Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto
.
Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC... Ver más
0123-4226
2619-2551
25
2022-06-30
Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1942 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
spellingShingle |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto Pinzón-Sandoval, Elberth Hernando Balaguera-Lopez, Helber Enrique Becerra-Gonzalez, Mauricio Enrique Caducifolio Fisiología vegetal Caracterización fenológica Caracterización fisicoquímica Prunus persica Deciduous Phenological characterization Physicochemical characterization Plant physiology Prunus persica |
title_short |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
title_full |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
title_fullStr |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
title_full_unstemmed |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
title_sort |
cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto |
title_eng |
Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics |
description |
Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC (153 días) y 1667,1 GDC (205 días), respectivamente. La firmeza presentó un incremento en los dos cultivares durante la fase 1 de desarrollo, luego disminuyó hasta la cosecha. El índice de color de epidermis y pulpa aumentó durante la maduración, con tonalidades amarillas, en las dos variedades. Los sólidos solubles incrementaron de forma continua y en los dos cultivares, con valores finales de 15,9 ± 0,9 y 15,5 ± 0,3 °Brix. La acidez mostró un incremento durante la fase 2 y luego disminuyó durante la maduración. La tasa respiratoria decreció entre la fase 1 y 3, con un incremento en la fase 2, relacionado con la lignificación del endocarpio, en los dos cultivares. Estos resultados contribuyen al entendimiento del desarrollo de los dos cultivares de durazno, bajo condiciones tropicales.
|
description_eng |
Several aspects of the development of the peach fruit under tropical conditions are unknown, this information allows agronomic practices to be carried out with technical criteria. Therefore, the objective was to determine the different changes and phenological changes of peach fruit depending on the Growing Degree Days (GDD) in the varieties 'Dorado' and 'Rubidoux', grown in the Colombian high tropics. This study randomly selected 51 trees and 100 flowers per plant that were in full flowering for sampling every 15 days until harvest to determine physical variables such as firmness, color index of the epidermis and pulp, and chemical properties such as soluble solids, titratable acidity, and respiratory rate. From full bloom to harvest, the Dorado and Rubidoux varieties took 1081.8 GDD (153 days) and 1667.1 GDD (205 days) respectively. The firmness increased in the two cultivars during phase 1 of development, then decreased until harvest. The color index of the epidermis and pulp increased during ripening, indicating yellow tones in the two varieties. The soluble solids increased continuously, with final values of 15.9 ± 0.9 and 15.5 ± 0.3 °Brix. The acidity increased during phase 2 and then decreased during ripening. The respiratory rate decreased between phase 1 and 3, with an increase in phase 2, which is related to the lignification of the endocarp in the two cultivars. These results contribute to the understanding of the development of the two peach cultivars under tropical conditions.
|
author |
Pinzón-Sandoval, Elberth Hernando Balaguera-Lopez, Helber Enrique Becerra-Gonzalez, Mauricio Enrique |
author_facet |
Pinzón-Sandoval, Elberth Hernando Balaguera-Lopez, Helber Enrique Becerra-Gonzalez, Mauricio Enrique |
topicspa_str_mv |
Caducifolio Fisiología vegetal Caracterización fenológica Caracterización fisicoquímica Prunus persica |
topic |
Caducifolio Fisiología vegetal Caracterización fenológica Caracterización fisicoquímica Prunus persica Deciduous Phenological characterization Physicochemical characterization Plant physiology Prunus persica |
topic_facet |
Caducifolio Fisiología vegetal Caracterización fenológica Caracterización fisicoquímica Prunus persica Deciduous Phenological characterization Physicochemical characterization Plant physiology Prunus persica |
citationvolume |
25 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1942 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
AFRICANO-PÉREZ, K.L.; BALAGUERA-LÓPEZ, H.E.; ALMANZA-MERCHÁN, P.J.; CÁRDENAS-HERNÁNDEZ, J.F.; HERRERA-ARÉVALO, A. 2016. Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Bastch] cv. Dorado producido bajo condiciones de trópico alto. Rev. Colombiana de Ciencias Hortícolas. 10(2):232-240. https://doi.org/10.17584/rcch.2016v10i2.5212 2. BONGHI, C.; TRAINOTTI, L.; BOTTON, A.; TADIELLO, A.; RASORI, A.; ZILIOTTO, F.; ZAFFALON, V.; CASADORO, G.; RAMINA, A. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology. 11:1-14. https://doi.org/10.1186/1471-2229-11-107 3. BOUZAYEN, M.; LATCHE, A.; NATH, P.; PECH, J.C. 2010. Mechanism of Fruit Ripening M. In: Pua, E.; Davey, M. (Eds.). Plant Developmental Biology - Biotechnological Perspectives. Springer (Berlin, Heidelberg). https://doi.org/10.1007/978-3-642-02301-9_16 4. BROOKS, S.J.; MOORE, J.N.; MURPHY, J.B. 1993. Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch.]. J. the American Society for Horticultural Science. 118(1):97-100. https://doi.org/10.21273/jashs.118.1.97 5. CASTRO, Á.; PUENTES, G.A. 2012. Ciruelo y Duraznero (Prunus salicina Lindl.) - (Prunus persica (L.) Batsch.). In: Fischer, G. (Ed.). Manual para el cultivo de frutales en el trópico. Produmedios (Bogotá D.C.). p.370-392. 6. CEPEDA M., A.; VÉLEZ-SÁNCHEZ, J.; BALAGUERA-LOPEZ, H. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colombiana De Ciencias Hortícolas. 15(2):e12508. https://doi.org/10.17584/rcch.2021v15i2.12508 7. CHAAR, J.; ASTORGA, D. 2012. Determinación del requerimiento de frío y de calor en duraznero [Prunus persica (L.) Batsch.] mediante un modelo de correlación. RIA: Revista Investigaciones Agropecuarias. 38(3):289-298. 8. CIRILLI, M.; BASSI, D.; CIACCIULLI, A. 2016. Sugars in peach fruit: A breeding perspective. Horticulture Research. 3:1-12. https://doi.org/10.1038/hortres.2015.67 9. DARDICK, C.D.; CALLAHAN, A.M.; CHIOZZOTTO, R.; SCHAFFER, R.J.; PIAGNANI, M.C.; SCORZA, R. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology. 8:13-30. https://doi.org/10.1186/1741-7007-8-13 10. DELA BRUNA, E. 2007. Curva de crescimento de frutos de pêssego em regiões subtropicais. Rev. Brasileira de Fruticultura. 29(3):685-689. https://doi.org/10.1590/S0100-29452007000300050 11. DESNOUES, E.; GIBON, Y.; BALDAZZI, V.; SIGNORET, V.; GÉNARD, M.; QUILOT-TURION, B. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology. 14:336-339. https://doi.org/10.1186/s12870-014-0336-x 12. ETIENNE, A.; GÉNARD, M.; LOBIT, P.; MBEGUIÉ-A-MBÉGUIÉ, D.; BUGAUD, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Experimental Botany. 64(6):1451-1469. https://doi.org/10.1093/jxb/ert035 13. FAMIANI, F.; BATTISTELLI, A.; MOSCATELLO, S.; CRUZ-CASTILLO, J.G.; WALKER, R.P. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Rev. Chapingo, Serie Horticultura. 21(2):97-128. https://doi.org/10.5154/r.rchsh.2015.01.004 14. FAMIANI, F.; CASULLI, V.; BALDICCHI, A.; BATTISTELLI, A.; MOSCATELLO, S.; WALKER, R.P. 2012. Development and metabolism of the fruit and seed of the Japanese plum Ozark premier (Rosaceae). J. Plant Physiology. 169(6):551-560. https://doi.org/10.1016/j.jplph.2011.11.020 15. FISCHER, G.; CASIERRA-POSADA, F.; VILLAMIZAR, C. 2011. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colombiana de Ciencias Hortícolas. 4(1):19-32. https://doi.org/10.17584/rcch.2010v4i1.1223 16. GALHO, A.S.; LOPES, N.F.; BACARIN, M.A.; LIMA, M. 2007. Chemical composition and growth respiration in Psidium cattleyanum sabine fruits during the development cycle. Rev. Brasileira de Fruticultura. 29(1):61-66. https://doi.org/10.1590/s0100-29452007000100014 17. HERNÁNDEZ, L.C.; HERNÁNDEZ, G.M.S. 2012. Crecimiento y desarrollo del fruto de copoazú (Theobroma grandiflorum [Willd. Ex Spreng.] Schum.) en la Amazonia occidental Colombiana. Agr. Col. 30(1):95-102. 18. LE DANTEC, L.; CARDINET, G.; BONET, J.; FOUCHÉ, M.; BOUDEHRI, K.; MONFORT, A.; POËSSEL, J.L.; MOING, A.; DIRLEWANGER, E. 2010. Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genetics and Genomes. 6(6):995-1012. https://doi.org/10.1007/s11295-010-0308-8 19. LIU, Z.; MA, H.; JUNG, S.; MAIN, D.; GUO, L. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology. 71:547-573. https://doi.org/10.1146/annurev-arplant-111119-021700 20. LO BIANCO, R.; RIEGER, M. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. American Society for Horticultural Science. 127(1):115-121. https://doi.org/10.21273/jashs.127.1.115 21. MARIÑO-GONZÁLEZ, L.A.; BUITRAGO, C.M.; BALAGUERA-LOPEZ, H.E.; MARTÍNEZ-QUINTERO, E. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colombiana de Ciencias Hortícolas. 13(1):46-54. https://doi.org/10.17584/rcch.2019v13i1.8543 22. MARTINEZ-GONZÁLEZ, M.; BALOIS-MORALES, R.; ALIA-TEJACAL, I.; CORTES-CRUZ, M.; PALOMINO-HERMOSILLO, Y.; LÓPEZ-GÚZMAN, G. 2017. Postharvest fruits: maturation and biochemical changes. Rev. Mexicana de Ciencias Agrícolas. 8(19):4075-4087. https://doi.org/10.29312/remexca.v0i19.674 23. MATTEOLI, S.; DIANI, M.; MASSAI, R.; CORSINI, G.; REMORINI, D. 2015. A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors J. 15(10):5455-5464. https://doi.org/10.1109/JSEN.2015.2442337 24. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, MADR. 2018. Estadísticas Agrícolas. Área, producción, rendimiento y participación municipal en el departamento por cultivo. Estadísticas Agrícolas. Disponible en internet desde: http://www.agronet.gov.co/estadistica/Paginas/default.aspx (con acceso el 12/08/2020). 25. MIRANDA, D.; CARRANZA, C. 2013. Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. En: Miranda, D.; Fischer, G.; Carranza, C. (eds). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Equilibrio Gráfico Editorial Ltda (Bogotá D.C.). p.87-113. 26. PAYASI, A.; MISHRA, N.N.; CHAVES, A.L.S.; SINGH, R. 2009. Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants. 15(2):103-113. https://doi.org/10.1007/s12298-009-0012-z 27. PINZÓN, E.H.; CRUZ-MORILLO, A.; FISCHER, G. 2014. Physiological aspects of peach (Prunus persica [L.] Batsch) in the high tropical zone: A review. Rev. U.D.C.A Act. & Div. Cient. 17(2):401-411. https://doi.org/10.31910/rudca.v17.n2.2014.243 28. PRASANNA, V.; YASHODA, H.M.; PRABHA, T.N.; THARANATHAN, R.N. 2003. Pectic polysaccharides during ripening of mango (Mangifera indica L). J. Science of Food and Agriculture. 83(11):1182-1186. https://doi.org/10.1002/jsfa.1522 29. QUEVEDO, E.; CASIERRA-POSADA, F.; DARGHAN, A.E. 2018. Quality of peach fruits Jarillo cv. (Prunus persica L.) in Pamplona, Colombia. Rev. Brasileira de Fruticultura. 40(6):e-040. https://doi.org/10.1590/0100-29452018040 30. RODRIGUEZ, C.E.; BUSTAMANTE, C.A.; BUDDE, C.O.; MÜLLER, G.L.; DRINCOVICH, M.F.; LARA, M.V. 2019. Peach fruit development: A comparative proteomic study between endocarp and mesocarp at very early stages underpins the main differential biochemical processes between these tissues. Frontiers in Plant Science. 10(715):1-19. https://doi.org/10.3389/fpls.2019.00715 31. SILVA, D.F.; SILVA, J.O.; GONÇALVES, R.; RIBEIRO, M.; BRUCKNER, C. 2013. Curva de crescimento e padrão respiratório de frutos de genótipos de pessegueiro em região de clima subtropical. Rev. Brasileira de Fruticultura. 35(2):642-649. https://doi.org/10.1590/S0100-29452013000200037 32. SLAUGHTER, D.C.; CRISOSTO, C.H.; TIWARI, G. 2013. Nondestructive determination of flesh color in clingstone peaches. J. Food Engineering. 116(4):920-925. https://doi.org/10.1016/j.jfoodeng.2013.01.007 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-06-30 |
date_accessioned |
2022-06-30T00:00:00Z |
date_available |
2022-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1942 |
url_doi |
https://doi.org/10.31910/rudca.v25.n1.2022.1942 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v25.n1.2022.1942 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2320 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2321 |
_version_ |
1811201184074039296 |
spelling |
Cambios fenológicos y fisicoquímicos durante el desarrollo del fruto en dos cultivares de duraznero en trópico alto Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics Se desconocen varios aspectos del desarrollo del fruto de duraznero en condiciones tropicales, información que permite realizar labores agronómicas con criterio técnico, por tanto, el objetivo fue determinar los diferentes cambios fisicoquímicos y fenológicos del fruto de durazno, en función del tiempo térmico, de las variedades ‘Dorado’ y ‘Rubidoux’, cultivados en zonas de trópico alto colombiano. Se seleccionaron al azar 51 árboles y 100 flores/planta, en estado de plena floración. Cada 15 días y hasta la cosecha, se hicieron mediciones de la firmeza, el índice de color de epidermis y pulpa, los sólidos solubles, la acidez titulable y la tasa respiratoria. De plena floración a cosecha, las variedades Dorado y Rubidoux tardaron 1081,8 GDC (153 días) y 1667,1 GDC (205 días), respectivamente. La firmeza presentó un incremento en los dos cultivares durante la fase 1 de desarrollo, luego disminuyó hasta la cosecha. El índice de color de epidermis y pulpa aumentó durante la maduración, con tonalidades amarillas, en las dos variedades. Los sólidos solubles incrementaron de forma continua y en los dos cultivares, con valores finales de 15,9 ± 0,9 y 15,5 ± 0,3 °Brix. La acidez mostró un incremento durante la fase 2 y luego disminuyó durante la maduración. La tasa respiratoria decreció entre la fase 1 y 3, con un incremento en la fase 2, relacionado con la lignificación del endocarpio, en los dos cultivares. Estos resultados contribuyen al entendimiento del desarrollo de los dos cultivares de durazno, bajo condiciones tropicales. Several aspects of the development of the peach fruit under tropical conditions are unknown, this information allows agronomic practices to be carried out with technical criteria. Therefore, the objective was to determine the different changes and phenological changes of peach fruit depending on the Growing Degree Days (GDD) in the varieties 'Dorado' and 'Rubidoux', grown in the Colombian high tropics. This study randomly selected 51 trees and 100 flowers per plant that were in full flowering for sampling every 15 days until harvest to determine physical variables such as firmness, color index of the epidermis and pulp, and chemical properties such as soluble solids, titratable acidity, and respiratory rate. From full bloom to harvest, the Dorado and Rubidoux varieties took 1081.8 GDD (153 days) and 1667.1 GDD (205 days) respectively. The firmness increased in the two cultivars during phase 1 of development, then decreased until harvest. The color index of the epidermis and pulp increased during ripening, indicating yellow tones in the two varieties. The soluble solids increased continuously, with final values of 15.9 ± 0.9 and 15.5 ± 0.3 °Brix. The acidity increased during phase 2 and then decreased during ripening. The respiratory rate decreased between phase 1 and 3, with an increase in phase 2, which is related to the lignification of the endocarp in the two cultivars. These results contribute to the understanding of the development of the two peach cultivars under tropical conditions. Pinzón-Sandoval, Elberth Hernando Balaguera-Lopez, Helber Enrique Becerra-Gonzalez, Mauricio Enrique Caducifolio Fisiología vegetal Caracterización fenológica Caracterización fisicoquímica Prunus persica Deciduous Phenological characterization Physicochemical characterization Plant physiology Prunus persica 25 1 Núm. 1 , Año 2022 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio Artículo de revista Journal article 2022-06-30T00:00:00Z 2022-06-30T00:00:00Z 2022-06-30 text/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1942 10.31910/rudca.v25.n1.2022.1942 https://doi.org/10.31910/rudca.v25.n1.2022.1942 spa http://creativecommons.org/licenses/by-nc/4.0 Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-Lopez, Mauricio Enrique Becerra-Gonzalez - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. AFRICANO-PÉREZ, K.L.; BALAGUERA-LÓPEZ, H.E.; ALMANZA-MERCHÁN, P.J.; CÁRDENAS-HERNÁNDEZ, J.F.; HERRERA-ARÉVALO, A. 2016. Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Bastch] cv. Dorado producido bajo condiciones de trópico alto. Rev. Colombiana de Ciencias Hortícolas. 10(2):232-240. https://doi.org/10.17584/rcch.2016v10i2.5212 2. BONGHI, C.; TRAINOTTI, L.; BOTTON, A.; TADIELLO, A.; RASORI, A.; ZILIOTTO, F.; ZAFFALON, V.; CASADORO, G.; RAMINA, A. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology. 11:1-14. https://doi.org/10.1186/1471-2229-11-107 3. BOUZAYEN, M.; LATCHE, A.; NATH, P.; PECH, J.C. 2010. Mechanism of Fruit Ripening M. In: Pua, E.; Davey, M. (Eds.). Plant Developmental Biology - Biotechnological Perspectives. Springer (Berlin, Heidelberg). https://doi.org/10.1007/978-3-642-02301-9_16 4. BROOKS, S.J.; MOORE, J.N.; MURPHY, J.B. 1993. Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch.]. J. the American Society for Horticultural Science. 118(1):97-100. https://doi.org/10.21273/jashs.118.1.97 5. CASTRO, Á.; PUENTES, G.A. 2012. Ciruelo y Duraznero (Prunus salicina Lindl.) - (Prunus persica (L.) Batsch.). In: Fischer, G. (Ed.). Manual para el cultivo de frutales en el trópico. Produmedios (Bogotá D.C.). p.370-392. 6. CEPEDA M., A.; VÉLEZ-SÁNCHEZ, J.; BALAGUERA-LOPEZ, H. 2021. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colombiana De Ciencias Hortícolas. 15(2):e12508. https://doi.org/10.17584/rcch.2021v15i2.12508 7. CHAAR, J.; ASTORGA, D. 2012. Determinación del requerimiento de frío y de calor en duraznero [Prunus persica (L.) Batsch.] mediante un modelo de correlación. RIA: Revista Investigaciones Agropecuarias. 38(3):289-298. 8. CIRILLI, M.; BASSI, D.; CIACCIULLI, A. 2016. Sugars in peach fruit: A breeding perspective. Horticulture Research. 3:1-12. https://doi.org/10.1038/hortres.2015.67 9. DARDICK, C.D.; CALLAHAN, A.M.; CHIOZZOTTO, R.; SCHAFFER, R.J.; PIAGNANI, M.C.; SCORZA, R. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology. 8:13-30. https://doi.org/10.1186/1741-7007-8-13 10. DELA BRUNA, E. 2007. Curva de crescimento de frutos de pêssego em regiões subtropicais. Rev. Brasileira de Fruticultura. 29(3):685-689. https://doi.org/10.1590/S0100-29452007000300050 11. DESNOUES, E.; GIBON, Y.; BALDAZZI, V.; SIGNORET, V.; GÉNARD, M.; QUILOT-TURION, B. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology. 14:336-339. https://doi.org/10.1186/s12870-014-0336-x 12. ETIENNE, A.; GÉNARD, M.; LOBIT, P.; MBEGUIÉ-A-MBÉGUIÉ, D.; BUGAUD, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Experimental Botany. 64(6):1451-1469. https://doi.org/10.1093/jxb/ert035 13. FAMIANI, F.; BATTISTELLI, A.; MOSCATELLO, S.; CRUZ-CASTILLO, J.G.; WALKER, R.P. 2015. The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents – a review. Rev. Chapingo, Serie Horticultura. 21(2):97-128. https://doi.org/10.5154/r.rchsh.2015.01.004 14. FAMIANI, F.; CASULLI, V.; BALDICCHI, A.; BATTISTELLI, A.; MOSCATELLO, S.; WALKER, R.P. 2012. Development and metabolism of the fruit and seed of the Japanese plum Ozark premier (Rosaceae). J. Plant Physiology. 169(6):551-560. https://doi.org/10.1016/j.jplph.2011.11.020 15. FISCHER, G.; CASIERRA-POSADA, F.; VILLAMIZAR, C. 2011. Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Rev. Colombiana de Ciencias Hortícolas. 4(1):19-32. https://doi.org/10.17584/rcch.2010v4i1.1223 16. GALHO, A.S.; LOPES, N.F.; BACARIN, M.A.; LIMA, M. 2007. Chemical composition and growth respiration in Psidium cattleyanum sabine fruits during the development cycle. Rev. Brasileira de Fruticultura. 29(1):61-66. https://doi.org/10.1590/s0100-29452007000100014 17. HERNÁNDEZ, L.C.; HERNÁNDEZ, G.M.S. 2012. Crecimiento y desarrollo del fruto de copoazú (Theobroma grandiflorum [Willd. Ex Spreng.] Schum.) en la Amazonia occidental Colombiana. Agr. Col. 30(1):95-102. 18. LE DANTEC, L.; CARDINET, G.; BONET, J.; FOUCHÉ, M.; BOUDEHRI, K.; MONFORT, A.; POËSSEL, J.L.; MOING, A.; DIRLEWANGER, E. 2010. Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genetics and Genomes. 6(6):995-1012. https://doi.org/10.1007/s11295-010-0308-8 19. LIU, Z.; MA, H.; JUNG, S.; MAIN, D.; GUO, L. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology. 71:547-573. https://doi.org/10.1146/annurev-arplant-111119-021700 20. LO BIANCO, R.; RIEGER, M. 2002. Partitioning of sorbitol and sucrose catabolism within peach fruit. J. American Society for Horticultural Science. 127(1):115-121. https://doi.org/10.21273/jashs.127.1.115 21. MARIÑO-GONZÁLEZ, L.A.; BUITRAGO, C.M.; BALAGUERA-LOPEZ, H.E.; MARTÍNEZ-QUINTERO, E. 2019. Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Rev. Colombiana de Ciencias Hortícolas. 13(1):46-54. https://doi.org/10.17584/rcch.2019v13i1.8543 22. MARTINEZ-GONZÁLEZ, M.; BALOIS-MORALES, R.; ALIA-TEJACAL, I.; CORTES-CRUZ, M.; PALOMINO-HERMOSILLO, Y.; LÓPEZ-GÚZMAN, G. 2017. Postharvest fruits: maturation and biochemical changes. Rev. Mexicana de Ciencias Agrícolas. 8(19):4075-4087. https://doi.org/10.29312/remexca.v0i19.674 23. MATTEOLI, S.; DIANI, M.; MASSAI, R.; CORSINI, G.; REMORINI, D. 2015. A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors J. 15(10):5455-5464. https://doi.org/10.1109/JSEN.2015.2442337 24. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, MADR. 2018. Estadísticas Agrícolas. Área, producción, rendimiento y participación municipal en el departamento por cultivo. Estadísticas Agrícolas. Disponible en internet desde: http://www.agronet.gov.co/estadistica/Paginas/default.aspx (con acceso el 12/08/2020). 25. MIRANDA, D.; CARRANZA, C. 2013. Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. En: Miranda, D.; Fischer, G.; Carranza, C. (eds). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Equilibrio Gráfico Editorial Ltda (Bogotá D.C.). p.87-113. 26. PAYASI, A.; MISHRA, N.N.; CHAVES, A.L.S.; SINGH, R. 2009. Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants. 15(2):103-113. https://doi.org/10.1007/s12298-009-0012-z 27. PINZÓN, E.H.; CRUZ-MORILLO, A.; FISCHER, G. 2014. Physiological aspects of peach (Prunus persica [L.] Batsch) in the high tropical zone: A review. Rev. U.D.C.A Act. & Div. Cient. 17(2):401-411. https://doi.org/10.31910/rudca.v17.n2.2014.243 28. PRASANNA, V.; YASHODA, H.M.; PRABHA, T.N.; THARANATHAN, R.N. 2003. Pectic polysaccharides during ripening of mango (Mangifera indica L). J. Science of Food and Agriculture. 83(11):1182-1186. https://doi.org/10.1002/jsfa.1522 29. QUEVEDO, E.; CASIERRA-POSADA, F.; DARGHAN, A.E. 2018. Quality of peach fruits Jarillo cv. (Prunus persica L.) in Pamplona, Colombia. Rev. Brasileira de Fruticultura. 40(6):e-040. https://doi.org/10.1590/0100-29452018040 30. RODRIGUEZ, C.E.; BUSTAMANTE, C.A.; BUDDE, C.O.; MÜLLER, G.L.; DRINCOVICH, M.F.; LARA, M.V. 2019. Peach fruit development: A comparative proteomic study between endocarp and mesocarp at very early stages underpins the main differential biochemical processes between these tissues. Frontiers in Plant Science. 10(715):1-19. https://doi.org/10.3389/fpls.2019.00715 31. SILVA, D.F.; SILVA, J.O.; GONÇALVES, R.; RIBEIRO, M.; BRUCKNER, C. 2013. Curva de crescimento e padrão respiratório de frutos de genótipos de pessegueiro em região de clima subtropical. Rev. Brasileira de Fruticultura. 35(2):642-649. https://doi.org/10.1590/S0100-29452013000200037 32. SLAUGHTER, D.C.; CRISOSTO, C.H.; TIWARI, G. 2013. Nondestructive determination of flesh color in clingstone peaches. J. Food Engineering. 116(4):920-925. https://doi.org/10.1016/j.jfoodeng.2013.01.007 https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2320 https://revistas.udca.edu.co/index.php/ruadc/article/download/1942/2321 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |