org/10.1128/aem.00931-10 20. LI, R.; TAO, R.; LING, N.; CHU, G. 2017. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research. 167:30-38. https://doi.org/10.1016/j.still.2016.11.001 21. LI, X.; XIE, X.; XING, F.; XU, L.; ZHANG, J.; WANG, Z. 2019. Glucose oxidase as a control agent against the fungal pathogen Botrytis cinerea in postharvest strawberry. Food Control. 105:277-284. https://doi.org/10.1016/j.foodcont.2019.05.037 22. MERCHÁN-GAITÁN, J.B.; FERRUCHO, R.L.; ÁLVAREZ-HERRERA, J.G. 2014. Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Revista Colombiana de Ciencias Hortícolas. 8(1):44-56. 23. MINISTERIO DE AGRICULTURA, MINAGRICULTURA. 2021. Cadena de la fresa. Minagricultura. 22p. Disponible desde Internet en: https://sioc.minagricultura.gov.co/Fresa/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf 24. MONDAL, T.; DATTA, J.K.; MONDAL, N.K. 2017. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. Journal of the Saudi Society of Agricultural Sciences. 16(2):135-144. https://doi.org/10.1016/j.jssas.2015.05.001 25. PERTOT, I.; GIOVANNINI, O.; BENANCHI, M.; CAFFI, T.; ROSSI, V.; MUGNAI, L. 2017. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection. 97:85-93. https://doi.org/10.1016/j.cropro.2017.01.010 26. PERTOT, I.; ZASSO, R.; AMSALEM, L.; BALDESSARI, M.; ANGELI, G.; ELAD, Y. 2008. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protection. 27(3-5):622-631. https://doi.org/10.1016/j.cropro.2007.09.004 27. POZO, M.J.; AZCÓN-AGUILAR, C. 2007. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology. 10(4):393-398. https://doi.org/10.1016/j.pbi.2007.05.004 28. PRITTS, M. 2002. Growing strawberries, healthy communities, strong economies and clean environments: what is the role of the researcher? Acta Horticulturae. 567:411-417. https://doi.org/10.17660/ActaHortic.2002.567.85 29. PROGRAMA DE TRANSFORMACIÓN PRODUCTIVA, PTP.; ASOCIACIÓN HORTIFRUTICOLA DE COLOMBIA, ASOHOFRUCOL.; FONDO NACIONAL DE FOMENTO HORTIFRUTÍCOLA. 2013. Plan de negocios de fresa: Programa de transformación productiva. 171p. 30. SELOSSE, M.-A.; BAUDOIN, E.; VANDENKOORNHUYSE, P. 2004. Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies. 327(7):639-648. https://doi.org/10.1016/j.crvi.2003.12.008 31. STOKES, M.E.; DAVIS, C.S.; KOCH, G.G. 2012. Categorical Data Analysis Using SAS. Third Edition. SAS Institute Inc (Cary, NC). 590p. 32. VÁZQUEZ, M.M.; CÉSAR, S.; AZCÓN, R.; BAREA, J.M. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology. 15(3):261-272. https://doi.org/10.1016/S0929-1393(00)00075-5 33. VESTBERG, M.; KUKKONEN, S.; SAARI, K.; PARIKKA, P.; HUTTUNEN, J.; TAINIO, L.; DEVOS, N.; WEEKERS, F.; KEVERS, C.; THONART, P.; LEMOINE, M.-C.; CORDIER, C.; ALABOUVETTE, C.; GIANINAZZI, S. 2004. Microbial inoculation for improving the growth and health of micropropagated strawberry. Applied Soil Ecology. 27(3):243-258. https://doi.org/10.1016/j.apsoil.2004.05.006 34. WEHNER, J.; ANTUNES, P.M.; POWELL, J.R.; MAZUKATOW, J.; RILLIG, M.C. 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia. 53(3):197-201. https://doi.org/10.1016/j.pedobi.2009.10.002 35. YANG, H.-H.; YANG, S.L.; PENG, K.-C.; LO, C.-T.; LIU, S.-Y. 2009. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research. 113(9):924-932. https://doi.org/10.1016/j.mycres.2009.04.004 36. ZHANG, H.; WANG, L.; DONG, Y.; JIANG, S.; CAO, J.; MENG, R. 2007. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control. 40(2):287-292. https://doi.org/10.1016/j.biocontrol.2006.10.008 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-12-31 |
date_accessioned |
2022-12-31T00:00:00Z |
date_available |
2022-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2312 |
url_doi |
https://doi.org/10.31910/rudca.v25.n2.2022.2312 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v25.n2.2022.2312 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2312/2523 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2312/2524 |
_version_ |
1811201189959696384 |
spelling |
Influencia de consorcios microbianos en la incidencia del moho gris (Botrytis cinerea) en fresa (variedad Monterey) Influence of microbial consortia on the incidence of grey mold (Botrytis cinerea) in strawberry (Monterey variety) Botrytis cinerea, el agente causal de la enfermedad del moho gris, es uno de los patógenos más destructivos del cultivo de fresa, tanto en el desarrollo vegetativo como en poscosecha. El control de este patógeno es complejo, debido a su agresividad y capacidad de atacar e infectar diversos tejidos de la planta y se basa, principalmente, en el control químico; sin embargo, el uso incorrecto de plaguicidas, principalmente por sobredosificación, provoca la presencia de trazas de estos agroquímicos en los frutos, así como la selección de resistencia del patógeno a los fungicidas, convirtiéndolo en un riesgo para la salud humana y el ambiente. El objetivo del estudio fue utilizar estrategias de regulación biológica, con la aplicación de consorcios microbianos, conformados por hongos micorrícicos, bacterias antagonistas y Trichoderma harzianum, como alternativa para el manejo del moho gris, en cultivos de fresa (variedad Monterey), en condiciones de campo. Los tratamientos T4 (hongos micorrízicos), T8 (hongos micorrízicos, bacterias antagonistas y T. harzianum) y T2 (T. harzianum) presentaron la menor incidencia del patógeno, con 2,6, 3,1 y 3,6 %, respectivamente, en comparación con las plantas control, con 16,6 %. La influencia de todos los tratamientos biológicos en la regulación de B. cinerea fue mayor respecto al control. Botrytis cinerea, the causal agent of grey mold disease, is one of the most destructive pathogens of strawberry crops, both in vegetative development and postharvest. The control of this pathogen is complex due to its aggressiveness and ability to attack and infect various plant tissues and is mainly based on chemical control; however, the incorrect use of pesticides, mainly due to overdosing, causes the presence of traces of these agrochemicals in the fruits, as well as the selection of pathogen resistance to fungicides, making it a risk to human health and the environment. The objective of the study was to use biological regulation strategies, with the application of microbial consortia made up of mycorrhizal fungi, antagonistic bacteria and Trichoderma harzianum, as an alternative for the management of grey mold in strawberry crops (Monterey variety) under field conditions. Treatments T4 (mycorrhizal fungi), T8 (mycorrhizal fungi, antagonistic bacteria and T. harzianum) and T2 (T. harzianum) presented the lowest incidence of the pathogen with 2.6, 3.1 and 3.6 %, respectively, compared to control plants with 16.6%. The influence of all biological treatments on the regulation of B. cinerea was greater than the control. Cano, Mario Alejandro Cuervo, Jairo Leonardo Darghan, Aquiles Enrique Botrytis cinerea Regulación biológica Consorcios microbianos Micorrizas Bacterias antagonistas Trichoderma harzianum Botrytis cinerea Biological regulation Microbial consortia Mycorrhizae Antagonistic bacteria Trichoderma harzianum 25 2 Núm. 2 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2022-12-31T00:00:00Z 2022-12-31T00:00:00Z 2022-12-31 text/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/2312 10.31910/rudca.v25.n2.2022.2312 https://doi.org/10.31910/rudca.v25.n2.2022.2312 spa http://creativecommons.org/licenses/by-nc/4.0 Mario Alejandro Cano, Jairo Leonardo Cuervo, Aquiles Enrique Darghan - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. AVIS, T.J.; GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry. 40(7):1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013 2. BISUTTI, I.L.; PELZ, J.; BÜTTNER, C.; STEPHAN, D. 2017. Field assessment on the influence of RhizoVital® 42 fl. and Trichostar® on strawberries in the presence of soil-borne diseases. Crop Protection. 96:195-203. https://doi.org/10.1016/j.cropro.2017.02.004 3. BRIMNER, T.A.; BOLAND, G.J. 2003. A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment. 100(1):3-16. https://doi.org/10.1016/S0167-8809(03)00200-7 4. CANO, M.A. 2011. Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A Actualidad & Divulgación Científica. 14(2):15-31. https://doi.org/10.31910/rudca.v14.n2.2011.771 5. CAO, S.; HU, Z.; ZHENG, Y.; YANG, Z.; LU, B. 2011. Effect of BTH on antioxidant enzymes, radical-scavenging activity and decay in strawberry fruit. Food Chemistry. 125(1):145-149. https://doi.org/10.1016/j.foodchem.2010.08.051 6. CHALFOUN, N.R.; CASTAGNARO, A.P.; DÍAZ RICCI, J.C. 2011. Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biological Control. 58(3):319-329. https://doi.org/10.1016/j.biocontrol.2011.05.007 7. COTES, A.M. 2014. Control biológico de enfermedades de plantas en Colombia. En: Bettiol, W.; Rivera, M.C.; Mondino, P.; Montealegre, J.R.; Colmenárez, Y.C. (eds). Control bilógico de enfermedades de plantas en América Latina y el Caribe. Universidad de la República. p.169-179. 8. FILLINGER, S.; LEROUX, P.; AUCLAIR, C.; BARREAU, C.; AL HAJJ, C.; DEBIEU, D. 2008. Genetic analysis of Fenhexamid-Resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrobial agents and chemotherapy. 52(11):3933-3940. https://doi.org/10.1128/aac.00615-08 9. FINLAY, R.D. 2004. Mycorrhizal fungi and their multifunctional roles. Mycologist. 18(2):91-96. https://doi.org/10.1017/S0269-915X(04)00205-8 10. FREEMAN, S.; KATAN, T. 1997. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology. 87(5):516-521. https://doi.org/10.1094/phyto.1997.87.5.516 11. FUNGICIDE RESISTANCE ACTION COMMITTEE, FRAC. 2013. List of plant pathogenic organisms resistant to disease control agents. FRAC. 71p. Disponible desde Internet en: https://www.frac.info/docs/default-source/working-groups/sdhi-fungicides/group/list-of-resistant-plant-pathogens_2012-edition.pdf 12. GUÉDEZ, C.; CAÑIZÁLEZ, L.; CASTILLO, C.; OLIVAR, R. 2009. Efecto antagónico de Trichoderma harzianum sobre algunos hongos patógenos postcosecha de la fresa (Fragaria spp.). Revista de la Sociedad Venezolana de Microbiología. 29(1):34-38. 13. HARMAN, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 96(2):190-194. https://doi.org/10.1094/phyto-96-0190 14. HARMAN, G.E.; PETZOLDT, R.; COMIS, A.; CHEN, J. 2004. Interactions Between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology. 94(2):147-153. https://doi.org/10.1094/phyto.2004.94.2.147 15. HAUSE, B.; MROSK, C.; ISAYENKOV, S.; STRACK, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry. 68(1):101-110. https://doi.org/10.1016/j.phytochem.2006.09.025 16. HAUSE, B.; SCHAARSCHMIDT, S. 2009. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry. 70(13-14):1589-1599. https://doi.org/10.1016/j.phytochem.2009.07.003 17. KAPOOR, R.; SHARMA, D.; BHATNAGAR, A.K. 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae. 116(3):227-239. https://doi.org/10.1016/j.scienta.2008.02.002 18. LANTZ, W.; SWARTZ, H.; DEMCHAK, K.; FRICK, S. 2010. Season-long strawberry production with ever bearers for northeastern producers. University of Maryland Extension. 70p. 19. LEROUX, P.; GREDT, M.; LEROCH, M.; WALKER, A.-S. 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology. 76(19):6615-6630. https://doi.org/10.1128/aem.00931-10 20. LI, R.; TAO, R.; LING, N.; CHU, G. 2017. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research. 167:30-38. https://doi.org/10.1016/j.still.2016.11.001 21. LI, X.; XIE, X.; XING, F.; XU, L.; ZHANG, J.; WANG, Z. 2019. Glucose oxidase as a control agent against the fungal pathogen Botrytis cinerea in postharvest strawberry. Food Control. 105:277-284. https://doi.org/10.1016/j.foodcont.2019.05.037 22. MERCHÁN-GAITÁN, J.B.; FERRUCHO, R.L.; ÁLVAREZ-HERRERA, J.G. 2014. Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Revista Colombiana de Ciencias Hortícolas. 8(1):44-56. 23. MINISTERIO DE AGRICULTURA, MINAGRICULTURA. 2021. Cadena de la fresa. Minagricultura. 22p. Disponible desde Internet en: https://sioc.minagricultura.gov.co/Fresa/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf 24. MONDAL, T.; DATTA, J.K.; MONDAL, N.K. 2017. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. Journal of the Saudi Society of Agricultural Sciences. 16(2):135-144. https://doi.org/10.1016/j.jssas.2015.05.001 25. PERTOT, I.; GIOVANNINI, O.; BENANCHI, M.; CAFFI, T.; ROSSI, V.; MUGNAI, L. 2017. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection. 97:85-93. https://doi.org/10.1016/j.cropro.2017.01.010 26. PERTOT, I.; ZASSO, R.; AMSALEM, L.; BALDESSARI, M.; ANGELI, G.; ELAD, Y. 2008. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protection. 27(3-5):622-631. https://doi.org/10.1016/j.cropro.2007.09.004 27. POZO, M.J.; AZCÓN-AGUILAR, C. 2007. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology. 10(4):393-398. https://doi.org/10.1016/j.pbi.2007.05.004 28. PRITTS, M. 2002. Growing strawberries, healthy communities, strong economies and clean environments: what is the role of the researcher? Acta Horticulturae. 567:411-417. https://doi.org/10.17660/ActaHortic.2002.567.85 29. PROGRAMA DE TRANSFORMACIÓN PRODUCTIVA, PTP.; ASOCIACIÓN HORTIFRUTICOLA DE COLOMBIA, ASOHOFRUCOL.; FONDO NACIONAL DE FOMENTO HORTIFRUTÍCOLA. 2013. Plan de negocios de fresa: Programa de transformación productiva. 171p. 30. SELOSSE, M.-A.; BAUDOIN, E.; VANDENKOORNHUYSE, P. 2004. Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies. 327(7):639-648. https://doi.org/10.1016/j.crvi.2003.12.008 31. STOKES, M.E.; DAVIS, C.S.; KOCH, G.G. 2012. Categorical Data Analysis Using SAS. Third Edition. SAS Institute Inc (Cary, NC). 590p. 32. VÁZQUEZ, M.M.; CÉSAR, S.; AZCÓN, R.; BAREA, J.M. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology. 15(3):261-272. https://doi.org/10.1016/S0929-1393(00)00075-5 33. VESTBERG, M.; KUKKONEN, S.; SAARI, K.; PARIKKA, P.; HUTTUNEN, J.; TAINIO, L.; DEVOS, N.; WEEKERS, F.; KEVERS, C.; THONART, P.; LEMOINE, M.-C.; CORDIER, C.; ALABOUVETTE, C.; GIANINAZZI, S. 2004. Microbial inoculation for improving the growth and health of micropropagated strawberry. Applied Soil Ecology. 27(3):243-258. https://doi.org/10.1016/j.apsoil.2004.05.006 34. WEHNER, J.; ANTUNES, P.M.; POWELL, J.R.; MAZUKATOW, J.; RILLIG, M.C. 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia. 53(3):197-201. https://doi.org/10.1016/j.pedobi.2009.10.002 35. YANG, H.-H.; YANG, S.L.; PENG, K.-C.; LO, C.-T.; LIU, S.-Y. 2009. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research. 113(9):924-932. https://doi.org/10.1016/j.mycres.2009.04.004 36. ZHANG, H.; WANG, L.; DONG, Y.; JIANG, S.; CAO, J.; MENG, R. 2007. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control. 40(2):287-292. https://doi.org/10.1016/j.biocontrol.2006.10.008 https://revistas.udca.edu.co/index.php/ruadc/article/download/2312/2523 https://revistas.udca.edu.co/index.php/ruadc/article/download/2312/2524 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |