Titulo:

Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
.

Sumario:

Los estudios sobre salud pública y biodiversidad de mamíferos silvestres incluyen un componente genético. Para las muestras de sangre, se debe tener condiciones óptimas de colección, ya que pueden afectar la preservación y la extracción del ADN. Este estudio evaluó el uso de métodos de preservación de ADN líquido y seco y métodos de extracción de ADN comerciales y no comerciales, en muestras de sangre, recolectadas en campo. Para ello, se recogieron 264 muestras de sangre totales de mamíferos salvajes. Se preservó un primer grupo de muestras en clorhidrato de guanidina (GuHCl) y se extrajo el ADN, utilizando seis kits comerciales: Bioline, Norgen, Invitrogen, Promega y Qiagen, además de dos protocolos no comerciales: fenol-cloroformo isoami... Ver más

Guardado en:

0123-4226

2619-2551

24

2021-06-30

Juan D. Carvajal-Agudelo, M. Paula Trujillo-Betancur, Daniela Velásquez-Guarín, Hector E. Ramírez-Chaves, Jorge E. Pérez-Cárdenas, Fredy A. Rivera-Páez - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1766
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
spellingShingle Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
Carvajal-Agudelo, Juan D.
Trujillo-Betancur, M. Paula
Velásquez-Guarín, Daniela
Ramírez-Chaves, Hector E.
Pérez-Cárdenas, Jorge E.
Rivera-Páez, Fredy A.
Biodiversidad
Calidad de ADN
Mammalia
Sangre total
Vida silvestre
Biodiversity
DNA quality
Mammalia
Whole blood
Wildlife
title_short Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
title_full Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
title_fullStr Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
title_full_unstemmed Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
title_sort preservación en campo y extracción de adn en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
title_eng Field blood preservation and DNA extraction from wild mammals: methods and key factors for biodiversity studies
description Los estudios sobre salud pública y biodiversidad de mamíferos silvestres incluyen un componente genético. Para las muestras de sangre, se debe tener condiciones óptimas de colección, ya que pueden afectar la preservación y la extracción del ADN. Este estudio evaluó el uso de métodos de preservación de ADN líquido y seco y métodos de extracción de ADN comerciales y no comerciales, en muestras de sangre, recolectadas en campo. Para ello, se recogieron 264 muestras de sangre totales de mamíferos salvajes. Se preservó un primer grupo de muestras en clorhidrato de guanidina (GuHCl) y se extrajo el ADN, utilizando seis kits comerciales: Bioline, Norgen, Invitrogen, Promega y Qiagen, además de dos protocolos no comerciales: fenol-cloroformo isoamil alcohol (PC) y guanidina tiocianato (GIT). Otro grupo de muestras, se preservó en tarjetas Whatman® FTA® y se extrajo el ADN, con PC y GIT. Las extracciones con GIT y PC mostraron los valores y variaciones más altas en la concentración de ADN (ng/µL), mientras que el kit comercial mostró una baja variación. La preservación de la muestra en tarjetas Whatman® FTA® proporcionó una baja variación y cantidad de ADN extraído, en comparación con el uso de GuHCl. En cuanto a la calidad del ADN, los kits comerciales produjeron una mayor pureza (A260/280), mientras que los protocolos basados en GIT y PC proporcionaron resultados muy variables. Además, el uso de GIT y PC originó una mayor cantidad de ADN, pero de calidad variable. En general, la extracción basada en kits comerciales y la conservación Whatman® FTA® permitió obtener calidades y cantidades de ADN más estandarizadas. 
description_eng Studies on public health and wild mammal biodiversity include a genetic component. For blood samples, there must be optimal sample collection conditions since these can affect DNA preservation and extraction. This study evaluated the use of liquid and dry DNA preservation methods and commercial and non-commercial DNA extraction methods on field-collected blood samples. For this, 264 total blood samples were collected from wild mammals. A first group of samples was preserved in guanidine hydrochloride (GuHCl) and DNA was extracted using six commercial kits:  Bioline, Norgen, Invitrogen, Promega, and Qiagen, in addition to phenol-chloroform isoamyl alcohol (PC) and guanidine thiocyanate (GIT). Another group of samples was preserved in Whatman® FTA® cards and DNA was extracted with PC and GIT. The extractions with GIT and PC showed the highest values (ng/µL) and variation in DNA concentration, while the commercial kit showed low variation. Sample preservation in Whatman® FTA® cards provided low variation and quantity of the extracted DNA compared with the use of GuHCl. Concerning DNA quality, the commercial kits yielded higher purity, while GIT and PC-based protocols provided highly variable results. Furthermore, the use of GIT and PC yielded a higher amount of DNA, yet, of variable quality. Overall, extraction based on commercial kits and Whatman® FTA® preservation allowed obtaining more standardized DNA qualities and quantities.
author Carvajal-Agudelo, Juan D.
Trujillo-Betancur, M. Paula
Velásquez-Guarín, Daniela
Ramírez-Chaves, Hector E.
Pérez-Cárdenas, Jorge E.
Rivera-Páez, Fredy A.
author_facet Carvajal-Agudelo, Juan D.
Trujillo-Betancur, M. Paula
Velásquez-Guarín, Daniela
Ramírez-Chaves, Hector E.
Pérez-Cárdenas, Jorge E.
Rivera-Páez, Fredy A.
topicspa_str_mv Biodiversidad
Calidad de ADN
Mammalia
Sangre total
Vida silvestre
topic Biodiversidad
Calidad de ADN
Mammalia
Sangre total
Vida silvestre
Biodiversity
DNA quality
Mammalia
Whole blood
Wildlife
topic_facet Biodiversidad
Calidad de ADN
Mammalia
Sangre total
Vida silvestre
Biodiversity
DNA quality
Mammalia
Whole blood
Wildlife
citationvolume 24
citationissue 1
citationedition Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1766
language eng
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Juan D. Carvajal-Agudelo, M. Paula Trujillo-Betancur, Daniela Velásquez-Guarín, Hector E. Ramírez-Chaves, Jorge E. Pérez-Cárdenas, Fredy A. Rivera-Páez - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng AL-SHUHAIB, M.B.S.A. 2017. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds. J. Genetics. 96(1):171-176. https://doi.org/10.1007/s12041-017-0750-6 2. ALBARIÑO, C.G.; ROMANOWSKI, V. 1994. Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Molecular and Cellular Probes. 8(5):423-427. https: //doi.org/10.1006/mcpr.1994.1060 3. AMARU, R.; PEÑALOZA, R.; MIGUEZ, H.; TORRES, G.; CUEVAS, H. 2008. UMSAgen, método para la extracción simultánea de RNA y DNA para diagnóstico molecular. Cuadernos Hospital de Clínicas. 53:38-43. 4. ASADZADEH, N.; JAVANMARD, A.; NASSIRI, M. 2010. Comparison of rapid DNA extraction techniques for conventional PCR-RFLP analysis from mammalian whole blood. J.Mol. Genet. 2(3):32-35. https://doi.org/10.3923/jmolgene.2010.32.35 5. BORMAN, A.M.; FRASER, M.; LINTON, C.J.; PALMER, M.D.; JOHNSON, E.M. 2010. An improved protocol for the preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter papers. Mycopathologia. 169(6):445-449. https://doi.org/10.1007/s11046-010-9284-7 6. BURGIN, C.J.; WILSON, D.E.; MITTERMEIER, R.A.; RYLANDS, A.B.; LACHER, T.; SECHREST, W. 2020. Illustrated checklist of mammals of the World. Lynx edicions (Spain). 7. CAMACHO‐SANCHEZ, M.; BURRACO, P.; GOMEZ‐MESTRE, I.; LEONARD, J.A. 2013. Preservation of RNA and DNA from mammal samples under field conditions. Molecular Ecology Resources. 13(4):663-673. https://doi.org/10.1111/1755-0998.12108 8. CHACON-CORTES, D.; GRIFFITHS, L.R. 2014. Methods for extracting genomic DNA from whole blood samples: current perspectives. J. Biorepository Science for Applied Medicine. 2:1-9. https://doi.org/10.2147/BSAM.S46573 9. CHAKRABORTY, A.; SAKAI, M.; IWATSUKI, Y. 2006. Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J. Applied Ichthyology. 22(2):160-166. http://doi.org/10.1111/j.1439-0426.2006.00718.x 10. CHO, Y.K.; LEE, J.G.; PARK, J.M.; LEE, B.S.; LEE, Y.; KO, C. 2007. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab on a Chip. 7(5):565-573. https://doi.org/10.1039/b616115d 11. CHOI, E.H.; LEE, S.K.; IHM, C.; SOHN, Y.H. 2014. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking. Osong Public Health and Research Perspectives. 5(6):351-357. https://doi.org/10.1016/j.phrp.2014.09.005 12. DE VRIES, J.J.C.; CLAAS, E.C.J.; KROES, A.C.M.; VOSSEN, A.C.T.M. 2009. Evaluation of DNA extraction methods for dried blood spots in the diagnosis of congenital cytomegalovirus infection. J. Clinical Virology. 46:S37-S42. https://doi.org/10.1016/j.jcv.2009.09.001 13. DEMEKE, T.; JENKINS, G.R. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry. 396(6):1977-1990. https://doi.org/10.1007/s00216-009-3150-9 14. DESQUESNES, M.; TRESSE, L. 1996. Evaluation of sensitivity of PCR for detecting DNA of Trypanosoma vivax with several methods of blood sample preparations. Revue d’elevage et de Medecine Veterinaire Des Pays Tropicaux. 49(4):322-327. 15. DI PIETRO, F.; ORTENZI, F.; TILIO, M.; CONCETTI, F.; NAPOLIONI, V. 2011. Genomic DNA extraction from whole blood stored from 15-to 30-years at− 20 C by rapid phenol–chloroform protocol: A useful tool for genetic epidemiology studies. Molecular and Cellular Probes. 25(1):44-48. https://doi.org/10.1016/j.mcp.2010.10.003 16. DÍAZ, M.M.; SOLARI, S.; AGUIRRE, L.F.; AGUIAR, L.M.; BARQUEZ, R.M. 2016. Clave de Identificación de los Murciélagos de Sudamérica – Chave de Identificação dos Morcegos da América do Sul. Programa de Conservación de los Murciélagos de Argentina. Publicación Especial PCMA Nro 2. Editorial Magna Publicaciones, 160p. 17. DOVE, C.J.; DAHLAN, N.F.; HEACKER, M.A.; WHATTON, J.F. 2011. Using Whatman FTA® cards to collect DNA for bird-strike identifications. Human-Wildlife Interactions. 5(2):218-223. https://doi.org/10.26077/csen-dy04 18. ESSER, K.H.; MARX, W.H.; LISOWSKY, T. 2006. MaxXbond: first regeneration system for DNA binding silica matrices. Nature Methods. 3(1):68. https://doi.org/10.1038/nmeth845 19. FICETOLA, G.F.; MIAUD, C.; POMPANON, F.; TABERLET, P. 2008. Species detection using environmental DNA from water samples. Biology Letters. 4(4):423-425. https://doi.org/10.1098/rsbl.2008.0118 20. GARDNER, A.L. 2008. Mammals of South America, volume 1: marsupials, xenarthrans, shrews, and bats (Vol. 2). University of Chicago Press (United States). 21. GILBERT, M.T.P.; MOORE, W.; MELCHIOR, L.; WOROBEY, M. 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PloS One. 2(3):e272. https://doi.org/10.1371/journal.pone.0000272 22. HAWKEY, C.M. 2017. Comparative mammalian haematology: cellular components and blood coagulation of captive wild animals. William Heinemann Medical Books. London, UK. 310p. https://doi.org/10.1016/C2013-0-06344-X 23. HENRY, P.; RUSSELLO, M.A. 2011. Obtaining high-quality DNA from elusive small mammals using low-tech hair snares. European J. Wildlife Research. 57(3):429-435. https://doi.org/10.1007/s10344-010-0449-y 24. HOFREITER, M. 2012. Nondestructive DNA extraction from museum specimens. Ancient DNA Springer. p.93-100. https://doi.org/10.1007/978-1-61779-516-9_13 25. IBRAHIM, N.A.; NASSAR, S.A.; ABD EL-GAWAD, A.M.; OMAR, M.F. 2018. Comparing the efficiency in DNA extraction between organic phenol and magnetic beads methods. Forensic Med. Toxicol. 16:10-17. https://doi.org/10.21608/zjfm.2018.2419.1007 26. KARTHIKEYAN, K.; SARANYA, R.; BHARATH, R.; VIDYA, R.; ITAMI, T.; SUDHAKARAN, R. 2020. A simple filter paper-based method for transporting and storing Enterocytozoon hepatopenaei DNA from infected Litopenaeus vannamei tissues. J. Invertebrate Pathology. 169:107305. https://doi.org/10.1016/j.jip.2019.107305 27. KRAVCHENKO, A.V.; CHETVERINA, E.V.; CHETVERIN, A.B. 2006. Preservation of nucleic acid integrity in guanidine thiocyanate lysates of whole blood. Russian J. Bioorganic Chemistry. 32(6):547-551. https://doi.org/10.1134/S1068162006060070 28. MA, D.; ZHUO, X.Y.; BU, J.; XIANG, P.; SHEN, B.H. 2007. Research of on the stability of ethanol in preservation of ethanol in blood. Fa Yi Xue Za Zhi. 23(2):117-119. 29. MALFERRARI, G.; MONFERINI, E.; DEBLASIO, P.; DIAFERIA, G.; SALTINI, G.; DEL VECCHIO, E.; ROSSI-BERNARDI, L.; BIUNNO, I. 2002. High-quality genomic DNA from human whole blood and mononuclear cells. Biotechniques. 33(6):1228-1230. https://doi.org/10.2144/02336bm09 30. MAYTA, H.; ROMERO, Y.K.; PANDO, A.; VERASTEGUI, M.; TINAJEROS, F.; BOZO, R.; HENDERSON-FROST, J.; COLANZI, R.; FLORES, J.; LERNER, R. 2019. Improved DNA extraction technique from clot for the diagnosis of Chagas disease. PLoS Neglected Tropical Diseases. 13(1):e0007024. https://doi.org/10.1371/journal.pntd.0007024 31. METWALLY, L.; FAIRLEY, D.J.; COYLE, P.V.; HAY, R.J.; HEDDERWICK, S.; MCCLOSKEY, B.; O’NEILL, H.J.; WEBB, C.H.; ELBAZ, W.; MCMULLAN, R. 2008. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J. Medical Microbiology. 57(3):296-303. https://doi.org/10.1099/jmm.0.47617-0 32. MINAMOTO, T.; NAKA, T.; MOJI, K.; MARUYAMA, A. 2016. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology. 17(1):23-32. https://doi.org/10.1007/s10201-015-0457-4 33. MTAMBO, J.; VAN BORTEL, W.; MADDER, M.; ROELANTS, P.; BACKELJAU, T. 2006. Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Experimental & Applied Acarology. 38(2-3):189-199. https://doi.org/10.1007/s10493-006-0004-4 34. NAKAGAWA, M.; HYODO, F.; NAKASHIZUKA, T. 2007. Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes. Canadian J. Zoology. 85(4):472-478. https://doi.org/10.1139/Z07-026 35. NOWAK, R.M.; WALKER, E.P. 1999. Walker’s Mammals of the World (Vol. 1). JHU press (United States). 36. PATTON, J.L.; PARDIÑAS, U.F.J.; D’ELÍA, G. 2015. Mammals of South America, volume 2: rodents (Vol. 2). University of Chicago Press (United States). 37. PSIFIDI, A.; DOVAS, C.I.; BRAMIS, G.; LAZOU, T.; RUSSEL, C.L.; ARSENOS, G.; BANOS, G. 2015. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PloS One. 10(1). https://doi.org/10.1371/journal.pone.0115960 38. RAHIKAINEN, A.L.; PALO, J.U.; DE LEEUW, W.; BUDOWLE, B.; SAJANTILA, A. 2016. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Science Internal. 261:148-153. https://doi.org/10.1016/j.forsciint.2016.02.014 39. REY FRAILE, I.R. 2013. Museos, colecciones científicas y ADN. Memorias de La Real Sociedad Española de Historia Natural. 11:53-68. 40. RODRIGUES, M.S.; LIMA, L.; DAS CHAGAS XAVIER, S.C.; HERRERA, H.M.; ROCHA, F.L.; ROQUE, A.L.R.; TEIXEIRA, M.M.G.; JANSEN, A.M. 2019. Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. International Journal for Parasitology: Parasites and Wildlife. 8:171-181. https://doi.org/10.1016/j.ijppaw.2019.02.004 41. ROHLAND, N.; HOFREITER, M. 2007. Comparison and optimization of ancient DNA extraction. Biotechniques. 42(3):343-352. https://doi.org/10.2144/000112383 42. SALGADO, A.; VIEIRALVES, T.; LAMARÃO, F.R.M.; ASSUMPÇÃO, L.L.M.; GOMES, D.; JASCONE, L.; VALADÃO, A.L.; ALBANO, R.M.; LÔBO-HAJDU, G. 2007. Field preservation and optimization of a DNA extraction method for Porifera. In: Custódio, M.R.; Lôbo-Hajdu, G.; Hajdu, E.; Muricy, G. (eds). Porifera Research. Biodiversity, Innovation and Sustainability. Livros de Museu Nacional 28, Rio de Janeiro. Porifera Research: Biodiversity, Innovation and Sustainability. p.555-560. 43. SANT’ANNA, M.R.V.; JONES, N.G.; HINDLEY, J.A.; MENDES-SOUSA, A.F.; DILLON, R.J.; CAVALCANTE, R.R.; ALEXANDER, B.; BATES, P.A. 2008. Blood meal identification and parasite detection in laboratory-fed and field-captured Lutzomyia longipalpis by PCR using FTA databasing paper. Acta Tropica. 107(3):230-237. https://doi.org/10.1016/j.actatropica.2008.06.003 44. SCHIJMAN, A.G.; BISIO, M.; ORELLANA, L.; SUED, M.; DUFFY, T.; JARAMILLO, A.M.M.; CURA, C.; AUTER, F.; VERON, V.; QVARNSTROM, Y. 2011. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Neglected Tropical Diseases. 5(1). https://doi.org/10.1371/journal.pntd.0000931 45. TAN, S.C.; YIAP, B.C. 2009. DNA, RNA, and protein extraction: the past and the present. BioMed Research International. https://doi.org/10.1155/2013/628968 46. TANG, S.; ZHANG, H.; LEE, H.K. 2016. Advances in sample extraction. Analytical Chemistry. 88(1):228-249. https://doi.org/10.1021/acs.analchem.5b04040 47. TANG, X.W.; LIAO, C.; LI, Y.; XIE, X.M.; HUANG, Y.L. 2006. Modified guanidine hydrochloride method for DNA extraction from cord blood used in HLA genotyping. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 14(2):363-365. 48. WILLERSLEV, E.; HANSEN, A.J.; POINAR, H.N. 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology & Evolution. 19(3):141-147. https://doi.org/10.1016/j.tree.2003.11.010 49. WILLIAMS, E.S.; BARKER, I.K. 2008. Infectious diseases of wild mammals. John Wiley & Sons (Iowa, United States). 560p. https://doi.org/10.1002/9780470344880
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-06-30
date_accessioned 2021-06-30T00:00:00Z
date_available 2021-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1766
url_doi https://doi.org/10.31910/rudca.v24.n1.2021.1766
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v24.n1.2021.1766
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1766/2134
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1766/2135
_version_ 1811201181068820480
spelling Preservación en campo y extracción de ADN en sangre de mamíferos silvestres: métodos y factores claves para estudios de biodiversidad
Field blood preservation and DNA extraction from wild mammals: methods and key factors for biodiversity studies
Los estudios sobre salud pública y biodiversidad de mamíferos silvestres incluyen un componente genético. Para las muestras de sangre, se debe tener condiciones óptimas de colección, ya que pueden afectar la preservación y la extracción del ADN. Este estudio evaluó el uso de métodos de preservación de ADN líquido y seco y métodos de extracción de ADN comerciales y no comerciales, en muestras de sangre, recolectadas en campo. Para ello, se recogieron 264 muestras de sangre totales de mamíferos salvajes. Se preservó un primer grupo de muestras en clorhidrato de guanidina (GuHCl) y se extrajo el ADN, utilizando seis kits comerciales: Bioline, Norgen, Invitrogen, Promega y Qiagen, además de dos protocolos no comerciales: fenol-cloroformo isoamil alcohol (PC) y guanidina tiocianato (GIT). Otro grupo de muestras, se preservó en tarjetas Whatman® FTA® y se extrajo el ADN, con PC y GIT. Las extracciones con GIT y PC mostraron los valores y variaciones más altas en la concentración de ADN (ng/µL), mientras que el kit comercial mostró una baja variación. La preservación de la muestra en tarjetas Whatman® FTA® proporcionó una baja variación y cantidad de ADN extraído, en comparación con el uso de GuHCl. En cuanto a la calidad del ADN, los kits comerciales produjeron una mayor pureza (A260/280), mientras que los protocolos basados en GIT y PC proporcionaron resultados muy variables. Además, el uso de GIT y PC originó una mayor cantidad de ADN, pero de calidad variable. En general, la extracción basada en kits comerciales y la conservación Whatman® FTA® permitió obtener calidades y cantidades de ADN más estandarizadas. 
Studies on public health and wild mammal biodiversity include a genetic component. For blood samples, there must be optimal sample collection conditions since these can affect DNA preservation and extraction. This study evaluated the use of liquid and dry DNA preservation methods and commercial and non-commercial DNA extraction methods on field-collected blood samples. For this, 264 total blood samples were collected from wild mammals. A first group of samples was preserved in guanidine hydrochloride (GuHCl) and DNA was extracted using six commercial kits:  Bioline, Norgen, Invitrogen, Promega, and Qiagen, in addition to phenol-chloroform isoamyl alcohol (PC) and guanidine thiocyanate (GIT). Another group of samples was preserved in Whatman® FTA® cards and DNA was extracted with PC and GIT. The extractions with GIT and PC showed the highest values (ng/µL) and variation in DNA concentration, while the commercial kit showed low variation. Sample preservation in Whatman® FTA® cards provided low variation and quantity of the extracted DNA compared with the use of GuHCl. Concerning DNA quality, the commercial kits yielded higher purity, while GIT and PC-based protocols provided highly variable results. Furthermore, the use of GIT and PC yielded a higher amount of DNA, yet, of variable quality. Overall, extraction based on commercial kits and Whatman® FTA® preservation allowed obtaining more standardized DNA qualities and quantities.
Carvajal-Agudelo, Juan D.
Trujillo-Betancur, M. Paula
Velásquez-Guarín, Daniela
Ramírez-Chaves, Hector E.
Pérez-Cárdenas, Jorge E.
Rivera-Páez, Fredy A.
Biodiversidad
Calidad de ADN
Mammalia
Sangre total
Vida silvestre
Biodiversity
DNA quality
Mammalia
Whole blood
Wildlife
24
1
Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
Artículo de revista
Journal article
2021-06-30T00:00:00Z
2021-06-30T00:00:00Z
2021-06-30
application/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/1766
10.31910/rudca.v24.n1.2021.1766
https://doi.org/10.31910/rudca.v24.n1.2021.1766
eng
http://creativecommons.org/licenses/by-nc/4.0
Juan D. Carvajal-Agudelo, M. Paula Trujillo-Betancur, Daniela Velásquez-Guarín, Hector E. Ramírez-Chaves, Jorge E. Pérez-Cárdenas, Fredy A. Rivera-Páez - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
AL-SHUHAIB, M.B.S.A. 2017. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds. J. Genetics. 96(1):171-176. https://doi.org/10.1007/s12041-017-0750-6 2. ALBARIÑO, C.G.; ROMANOWSKI, V. 1994. Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Molecular and Cellular Probes. 8(5):423-427. https: //doi.org/10.1006/mcpr.1994.1060 3. AMARU, R.; PEÑALOZA, R.; MIGUEZ, H.; TORRES, G.; CUEVAS, H. 2008. UMSAgen, método para la extracción simultánea de RNA y DNA para diagnóstico molecular. Cuadernos Hospital de Clínicas. 53:38-43. 4. ASADZADEH, N.; JAVANMARD, A.; NASSIRI, M. 2010. Comparison of rapid DNA extraction techniques for conventional PCR-RFLP analysis from mammalian whole blood. J.Mol. Genet. 2(3):32-35. https://doi.org/10.3923/jmolgene.2010.32.35 5. BORMAN, A.M.; FRASER, M.; LINTON, C.J.; PALMER, M.D.; JOHNSON, E.M. 2010. An improved protocol for the preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter papers. Mycopathologia. 169(6):445-449. https://doi.org/10.1007/s11046-010-9284-7 6. BURGIN, C.J.; WILSON, D.E.; MITTERMEIER, R.A.; RYLANDS, A.B.; LACHER, T.; SECHREST, W. 2020. Illustrated checklist of mammals of the World. Lynx edicions (Spain). 7. CAMACHO‐SANCHEZ, M.; BURRACO, P.; GOMEZ‐MESTRE, I.; LEONARD, J.A. 2013. Preservation of RNA and DNA from mammal samples under field conditions. Molecular Ecology Resources. 13(4):663-673. https://doi.org/10.1111/1755-0998.12108 8. CHACON-CORTES, D.; GRIFFITHS, L.R. 2014. Methods for extracting genomic DNA from whole blood samples: current perspectives. J. Biorepository Science for Applied Medicine. 2:1-9. https://doi.org/10.2147/BSAM.S46573 9. CHAKRABORTY, A.; SAKAI, M.; IWATSUKI, Y. 2006. Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J. Applied Ichthyology. 22(2):160-166. http://doi.org/10.1111/j.1439-0426.2006.00718.x 10. CHO, Y.K.; LEE, J.G.; PARK, J.M.; LEE, B.S.; LEE, Y.; KO, C. 2007. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab on a Chip. 7(5):565-573. https://doi.org/10.1039/b616115d 11. CHOI, E.H.; LEE, S.K.; IHM, C.; SOHN, Y.H. 2014. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking. Osong Public Health and Research Perspectives. 5(6):351-357. https://doi.org/10.1016/j.phrp.2014.09.005 12. DE VRIES, J.J.C.; CLAAS, E.C.J.; KROES, A.C.M.; VOSSEN, A.C.T.M. 2009. Evaluation of DNA extraction methods for dried blood spots in the diagnosis of congenital cytomegalovirus infection. J. Clinical Virology. 46:S37-S42. https://doi.org/10.1016/j.jcv.2009.09.001 13. DEMEKE, T.; JENKINS, G.R. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Analytical and Bioanalytical Chemistry. 396(6):1977-1990. https://doi.org/10.1007/s00216-009-3150-9 14. DESQUESNES, M.; TRESSE, L. 1996. Evaluation of sensitivity of PCR for detecting DNA of Trypanosoma vivax with several methods of blood sample preparations. Revue d’elevage et de Medecine Veterinaire Des Pays Tropicaux. 49(4):322-327. 15. DI PIETRO, F.; ORTENZI, F.; TILIO, M.; CONCETTI, F.; NAPOLIONI, V. 2011. Genomic DNA extraction from whole blood stored from 15-to 30-years at− 20 C by rapid phenol–chloroform protocol: A useful tool for genetic epidemiology studies. Molecular and Cellular Probes. 25(1):44-48. https://doi.org/10.1016/j.mcp.2010.10.003 16. DÍAZ, M.M.; SOLARI, S.; AGUIRRE, L.F.; AGUIAR, L.M.; BARQUEZ, R.M. 2016. Clave de Identificación de los Murciélagos de Sudamérica – Chave de Identificação dos Morcegos da América do Sul. Programa de Conservación de los Murciélagos de Argentina. Publicación Especial PCMA Nro 2. Editorial Magna Publicaciones, 160p. 17. DOVE, C.J.; DAHLAN, N.F.; HEACKER, M.A.; WHATTON, J.F. 2011. Using Whatman FTA® cards to collect DNA for bird-strike identifications. Human-Wildlife Interactions. 5(2):218-223. https://doi.org/10.26077/csen-dy04 18. ESSER, K.H.; MARX, W.H.; LISOWSKY, T. 2006. MaxXbond: first regeneration system for DNA binding silica matrices. Nature Methods. 3(1):68. https://doi.org/10.1038/nmeth845 19. FICETOLA, G.F.; MIAUD, C.; POMPANON, F.; TABERLET, P. 2008. Species detection using environmental DNA from water samples. Biology Letters. 4(4):423-425. https://doi.org/10.1098/rsbl.2008.0118 20. GARDNER, A.L. 2008. Mammals of South America, volume 1: marsupials, xenarthrans, shrews, and bats (Vol. 2). University of Chicago Press (United States). 21. GILBERT, M.T.P.; MOORE, W.; MELCHIOR, L.; WOROBEY, M. 2007. DNA extraction from dry museum beetles without conferring external morphological damage. PloS One. 2(3):e272. https://doi.org/10.1371/journal.pone.0000272 22. HAWKEY, C.M. 2017. Comparative mammalian haematology: cellular components and blood coagulation of captive wild animals. William Heinemann Medical Books. London, UK. 310p. https://doi.org/10.1016/C2013-0-06344-X 23. HENRY, P.; RUSSELLO, M.A. 2011. Obtaining high-quality DNA from elusive small mammals using low-tech hair snares. European J. Wildlife Research. 57(3):429-435. https://doi.org/10.1007/s10344-010-0449-y 24. HOFREITER, M. 2012. Nondestructive DNA extraction from museum specimens. Ancient DNA Springer. p.93-100. https://doi.org/10.1007/978-1-61779-516-9_13 25. IBRAHIM, N.A.; NASSAR, S.A.; ABD EL-GAWAD, A.M.; OMAR, M.F. 2018. Comparing the efficiency in DNA extraction between organic phenol and magnetic beads methods. Forensic Med. Toxicol. 16:10-17. https://doi.org/10.21608/zjfm.2018.2419.1007 26. KARTHIKEYAN, K.; SARANYA, R.; BHARATH, R.; VIDYA, R.; ITAMI, T.; SUDHAKARAN, R. 2020. A simple filter paper-based method for transporting and storing Enterocytozoon hepatopenaei DNA from infected Litopenaeus vannamei tissues. J. Invertebrate Pathology. 169:107305. https://doi.org/10.1016/j.jip.2019.107305 27. KRAVCHENKO, A.V.; CHETVERINA, E.V.; CHETVERIN, A.B. 2006. Preservation of nucleic acid integrity in guanidine thiocyanate lysates of whole blood. Russian J. Bioorganic Chemistry. 32(6):547-551. https://doi.org/10.1134/S1068162006060070 28. MA, D.; ZHUO, X.Y.; BU, J.; XIANG, P.; SHEN, B.H. 2007. Research of on the stability of ethanol in preservation of ethanol in blood. Fa Yi Xue Za Zhi. 23(2):117-119. 29. MALFERRARI, G.; MONFERINI, E.; DEBLASIO, P.; DIAFERIA, G.; SALTINI, G.; DEL VECCHIO, E.; ROSSI-BERNARDI, L.; BIUNNO, I. 2002. High-quality genomic DNA from human whole blood and mononuclear cells. Biotechniques. 33(6):1228-1230. https://doi.org/10.2144/02336bm09 30. MAYTA, H.; ROMERO, Y.K.; PANDO, A.; VERASTEGUI, M.; TINAJEROS, F.; BOZO, R.; HENDERSON-FROST, J.; COLANZI, R.; FLORES, J.; LERNER, R. 2019. Improved DNA extraction technique from clot for the diagnosis of Chagas disease. PLoS Neglected Tropical Diseases. 13(1):e0007024. https://doi.org/10.1371/journal.pntd.0007024 31. METWALLY, L.; FAIRLEY, D.J.; COYLE, P.V.; HAY, R.J.; HEDDERWICK, S.; MCCLOSKEY, B.; O’NEILL, H.J.; WEBB, C.H.; ELBAZ, W.; MCMULLAN, R. 2008. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J. Medical Microbiology. 57(3):296-303. https://doi.org/10.1099/jmm.0.47617-0 32. MINAMOTO, T.; NAKA, T.; MOJI, K.; MARUYAMA, A. 2016. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology. 17(1):23-32. https://doi.org/10.1007/s10201-015-0457-4 33. MTAMBO, J.; VAN BORTEL, W.; MADDER, M.; ROELANTS, P.; BACKELJAU, T. 2006. Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Experimental & Applied Acarology. 38(2-3):189-199. https://doi.org/10.1007/s10493-006-0004-4 34. NAKAGAWA, M.; HYODO, F.; NAKASHIZUKA, T. 2007. Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes. Canadian J. Zoology. 85(4):472-478. https://doi.org/10.1139/Z07-026 35. NOWAK, R.M.; WALKER, E.P. 1999. Walker’s Mammals of the World (Vol. 1). JHU press (United States). 36. PATTON, J.L.; PARDIÑAS, U.F.J.; D’ELÍA, G. 2015. Mammals of South America, volume 2: rodents (Vol. 2). University of Chicago Press (United States). 37. PSIFIDI, A.; DOVAS, C.I.; BRAMIS, G.; LAZOU, T.; RUSSEL, C.L.; ARSENOS, G.; BANOS, G. 2015. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PloS One. 10(1). https://doi.org/10.1371/journal.pone.0115960 38. RAHIKAINEN, A.L.; PALO, J.U.; DE LEEUW, W.; BUDOWLE, B.; SAJANTILA, A. 2016. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Science Internal. 261:148-153. https://doi.org/10.1016/j.forsciint.2016.02.014 39. REY FRAILE, I.R. 2013. Museos, colecciones científicas y ADN. Memorias de La Real Sociedad Española de Historia Natural. 11:53-68. 40. RODRIGUES, M.S.; LIMA, L.; DAS CHAGAS XAVIER, S.C.; HERRERA, H.M.; ROCHA, F.L.; ROQUE, A.L.R.; TEIXEIRA, M.M.G.; JANSEN, A.M. 2019. Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. International Journal for Parasitology: Parasites and Wildlife. 8:171-181. https://doi.org/10.1016/j.ijppaw.2019.02.004 41. ROHLAND, N.; HOFREITER, M. 2007. Comparison and optimization of ancient DNA extraction. Biotechniques. 42(3):343-352. https://doi.org/10.2144/000112383 42. SALGADO, A.; VIEIRALVES, T.; LAMARÃO, F.R.M.; ASSUMPÇÃO, L.L.M.; GOMES, D.; JASCONE, L.; VALADÃO, A.L.; ALBANO, R.M.; LÔBO-HAJDU, G. 2007. Field preservation and optimization of a DNA extraction method for Porifera. In: Custódio, M.R.; Lôbo-Hajdu, G.; Hajdu, E.; Muricy, G. (eds). Porifera Research. Biodiversity, Innovation and Sustainability. Livros de Museu Nacional 28, Rio de Janeiro. Porifera Research: Biodiversity, Innovation and Sustainability. p.555-560. 43. SANT’ANNA, M.R.V.; JONES, N.G.; HINDLEY, J.A.; MENDES-SOUSA, A.F.; DILLON, R.J.; CAVALCANTE, R.R.; ALEXANDER, B.; BATES, P.A. 2008. Blood meal identification and parasite detection in laboratory-fed and field-captured Lutzomyia longipalpis by PCR using FTA databasing paper. Acta Tropica. 107(3):230-237. https://doi.org/10.1016/j.actatropica.2008.06.003 44. SCHIJMAN, A.G.; BISIO, M.; ORELLANA, L.; SUED, M.; DUFFY, T.; JARAMILLO, A.M.M.; CURA, C.; AUTER, F.; VERON, V.; QVARNSTROM, Y. 2011. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Neglected Tropical Diseases. 5(1). https://doi.org/10.1371/journal.pntd.0000931 45. TAN, S.C.; YIAP, B.C. 2009. DNA, RNA, and protein extraction: the past and the present. BioMed Research International. https://doi.org/10.1155/2013/628968 46. TANG, S.; ZHANG, H.; LEE, H.K. 2016. Advances in sample extraction. Analytical Chemistry. 88(1):228-249. https://doi.org/10.1021/acs.analchem.5b04040 47. TANG, X.W.; LIAO, C.; LI, Y.; XIE, X.M.; HUANG, Y.L. 2006. Modified guanidine hydrochloride method for DNA extraction from cord blood used in HLA genotyping. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 14(2):363-365. 48. WILLERSLEV, E.; HANSEN, A.J.; POINAR, H.N. 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology & Evolution. 19(3):141-147. https://doi.org/10.1016/j.tree.2003.11.010 49. WILLIAMS, E.S.; BARKER, I.K. 2008. Infectious diseases of wild mammals. John Wiley & Sons (Iowa, United States). 560p. https://doi.org/10.1002/9780470344880
https://revistas.udca.edu.co/index.php/ruadc/article/download/1766/2134
https://revistas.udca.edu.co/index.php/ruadc/article/download/1766/2135
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication