Titulo:

Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
.

Sumario:

Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC... Ver más

Guardado en:

0123-4226

2619-2551

25

2022-06-30

Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1942
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
spellingShingle Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
Pinzón-Sandoval, Elberth Hernando
Balaguera-Lopez, Helber Enrique
Becerra-Gonzalez, Mauricio Enrique
Caducifolio
Fisiología vegetal
Caracterización fenológica
Caracterización fisicoquímica
Prunus persica
Deciduous
Phenological characterization
Physicochemical characterization
Plant physiology
Prunus persica
title_short Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
title_full Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
title_fullStr Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
title_full_unstemmed Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
title_sort cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
title_eng Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics
description Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC (153 días) y 1667,1 GDC (205 días), respectivamente. La firmeza presentó un incremento en los dos cultivares durante la fase 1 de desarrollo, luego disminuyó hasta la cosecha. El índice de color de epidermis y pulpa aumentó durante la maduración, con tonalidades amarillas, en las dos variedades. Los sólidos solubles incrementaron de forma continua y en los dos cultivares, con valores finales de 15,9 ± 0,9 y 15,5 ± 0,3 °Brix. La acidez mostró un incremento durante la fase 2 y luego disminuyó durante la maduración. La tasa respiratoria decreció entre la fase 1 y 3, con un incremento en la fase 2, relacionado con la lignificación del endocarpio, en los dos cultivares. Estos resultados contribuyen al entendimiento del desarrollo de los dos cultivares de durazno, bajo condiciones tropicales.
description_eng Several aspects of the development of the peach fruit under tropical conditions are unknown, this information allows agronomic practices to be carried out with technical criteria. Therefore, the objective was to determine the different changes and phenological changes of peach fruit depending on the Growing Degree Days (GDD) in the varieties 'Dorado' and 'Rubidoux', grown in the Colombian high tropics. This study randomly selected 51 trees and 100 flowers per plant that were in full flowering for sampling every 15 days until harvest to determine physical variables such as firmness, color index of the epidermis and pulp, and chemical properties such as soluble solids, titratable acidity, and respiratory rate. From full bloom to harvest, the Dorado and Rubidoux varieties took 1081.8 GDD (153 days) and 1667.1 GDD (205 days) respectively. The firmness increased in the two cultivars during phase 1 of development, then decreased until harvest. The color index of the epidermis and pulp increased during ripening, indicating yellow tones in the two varieties. The soluble solids increased continuously, with final values of 15.9 ± 0.9 and 15.5 ± 0.3 °Brix. The acidity increased during phase 2 and then decreased during ripening. The respiratory rate decreased between phase 1 and 3, with an increase in phase 2, which is related to the lignification of the endocarp in the two cultivars. These results contribute to the understanding of the development of the two peach cultivars under tropical conditions.
author Pinzón-Sandoval, Elberth Hernando
Balaguera-Lopez, Helber Enrique
Becerra-Gonzalez, Mauricio Enrique
author_facet Pinzón-Sandoval, Elberth Hernando
Balaguera-Lopez, Helber Enrique
Becerra-Gonzalez, Mauricio Enrique
topicspa_str_mv Caducifolio
Fisiología vegetal
Caracterización fenológica
Caracterización fisicoquímica
Prunus persica
topic Caducifolio
Fisiología vegetal
Caracterización fenológica
Caracterización fisicoquímica
Prunus persica
Deciduous
Phenological characterization
Physicochemical characterization
Plant physiology
Prunus persica
topic_facet Caducifolio
Fisiología vegetal
Caracterización fenológica
Caracterización fisicoquímica
Prunus persica
Deciduous
Phenological characterization
Physicochemical characterization
Plant physiology
Prunus persica
citationvolume 25
citationissue 1
citationedition Núm. 1 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1942
language spa
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references AFRICANO-PÉREZ, K.L.; BALAGUERA-LÓPEZ, H.E.; ALMANZA-MERCHÁN, P.J.; CÁRDENAS-HERNÁNDEZ, J.F.; HERRERA-ARÉVALO, A. 2016. Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Bastch] cv. Dorado producido bajo condiciones de trópico alto. Rev. Colombiana de Ciencias Hortícolas. 10(2):232-240. https://doi.org/10.17584/rcch.2016v10i2.5212 2. BONGHI, C.; TRAINOTTI, L.; BOTTON, A.; TADIELLO, A.; RASORI, A.; ZILIOTTO, F.; ZAFFALON, V.; CASADORO, G.; RAMINA, A. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology. 11:1-14. https://doi.org/10.1186/1471-2229-11-107 3. BOUZAYEN, M.; LATCHE, A.; NATH, P.; PECH, J.C. 2010. Mechanism of Fruit Ripening M. In: Pua, E.; Davey, M. (Eds.). Plant Developmental Biology - Biotechnological Perspectives. Springer (Berlin, Heidelberg). https://doi.org/10.1007/978-3-642-02301-9_16 4. BROOKS, S.J.; MOORE, J.N.; MURPHY, J.B. 1993. Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch.]. J. the American Society for Horticultural Science. 118(1):97-100. https://doi.org/10.21273/jashs.118.1.97 5. CASTRO, Á.; PUENTES, G.A. 2012. Ciruelo y Duraznero (Prunus salicina Lindl.) - (Prunus persica (L.) Batsch.). In: Fischer, G. (Ed.). Manual para el cultivo de frutales en el trópico. Produmedios (Bogotá D.C.). p.370-392. 6. CEPEDA M., A.; VÉLEZ-SÁNCHEZ, J.; BALAGUERA-LOPEZ, H. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colombiana De Ciencias Hortícolas. 15(2):e12508. https://doi.org/10.17584/rcch.2021v15i2.12508 7. CHAAR, J.; ASTORGA, D. 2012. Determinación del requerimiento de frío y de calor en duraznero [Prunus persica (L.) Batsch.] mediante un modelo de correlación. RIA: Revista Investigaciones Agropecuarias. 38(3):289-298. 8. CIRILLI, M.; BASSI, D.; CIACCIULLI, A. 2016. Sugars in peach fruit: A breeding perspective. Horticulture Research. 3:1-12. https://doi.org/10.1038/hortres.2015.67 9. DARDICK, C.D.; CALLAHAN, A.M.; CHIOZZOTTO, R.; SCHAFFER, R.J.; PIAGNANI, M.C.; SCORZA, R. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology. 8:13-30. https://doi.org/10.1186/1741-7007-8-13 10. DELA BRUNA, E. 2007. Curva de crescimento de frutos de pêssego em regiões subtropicais. Rev. Brasileira de Fruticultura. 29(3):685-689. https://doi.org/10.1590/S0100-29452007000300050 11. DESNOUES, E.; GIBON, Y.; BALDAZZI, V.; SIGNORET, V.; GÉNARD, M.; QUILOT-TURION, B. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology. 14:336-339. https://doi.org/10.1186/s12870-014-0336-x 12. ETIENNE, A.; GÉNARD, M.; LOBIT, P.; MBEGUIÉ-A-MBÉGUIÉ, D.; BUGAUD, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Experimental Botany. 64(6):1451-1469. https://doi.org/10.1093/jxb/ert035 13. FAMIANI, F.; BATTISTELLI, A.; MOSCATELLO, S.; CRUZ-CASTILLO, J.G.; WALKER, R.P. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Rev. Chapingo, Serie Horticultura. 21(2):97-128. https://doi.org/10.5154/r.rchsh.2015.01.004 14. FAMIANI, F.; CASULLI, V.; BALDICCHI, A.; BATTISTELLI, A.; MOSCATELLO, S.; WALKER, R.P. 2012. Development and metabolism of the fruit and seed of the Japanese plum Ozark premier (Rosaceae). J. Plant Physiology. 169(6):551-560. https://doi.org/10.1016/j.jplph.2011.11.020 15. FISCHER, G.; CASIERRA-POSADA, F.; VILLAMIZAR, C. 2011. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colombiana de Ciencias Hortícolas. 4(1):19-32. https://doi.org/10.17584/rcch.2010v4i1.1223 16. GALHO, A.S.; LOPES, N.F.; BACARIN, M.A.; LIMA, M. 2007. Chemical composition and growth respiration in Psidium cattleyanum sabine fruits during the development cycle. Rev. Brasileira de Fruticultura. 29(1):61-66. https://doi.org/10.1590/s0100-29452007000100014 17. HERNÁNDEZ, L.C.; HERNÁNDEZ, G.M.S. 2012. Crecimiento y desarrollo del fruto de copoazú (Theobroma grandiflorum [Willd. Ex Spreng.] Schum.) en la Amazonia occidental Colombiana. Agr. Col. 30(1):95-102. 18. LE DANTEC, L.; CARDINET, G.; BONET, J.; FOUCHÉ, M.; BOUDEHRI, K.; MONFORT, A.; POËSSEL, J.L.; MOING, A.; DIRLEWANGER, E. 2010. Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genetics and Genomes. 6(6):995-1012. https://doi.org/10.1007/s11295-010-0308-8 19. LIU, Z.; MA, H.; JUNG, S.; MAIN, D.; GUO, L. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology. 71:547-573. https://doi.org/10.1146/annurev-arplant-111119-021700 20. LO BIANCO, R.; RIEGER, M. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. American Society for Horticultural Science. 127(1):115-121. https://doi.org/10.21273/jashs.127.1.115 21. MARIÑO-GONZÁLEZ, L.A.; BUITRAGO, C.M.; BALAGUERA-LOPEZ, H.E.; MARTÍNEZ-QUINTERO, E. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colombiana de Ciencias Hortícolas. 13(1):46-54. https://doi.org/10.17584/rcch.2019v13i1.8543 22. MARTINEZ-GONZÁLEZ, M.; BALOIS-MORALES, R.; ALIA-TEJACAL, I.; CORTES-CRUZ, M.; PALOMINO-HERMOSILLO, Y.; LÓPEZ-GÚZMAN, G. 2017. Postharvest fruits: maturation and biochemical changes. Rev. Mexicana de Ciencias Agrícolas. 8(19):4075-4087. https://doi.org/10.29312/remexca.v0i19.674 23. MATTEOLI, S.; DIANI, M.; MASSAI, R.; CORSINI, G.; REMORINI, D. 2015. A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors J. 15(10):5455-5464. https://doi.org/10.1109/JSEN.2015.2442337 24. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, MADR. 2018. Estadísticas Agrícolas. Área, producción, rendimiento y participación municipal en el departamento por cultivo. Estadísticas Agrícolas. Disponible en internet desde: http://www.agronet.gov.co/estadistica/Paginas/default.aspx (con acceso el 12/08/2020). 25. MIRANDA, D.; CARRANZA, C. 2013. Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. En: Miranda, D.; Fischer, G.; Carranza, C. (eds). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Equilibrio Gráfico Editorial Ltda (Bogotá D.C.). p.87-113. 26. PAYASI, A.; MISHRA, N.N.; CHAVES, A.L.S.; SINGH, R. 2009. Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants. 15(2):103-113. https://doi.org/10.1007/s12298-009-0012-z 27. PINZÓN, E.H.; CRUZ-MORILLO, A.; FISCHER, G. 2014. Physiological aspects of peach (Prunus persica [L.] Batsch) in the high tropical zone: A review. Rev. U.D.C.A Act. & Div. Cient. 17(2):401-411. https://doi.org/10.31910/rudca.v17.n2.2014.243 28. PRASANNA, V.; YASHODA, H.M.; PRABHA, T.N.; THARANATHAN, R.N. 2003. Pectic polysaccharides during ripening of mango (Mangifera indica L). J. Science of Food and Agriculture. 83(11):1182-1186. https://doi.org/10.1002/jsfa.1522 29. QUEVEDO, E.; CASIERRA-POSADA, F.; DARGHAN, A.E. 2018. Quality of peach fruits Jarillo cv. (Prunus persica L.) in Pamplona, Colombia. Rev. Brasileira de Fruticultura. 40(6):e-040. https://doi.org/10.1590/0100-29452018040 30. RODRIGUEZ, C.E.; BUSTAMANTE, C.A.; BUDDE, C.O.; MÜLLER, G.L.; DRINCOVICH, M.F.; LARA, M.V. 2019. Peach fruit development: A comparative proteomic study between endocarp and mesocarp at very early stages underpins the main differential biochemical processes between these tissues. Frontiers in Plant Science. 10(715):1-19. https://doi.org/10.3389/fpls.2019.00715 31. SILVA, D.F.; SILVA, J.O.; GONÇALVES, R.; RIBEIRO, M.; BRUCKNER, C. 2013. Curva de crescimento e padrão respiratório de frutos de genótipos de pessegueiro em região de clima subtropical. Rev. Brasileira de Fruticultura. 35(2):642-649. https://doi.org/10.1590/S0100-29452013000200037 32. SLAUGHTER, D.C.; CRISOSTO, C.H.; TIWARI, G. 2013. Nondestructive determination of flesh color in clingstone peaches. J. Food Engineering. 116(4):920-925. https://doi.org/10.1016/j.jfoodeng.2013.01.007
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-06-30
date_accessioned 2022-06-30T00:00:00Z
date_available 2022-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1942
url_doi https://doi.org/10.31910/rudca.v25.n1.2022.1942
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v25.n1.2022.1942
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2320
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2321
_version_ 1811201184074039296
spelling Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics
Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC (153 días) y 1667,1 GDC (205 días), respectivamente. La firmeza presentó un incremento en los dos cultivares durante la fase 1 de desarrollo, luego disminuyó hasta la cosecha. El índice de color de epidermis y pulpa aumentó durante la maduración, con tonalidades amarillas, en las dos variedades. Los sólidos solubles incrementaron de forma continua y en los dos cultivares, con valores finales de 15,9 ± 0,9 y 15,5 ± 0,3 °Brix. La acidez mostró un incremento durante la fase 2 y luego disminuyó durante la maduración. La tasa respiratoria decreció entre la fase 1 y 3, con un incremento en la fase 2, relacionado con la lignificación del endocarpio, en los dos cultivares. Estos resultados contribuyen al entendimiento del desarrollo de los dos cultivares de durazno, bajo condiciones tropicales.
Several aspects of the development of the peach fruit under tropical conditions are unknown, this information allows agronomic practices to be carried out with technical criteria. Therefore, the objective was to determine the different changes and phenological changes of peach fruit depending on the Growing Degree Days (GDD) in the varieties 'Dorado' and 'Rubidoux', grown in the Colombian high tropics. This study randomly selected 51 trees and 100 flowers per plant that were in full flowering for sampling every 15 days until harvest to determine physical variables such as firmness, color index of the epidermis and pulp, and chemical properties such as soluble solids, titratable acidity, and respiratory rate. From full bloom to harvest, the Dorado and Rubidoux varieties took 1081.8 GDD (153 days) and 1667.1 GDD (205 days) respectively. The firmness increased in the two cultivars during phase 1 of development, then decreased until harvest. The color index of the epidermis and pulp increased during ripening, indicating yellow tones in the two varieties. The soluble solids increased continuously, with final values of 15.9 ± 0.9 and 15.5 ± 0.3 °Brix. The acidity increased during phase 2 and then decreased during ripening. The respiratory rate decreased between phase 1 and 3, with an increase in phase 2, which is related to the lignification of the endocarp in the two cultivars. These results contribute to the understanding of the development of the two peach cultivars under tropical conditions.
Pinzón-Sandoval, Elberth Hernando
Balaguera-Lopez, Helber Enrique
Becerra-Gonzalez, Mauricio Enrique
Caducifolio
Fisiología vegetal
Caracterización fenológica
Caracterización fisicoquímica
Prunus persica
Deciduous
Phenological characterization
Physicochemical characterization
Plant physiology
Prunus persica
25
1
Núm. 1 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
Artículo de revista
Journal article
2022-06-30T00:00:00Z
2022-06-30T00:00:00Z
2022-06-30
text/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/1942
10.31910/rudca.v25.n1.2022.1942
https://doi.org/10.31910/rudca.v25.n1.2022.1942
spa
http://creativecommons.org/licenses/by-nc/4.0
Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
AFRICANO-PÉREZ, K.L.; BALAGUERA-LÓPEZ, H.E.; ALMANZA-MERCHÁN, P.J.; CÁRDENAS-HERNÁNDEZ, J.F.; HERRERA-ARÉVALO, A. 2016. Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Bastch] cv. Dorado producido bajo condiciones de trópico alto. Rev. Colombiana de Ciencias Hortícolas. 10(2):232-240. https://doi.org/10.17584/rcch.2016v10i2.5212 2. BONGHI, C.; TRAINOTTI, L.; BOTTON, A.; TADIELLO, A.; RASORI, A.; ZILIOTTO, F.; ZAFFALON, V.; CASADORO, G.; RAMINA, A. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology. 11:1-14. https://doi.org/10.1186/1471-2229-11-107 3. BOUZAYEN, M.; LATCHE, A.; NATH, P.; PECH, J.C. 2010. Mechanism of Fruit Ripening M. In: Pua, E.; Davey, M. (Eds.). Plant Developmental Biology - Biotechnological Perspectives. Springer (Berlin, Heidelberg). https://doi.org/10.1007/978-3-642-02301-9_16 4. BROOKS, S.J.; MOORE, J.N.; MURPHY, J.B. 1993. Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch.]. J. the American Society for Horticultural Science. 118(1):97-100. https://doi.org/10.21273/jashs.118.1.97 5. CASTRO, Á.; PUENTES, G.A. 2012. Ciruelo y Duraznero (Prunus salicina Lindl.) - (Prunus persica (L.) Batsch.). In: Fischer, G. (Ed.). Manual para el cultivo de frutales en el trópico. Produmedios (Bogotá D.C.). p.370-392. 6. CEPEDA M., A.; VÉLEZ-SÁNCHEZ, J.; BALAGUERA-LOPEZ, H. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colombiana De Ciencias Hortícolas. 15(2):e12508. https://doi.org/10.17584/rcch.2021v15i2.12508 7. CHAAR, J.; ASTORGA, D. 2012. Determinación del requerimiento de frío y de calor en duraznero [Prunus persica (L.) Batsch.] mediante un modelo de correlación. RIA: Revista Investigaciones Agropecuarias. 38(3):289-298. 8. CIRILLI, M.; BASSI, D.; CIACCIULLI, A. 2016. Sugars in peach fruit: A breeding perspective. Horticulture Research. 3:1-12. https://doi.org/10.1038/hortres.2015.67 9. DARDICK, C.D.; CALLAHAN, A.M.; CHIOZZOTTO, R.; SCHAFFER, R.J.; PIAGNANI, M.C.; SCORZA, R. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology. 8:13-30. https://doi.org/10.1186/1741-7007-8-13 10. DELA BRUNA, E. 2007. Curva de crescimento de frutos de pêssego em regiões subtropicais. Rev. Brasileira de Fruticultura. 29(3):685-689. https://doi.org/10.1590/S0100-29452007000300050 11. DESNOUES, E.; GIBON, Y.; BALDAZZI, V.; SIGNORET, V.; GÉNARD, M.; QUILOT-TURION, B. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology. 14:336-339. https://doi.org/10.1186/s12870-014-0336-x 12. ETIENNE, A.; GÉNARD, M.; LOBIT, P.; MBEGUIÉ-A-MBÉGUIÉ, D.; BUGAUD, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Experimental Botany. 64(6):1451-1469. https://doi.org/10.1093/jxb/ert035 13. FAMIANI, F.; BATTISTELLI, A.; MOSCATELLO, S.; CRUZ-CASTILLO, J.G.; WALKER, R.P. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Rev. Chapingo, Serie Horticultura. 21(2):97-128. https://doi.org/10.5154/r.rchsh.2015.01.004 14. FAMIANI, F.; CASULLI, V.; BALDICCHI, A.; BATTISTELLI, A.; MOSCATELLO, S.; WALKER, R.P. 2012. Development and metabolism of the fruit and seed of the Japanese plum Ozark premier (Rosaceae). J. Plant Physiology. 169(6):551-560. https://doi.org/10.1016/j.jplph.2011.11.020 15. FISCHER, G.; CASIERRA-POSADA, F.; VILLAMIZAR, C. 2011. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colombiana de Ciencias Hortícolas. 4(1):19-32. https://doi.org/10.17584/rcch.2010v4i1.1223 16. GALHO, A.S.; LOPES, N.F.; BACARIN, M.A.; LIMA, M. 2007. Chemical composition and growth respiration in Psidium cattleyanum sabine fruits during the development cycle. Rev. Brasileira de Fruticultura. 29(1):61-66. https://doi.org/10.1590/s0100-29452007000100014 17. HERNÁNDEZ, L.C.; HERNÁNDEZ, G.M.S. 2012. Crecimiento y desarrollo del fruto de copoazú (Theobroma grandiflorum [Willd. Ex Spreng.] Schum.) en la Amazonia occidental Colombiana. Agr. Col. 30(1):95-102. 18. LE DANTEC, L.; CARDINET, G.; BONET, J.; FOUCHÉ, M.; BOUDEHRI, K.; MONFORT, A.; POËSSEL, J.L.; MOING, A.; DIRLEWANGER, E. 2010. Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genetics and Genomes. 6(6):995-1012. https://doi.org/10.1007/s11295-010-0308-8 19. LIU, Z.; MA, H.; JUNG, S.; MAIN, D.; GUO, L. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology. 71:547-573. https://doi.org/10.1146/annurev-arplant-111119-021700 20. LO BIANCO, R.; RIEGER, M. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. American Society for Horticultural Science. 127(1):115-121. https://doi.org/10.21273/jashs.127.1.115 21. MARIÑO-GONZÁLEZ, L.A.; BUITRAGO, C.M.; BALAGUERA-LOPEZ, H.E.; MARTÍNEZ-QUINTERO, E. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colombiana de Ciencias Hortícolas. 13(1):46-54. https://doi.org/10.17584/rcch.2019v13i1.8543 22. MARTINEZ-GONZÁLEZ, M.; BALOIS-MORALES, R.; ALIA-TEJACAL, I.; CORTES-CRUZ, M.; PALOMINO-HERMOSILLO, Y.; LÓPEZ-GÚZMAN, G. 2017. Postharvest fruits: maturation and biochemical changes. Rev. Mexicana de Ciencias Agrícolas. 8(19):4075-4087. https://doi.org/10.29312/remexca.v0i19.674 23. MATTEOLI, S.; DIANI, M.; MASSAI, R.; CORSINI, G.; REMORINI, D. 2015. A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors J. 15(10):5455-5464. https://doi.org/10.1109/JSEN.2015.2442337 24. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, MADR. 2018. Estadísticas Agrícolas. Área, producción, rendimiento y participación municipal en el departamento por cultivo. Estadísticas Agrícolas. Disponible en internet desde: http://www.agronet.gov.co/estadistica/Paginas/default.aspx (con acceso el 12/08/2020). 25. MIRANDA, D.; CARRANZA, C. 2013. Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. En: Miranda, D.; Fischer, G.; Carranza, C. (eds). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Equilibrio Gráfico Editorial Ltda (Bogotá D.C.). p.87-113. 26. PAYASI, A.; MISHRA, N.N.; CHAVES, A.L.S.; SINGH, R. 2009. Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants. 15(2):103-113. https://doi.org/10.1007/s12298-009-0012-z 27. PINZÓN, E.H.; CRUZ-MORILLO, A.; FISCHER, G. 2014. Physiological aspects of peach (Prunus persica [L.] Batsch) in the high tropical zone: A review. Rev. U.D.C.A Act. & Div. Cient. 17(2):401-411. https://doi.org/10.31910/rudca.v17.n2.2014.243 28. PRASANNA, V.; YASHODA, H.M.; PRABHA, T.N.; THARANATHAN, R.N. 2003. Pectic polysaccharides during ripening of mango (Mangifera indica L). J. Science of Food and Agriculture. 83(11):1182-1186. https://doi.org/10.1002/jsfa.1522 29. QUEVEDO, E.; CASIERRA-POSADA, F.; DARGHAN, A.E. 2018. Quality of peach fruits Jarillo cv. (Prunus persica L.) in Pamplona, Colombia. Rev. Brasileira de Fruticultura. 40(6):e-040. https://doi.org/10.1590/0100-29452018040 30. RODRIGUEZ, C.E.; BUSTAMANTE, C.A.; BUDDE, C.O.; MÜLLER, G.L.; DRINCOVICH, M.F.; LARA, M.V. 2019. Peach fruit development: A comparative proteomic study between endocarp and mesocarp at very early stages underpins the main differential biochemical processes between these tissues. Frontiers in Plant Science. 10(715):1-19. https://doi.org/10.3389/fpls.2019.00715 31. SILVA, D.F.; SILVA, J.O.; GONÇALVES, R.; RIBEIRO, M.; BRUCKNER, C. 2013. Curva de crescimento e padrão respiratório de frutos de genótipos de pessegueiro em região de clima subtropical. Rev. Brasileira de Fruticultura. 35(2):642-649. https://doi.org/10.1590/S0100-29452013000200037 32. SLAUGHTER, D.C.; CRISOSTO, C.H.; TIWARI, G. 2013. Nondestructive determination of flesh color in clingstone peaches. J. Food Engineering. 116(4):920-925. https://doi.org/10.1016/j.jfoodeng.2013.01.007
https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2320
https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2321
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication